• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
University of Glasgow Featured Masters Courses
"microwave"×
0 miles

Masters Degrees (Microwave)

We have 53 Masters Degrees (Microwave)

  • "microwave" ×
  • clear all
Showing 1 to 15 of 53
Order by 
This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems. Read more

This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems.

You will learn about a range of modern theories and techniques, accompanied by topics on wireless frequencies and sizes of RF and microwave devices.

This ranges from the lowest frequencies used in radio frequency identification (RFID) systems through to systems used at mm wave frequencies that can have applications in satellite communication systems and fifth generation wireless communication systems.

Theoretical concepts established in lectures are complemented by practical implementation in laboratory sessions, with direct experience of industry-standard computer-aided design (CAD) software.

Read about the experience of a previous student on this course, Uche Chukwumerije.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Academic support

We provide solid academic support through the taught modules and into the project period. You will be assigned a personal tutor with whom you can discuss both academic and general issues related to the programme.

When you move into the project phase of the programme, you will be assigned a project supervisor who you will meet, usually on a weekly basis, to discuss the progress of your project.

The individual taught modules also feature strong academic support, usually through a tutorial programme. All of the RF and microwave modules have tutorial sheets to support the lectures.

Although completing the tutorials is not part of the formal assessment, you have the option of using the tutorials to receive individual feedback on your progress in the modules.

Facilities and equipment

The combined facilities of the RF teaching laboratories and the Advanced Technology Institute provide MSc students with an exceptionally wide range of modern fabrication and measurement equipment.

Furthermore a wide variety of RF test and measurement facilities are available through Surrey Space Centre and the 5G Innovation Centre, which also involve work in the RF and microwave engineering domain.

Equipment includes access to CAD design tools, anechoic chamber, spectrum analysers, network analysers, wideband channel sounder, circuit etching and circuit testing.

Industrial and overseas links

The 5G Innovation Centre and Advanced Technology Institute within the Department have a range of active links with industry, both in the UK and overseas. During the past few years we have had students taking the MSc through the part-time route and completing their projects in industry.

Examples of industrial projects range from looking at new microwave measurement techniques at the National Physical Laboratory (NPL), to antenna design and construction at the Defence Science and Technology Laboratory (Dstl).

We have also sent students overseas to complete their projects, funded through the Erasmus scheme, which is a European programme that provides full financial support for students completing their project work at one of our partner universities in mainland Europe.

Students taking advantage of this opportunity not only enhance their CVs with a European perspective, but also produce excellent project dissertations.

Technical characteristics of the pathway

This programme in Microwave Engineering and Wireless Subsystem Designrf and microwavengineering provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. Read more
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. You will also develop research skills and other related abilities, enhancing your general engineering competency, employability, and providing you with an excellent platform for career development, whether that be within industry or academic research.

The distinctive features of this course include:

• The opportunity to learn in a research-led teaching institution, taught by staff in one of the highest ranked university units in the 2014 Research Excellence Framework (REF), ranked 7th in the UK for research and 1st in the UK for the research impact.

• The opportunity to work in modern facilities and commensurate with a top-class research university.

• The participation of research-active staff in programme design and delivery.

• MSc teaching complemented by guest lectures given by industrial professionals.

• Formal accreditation by the Institution of Engineering and Technology (IET).

Structure

The course is presented as a one-year full time Masters level programme, and is also available as a part-time scheme run over two years. The programme is presented in two stages: In Part 1 students follow two semesters of taught modules to the value of 120 credits. Part 2 consists of a Dissertation or research project module worth 60 credits.

Core modules:

RF Circuits Design & CAD
RESEARCH STUDY
Advanced Communication Systems
Fundamentals of Micro- and Nanotechnology
Management in Industry
Software Tools and Simulation
High Frequency Electronic Materials
HF and RF Engineering
Optoelectronics
Non-Linear RF Design and Concepts
Advanced CAD, Fabrication and Test
Dissertation (Electronic)

Teaching

A wide range of teaching styles are used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and take part in lab and tutorial based study during the Autumn and Spring semesters. During the summer you will undertake an individual research project.

At the beginning of Stage 2, you will be allocated a project supervisor. Dissertation topics are normally chosen from a range of project titles proposed by academic staff in consultation with industrial partners, usually in areas of current research or industrial interest. You will also be encouraged to put forward your own project ideas.

