• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
OCAD University Featured Masters Courses
Cass Business School Featured Masters Courses
Central European University Featured Masters Courses
"microfluidics"×
0 miles

Masters Degrees (Microfluidics)

We have 6 Masters Degrees (Microfluidics)

  • "microfluidics" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists

-Advanced Bioreactor Engineering

-Bioprocess Synthesis and Process Mapping

-Bioprocess Validation and Quality Control

-Commercialisation of Bioprocess Research

-Fluid Flow and Mixing in Bioprocesses

-Heat and Mass Transfers in Bioprocesses

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers

-Advanced Bioreactor Engineering

-Bioprocess Validation and Quality Control**

-Cellular Functioning from Genome to Proteome

-Commercialisation of Bioprocess Research

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

-Metabolic Processes and Regulation

-Structural Biology and Functional Protein Engineering

-Bioprocess Microfluidics*

-Bioprocess Systems Engineering*

-Bioprocessing and Clinical Translation*

-Cell Therapy Biology*

-Industrial Synthetic Biology*

-Sustainable Bioprocesses and Biorefineries*

-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project

All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:

-PhD Degree/Further Studies(Imperial College London, UCL, Cambridge)

-Consultancy (PwC)

-Bioprocess/Biopharma Industry (GSK, Eli Lilley, Synthace)

-Financial Sector

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Visit the Biochemical Engineering Open Days page on the University College London website for more details on opportunities to come and see our facilities and speak to the team!



Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less
This programme provides a practical understanding in a number of key areas of Electronic Engineering. You will work with current and familiar technology, such as Wi-Fi, and will discover what the future holds for silicon technology by studying sensory equipment, energy generation and interaction with surroundings. Read more

This programme provides a practical understanding in a number of key areas of Electronic Engineering. You will work with current and familiar technology, such as Wi-Fi, and will discover what the future holds for silicon technology by studying sensory equipment, energy generation and interaction with surroundings. The technical element of the degree includes system-on-chip, microengineering, RF engineering, control, communications and embedded systems, whilst the practical element features digital design and the design of microstructures for switching and biomedical applications, in addition to the programming of embedded microcontrollers, RF circuits and methods of building control loops and associated software.

To meet the demands of emerging markets such as Health, Security, Energy and the Environment, the programme will explore advanced sensors for chips and assemblies, and will cover actuators, display technologies and microwave and millimetre wave electronic systems. You will enhance your skills in MEMS design, microfluidics, high-frequency technologies and control solutions, in addition to advanced nanoelectronics.

The electronics industry is expanding rapidly with the UK alone aiming to increase the sector’s economic contribution from £80bn to £120bn by 2020 and creating 150,000 highly-skilled jobs in the process. Smart Grid, Health Care and Medicine, and Energy and Environment are set to join established industrial sectors including Security, Transport and Aerospace as key employment sectors for electronic engineers. We therefore equip our students with the skills and knowledge needed to further their career in these industries; a major part of which is linked into the opportunity to participate in existing projects that are both challenging and linked into real industrial need. In the past, these projects have helped to establish student-industry connections that can often lead to employment. Previous project topics have included:

  • Detection of living cells in a microfluidic system using electrochemical and RF technologies
  • Self-repairable electronics through unification of self-test and calibration technology
  • Solution-processed electronics over a large area: Design and realisation of a fully computerised XY(Z) spray coater employing multiple pneumatic and/or ultrasonic airbrushes
  • Higher-order mode couplers in semiconducting RF cavities
  • Monolithic microwave integrated circuit (MMIC) design for wireless networks
  • Vision and robotic control interface system.


Read less
Mechanical engineering plays a role in nearly everything made by humans. From design to fabrication to final applications, mechanical engineers touch everything. Read more
Mechanical engineering plays a role in nearly everything made by humans. From design to fabrication to final applications, mechanical engineers touch everything.

Our program balances theory, design and laboratory experience in the areas of thermal fluids, mechanics, dynamic systems, design and materials. We aim to help students develop into leaders in the field. Students are eligible to specialize in any one of the following areas of emphasis:
- mechanics and design (with emphasis on solid mechanics/stress analysis, vibrations and simulation/control)
- materials (