Assessment

The course is assessed through examinations, written coursework, and a final individual project report.

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January and May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and elements of coursework.

Career prospects

Career prospects are generally excellent with graduating students following paths either into research or related industry.

If you are interested in working in industry, many of our graduating MSc students achieve excellent employment opportunities in organisations including Infineon, Huawei, Cambridge Silicon Radio, Vodafone and International Rectifier.

In terms of research, Cardiff University has many electrical, electronic and microwave related research areas that require PhD students, and this MSc will provide you with an excellent platform if this is your chosen career path.

Read less
In an increasingly overcrowded electromagnetic spectrum, the efficient and reliable operation of wireless, mobile and satellite communication systems, and of radar and remote sensing systems, relies upon advanced components and subsystems that exploit ongoing developments in technologies such as microfabrication, nanotechnology and high frequency semiconductor devices. Read more
In an increasingly overcrowded electromagnetic spectrum, the efficient and reliable operation of wireless, mobile and satellite communication systems, and of radar and remote sensing systems, relies upon advanced components and subsystems that exploit ongoing developments in technologies such as microfabrication, nanotechnology and high frequency semiconductor devices.

This programme provides training for engineers to become innovators in these rapidly expanding markets. A firm grasp of the fundamentals is established through modules in the foundations of communications engineering and in satellite, cellular and optical fibrte communications, electromagnetics and antennas, propagation, radio frequency and microwave engineering and computer and communications networksprovide advanced knowledge in an aspect of the relevant component technologies.

The programme will help you to develop an ability to interpret user requirements and component specifications, to engineer effective designs within the constraints imposed by the available resources and the fundamental physical limits. The programme provides a theoretical basis from which the design, construction and operation of satellite and cellular radio communications can be understood.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers. Read more
This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers:
-Digital communication theory
-Signal processing tools
-Microwave and optical circuit design techniques
-System level design of sensors
-Mobile and optical communication networks

The course is aimed at those with some previous undergraduate knowledge of communication engineering wanting to enhance their skills to an advanced level for a career in the communications industry. The course also serves as an excellent introduction for those wanting to pursue a career in research or wanting to study for a PhD.

Course description

This course provides an up-to-date view of communication systems and networking, including RF and microwave systems design. The syllabus covers:
-Digital communication theory
-Signal processing tools
-Microwave and optical circuit design techniques
-System level design of sensors
-Mobile and optical communication networks

The course is aimed at those with some previous undergraduate knowledge of communication engineering wanting to enhance their skills to an advanced level for a career in the communications industry. The course also serves as an excellent introduction for those wanting to pursue a career in research or wanting to study for a PhD.

Course unit details

The first semester contains mainly fundamental material on communication theory, signal analysis, antenna and microwave circuit design principles. The second semester covers the advanced material on wireless and optical communication systems and networks.

The first semester course work is examined in January while the second semester work is examined in May. Course work marks also contribute to the assessment.

The final four months of the programme, during the summer, are devoted to the dissertation project. Projects with industrial involvement are encouraged.

Career opportunities

On graduating you will be able to enter directly all areas of the modern communications/telecommunications engineering industry, including the fast growing mobile and wireless technology sectors. You will also be well prepared to begin PhD research programmes, which may lead to careers in research establishments and universities.

Read less
This programme will not have a 2016 intake as the content is being extensively improved. A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems.

AIM OF COURSE

Mobile radio encompasses a diversity of communications requirements and technical solutions including cellular mobile radio and data systems (eg GSM, GPRS, 3G, 4G, WiMax) and Personal Mobile Radio as well as various indoor radio systems including Bluetooth, WIFI, Wireless Indoor Networks (WINs or LANs). In view of the huge size of the market for these enhanced systems providing flexible personal communications, it is important that industry equips itself to meet this challenge. This MSc course aims to provide industry with graduates who possess a thorough knowledge both of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems.

COURSE STRUCTURE

The course spans 50 weeks of full-time study and is divided into teaching and project modules. The teaching block is based on 6 modular courses, each comprising approximately 40 hours of lectures (or lecture equivalents) with additional directed study and practical work. All of these modules are augmented by specific case studies, applications and tutorials.

COURSE HIGHLIGHTS

Radio Systems Engineering
A radio receiver design is analysed in detail so that design compromises may be understood. Topics include gain, selectivity, noise figure, dynamic range, intermodulation, spurious output, receiver structures, mixers, oscillators, PLL synthesis, filters and future design trends. This course also includes familiarisation with industry - standard design packages. Introduces key concepts in conventional and novel antenna design. It incovers the following topics: basic antenna structures (eg wire, reflector, patch and helical antennas); design considerations for fixed and mobile communication systems; phased array antennas; conformal and volume arrays; array factor and pattern multiplication; mutual coupling; isolated and embedded element patterns; active match; true time delay systems; pattern synthesis techniques; adaptive antennas; adaptive beamforming and nulling.

Mobile Radio Systems and Propagation
The aim of this module is to investigate the nature of radio propagation in mobile radio environments. This will be achieved through the examination of several modern mobile radio systems. The effects of the propagation environment will also be considered.

Spectrum Management and Utilization
The electromagnetic spectrum is a finite resource which has to be properly managed. This module will address issues related to spectrum management. Topics covered will include: spectrum as a resource; space, time and bandwidth; international regulation organisations and control methods; definitions of spectrum utilisation and spectrum utilisation efficiency; spectrum-consuming properties of radio systems; protection ratio; frequency dependent rejection and the F-D curve; spectrum management tools, models and databases; spectrally-efficient techniques; efficient use of the spectrum.

Electromagnetic Compatability (EMC)
This module provides an introduction to EMC. Topics include fundamental EM interactions and how these give rise to potential incompatibilities between systems; current EMC legislation; test environments and test facilities.

Communication Systems and Digital Signal Processing
Students are introduced to a range of concepts underpinning communications system design. DSP topics include the theory and applications of: real-time DSP concepts/devices; specialist filter applications; A/D and D/A interface technology; review of Fourier/digital filter applicable to DSP; modem design: modulation, demodulation, synchronisation, equalisation; signal analysis and synthesis in time and frequency domain; hands-on experience of DSP tools and DSP applications.

Low Power/Low Voltage Design and VHDL
This module introduces the low power and low voltage design requirements brought about by increasingly small scale sizes of circuit integration. The module also introduces students to VHDL, which is widely used in industry today.

Design Exercise (RF Engineering)
This self-contained exercise aims to introduce the student to aspects of RF engineering, system specification, design and implementation. A design, such as a 2GHz receiver, will be taken through to practical implementation.

Radio Frequency and Microwave Measurements
This covers the theory of EM waves, propagation and scattering. It introduces the student to methods and instruments to measure important EM wave properties such as power and reflection coeffcients.

Active RF and Microwave Circuits
This module provides the student with an appreciation of; noise in microwave systems (basic theory, sources of noise, noise power and temperature, noise figure and measurement of noise); detectors and mixers (diodes and rectification, PIN diodes, single ended mixers, balanced mixers, intermodulation products); microwave amplifiers and oscillators (microwave bipolar transistors and FETs, gain and stability, power gain, design of single stage transistor amlifier, conjugate matching, low noise amplifier design and transistor oscillator design).

PROJECT MODULE
Following a course on research skills and project planning, each student carries out one major project from Easter to September focusing on a real industrial problem. Some projects are carried out ‘on-site’ with our local and national industrial partners. The basics of project planning and structure are taught and supervision will be given whilst the student is writing a dissertation for submission at the end of the course.

Read less
Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries. Read more

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

Read about the experience of a previous student on this course, Thanat Varathon.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

Technical characteristics of the pathway

This programme in satellite communications engineering. provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics. Read more
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are an electronics and electrical engineering graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline or physical science and you want to change field; looking for a well rounded postgraduate qualification in electronics and electrical engineering to enhance your career prospects, this programme is designed for you.
◾The MSc in Electronics and Electrical Engineering includes lectures on "Nanofabrication", "Micro- and Nanotechnology", "Optical Communications" and "Microwave and Millimetre Wave Circuit Design", "Analogue CMOS circuit design", VLSI Design and CAD", all research areas undertaken in the James Watt Nanofabrication Centre.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Electronics and Electrical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Courses include

(six normally chosen)
◾Bioelectronics
◾Computer communications
◾Control
◾Digital signal processing
◾Electrical energy systems
◾Energy conversion systems
◾Micro- and nano-technology
◾Microwave electronic and optoelectronic devices
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Power electronics and drives
◾Real-time embedded programming
◾VLSI design
◾MSc project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronics and Electrical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾This programme is aimed at training new graduates as well as more established engineers , covering a broad spectrum of specialist topics with immediate application to industrial problems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronics and Electrical Engineering include: Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, software development, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Read less
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. Read more
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. You will also develop research skills and other related abilities, enhancing your general engineering competency, employability, and providing you with an excellent platform for career development, whether that be within industry or academic research.

In addition, modules delivered by Cardiff University’s internationally recognised Business School will allow you the opportunity to gain valuable skills in entrepreneurship and an insight into what’s involved in starting your own business.

Distinctive features:

• The opportunity to learn in a research-led teaching institution taught by staff in one of the highest ranked university units in the 2014 Research Excellence Framework (REF 2014).

• MSc teaching complemented by guest lectures given by industrial professionals.

• A programme accredited as meeting requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate qualification.

• A unique opportunity to participate in the Alacrity Foundation Programme.

• A programme partially based on a successful and well-established course - Wireless and Microwave Communication Engineering (MSc).

• Specialist modules taught by the Cardiff Business School.

Structure

This course is presented as a one-year, full-time Master's level programme.

The programme takes place over two stages: In Part 1, you follow taught modules to the value of 120 credits, whilst Part 2 consists of a Dissertation or research project based module worth 60 credits.

In the full-time programme, you will undertake taught modules during the first seven months of the programme, and will then proceed to the new venture plan and dissertation stage. At this point, you will also then be able to apply to the Alacrity Foundation to take part in their “boot camp” which helps to equip you with the skills to set up your own business.

Core modules:

Innovation Management
Entrepreneurial Marketing
RF Circuits Design & CAD
Research Case Study
Advanced Communication Systems
Software Tools and Simulation
High Frequency Electronic Materials
HF and RF Engineering
Non-Linear RF Design and Concepts
Dissertation (Electronic)

Optional modules:

Fundamentals of Micro- and Nanotechnology
Optoelectronics
Advanced CAD, Fabrication and Test

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme, and you will be required to attend lectures and participate in examples classes.

A 10-credit module represents approximately 100 hours of study in total, which includes 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment.

At the dissertation stage, you will be allocated a supervisor in the relevant field of research whom you should expect to meet with regularly. Dissertation topics are presented via the Alacrity Foundation.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January and May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher.

Career prospects

Career prospects are generally excellent with graduating students following paths either into research, business or related industry. After graduating, a number of students start their own businesses.

In terms of research, Cardiff University has many electrical, electronic and microwave related research areas that require PhD students if you wish to undertake further postgraduate study.

Placements

Applicants to the MSc programme will have the opportunity to make an additional application to the Alacrity Foundation. If successful, the five-month industrial project will be based within the Foundation in Newport and attract a tax-free stipend of £13,800 from month nine of their MSc programme.

Participants will then be required to commit to the Alacrity programme for an additional fifteen months.

Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers. Read more

Why take this course?

Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers.

This course provides relevant, up-to-date skills that will enhance your engineering competencies. You will broaden your knowledge of electronic engineering and strengthen your ability to apply new technologies in the design and implementation of modern systems.

What will I experience?

On this course you can:

Focus on the practical application and design aspects of electronic systems rather than intensive analytical detail
Experiment with our range of control applications including helicopter development kits and walking robots
Access a wide range of powerful and modern multimedia computational facilities, with the latest industry software installed

What opportunities might it lead to?

This course has been accredited by the Institution of Engineering and Technology (IET) and meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Professional electronics
Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

VHDL and Digital Systems Design: This unit covers the use of a hardware description language (VHDL) to capture and model the design requirement - whilst programmable logic devices enable an implementation to be explored and tested prior to moving into manufacture. The learning will have a practical bias such that experience as well as theory is gained in completing this unit.

Advanced DSP Techniques: This unit aims to introduce you to the fundamentals of statistical signal processing, with particular emphasis upon classical and modern estimation theory, parametric and nonparametric modelling, time series analysis, least squares methods, and basics of adaptive signal processing.

Mixed Signal Processors: This unit focuses on both control and signal processing hardware, how it works, how to interface to it, and software - how to design it and debug it.

Sensors and Measurement Systems: This unit proposes to introduce you to the technologies underpinning measurements including sensors both in terms of hardware and software. It also aims to provide you with an opportunity to apply classroom knowledge in a practical setting and gain an appreciation of modern day requirements in terms of measurement.

Microwave and Wireless Technology: The unit combines team working via a project based learning activity relating to a significant circuit simulation and design problem with lectures aimed at analysing and applying the characteristics of a range of devices used in the microwave and wireless industries.

Communication System Analysis: This unit focuses on basic principles in the analysis and design of modern communication systems, the workhorses behind the information age. It puts emphasis on the treatment of analogue communications as the necessary background for understanding digital communications.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our electronic, communications and computer laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in advanced electronic engineering. It is an excellent preparation for a successful career in this ever expanding and dynamic field of modern electronics.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems.

Roles our graduates have taken on include:

Electronics engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed. Read more
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed.

Study the techniques and technologies that enable broadband provision through fixed and wireless/mobile networks, and that modernise the core networks to provide ultra-high bit-rates and multi-service support. The Broadband and Mobile Communication Networks MSc at Kent is well-supported by companies and research establishments in the UK and overseas.

The programme reflects the latest issues and developments in the telecommunications industry, delivering high-quality systems level education and training. Gain deep knowledge of next-generation wireless communication systems including antenna technology, components and systems, and fibre optic and converged access networks.

Visit the website https://www.kent.ac.uk/courses/postgraduate/247/broadband-mobile-communication-networks

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) successfully combines modern engineering and technology with the exciting field of digital media. The School was established over 40 years ago and has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL891 - System and Circuit Design (15 credits)
EL892 - Satellite and Optical Communication Systems (15 credits)
EL890 - MSc Project (60 credits)

Assessment

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credit from all the modules. For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Programme aims

This programme aims to:

- educate graduate engineers and equip them with advanced knowledge of telecommunications and communication networks (including mobile systems), informed by insights and problems at the forefront of these fields of study, for careers in research and development in industry or academia

- produce high-calibre engineers with experience in specialist and complex problem-solving skills and techniques needed for the interpretation of knowledge and for systems level design in the telecommunications field

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities.

Current main research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

School of Engineering and Digital Arts has an excellent record of student employability. We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers. Within the School of Engineering and Digital Arts, you can develop the skills and capabilities that employers are looking for. These include problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

-◾The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
◾You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
◾You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Electronic devices
◾Introduction to research in nanoscience and nanotechnology
◾Micro- and nano-technology
◾Nanofabrication
◾Research methods and techniques
◾MSc project.

Optional courses

◾Applied optics
◾Cellular biophysics
◾Microwave electronic & optoelectronic devices
◾Microwave and mm wave circuit design
◾Microscopy and optics
◾Nano and atomic scale imaging
◾Semiconductor physics.

Projects

◾The programme builds towards an extended project, which is an integral part of the MSc programme: many projects are linked to industry or related to research in the school. Our contacts with industry and our research collaborations will make this a meaningful and valuable experience, giving you the opportunity to apply your newly learnt skills.
◾To complete the MSc degree you must undertake a project worth 60 credits that will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers your ability to apply them in industrially relevant problems.
◾MSc projects are associated with Glasgow's James Watt Nanofabrication Centre, one of Europe's premier research cleanrooms. Projects range from basic research into nanofabrication and nanocharacterisation, to development of systems in optoelectronics, microbiology and electronic devices which require such fabrication.
◾You can choose from a list of approximately 30 projects published yearly in Nanoscience and Nanotechnology.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾Over 250 international companies have undertaken commercial or collaborative work with the JWNC in the last 5 years and over 90 different universities from around the globe presently have collaborations with Glasgow in nanoscience and nanotechnology.
◾Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the nanofabrication industry.

Career prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.

Read less
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. You can choose classes relevant to your career interests from a wide range of topics including. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:
- high-power microwave technology
- laser-based particle acceleration and enabled applications
- physics and the life sciences
- materials and solid state physics
- photonics
- quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:
- cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to - the X-ray region, and biomedical applications
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high-performance and parallel computer facilities
- state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs
- several labs researching optical spectroscopy and sensing

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

- Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less

Show 10 15 30 per page



Cookie Policy    X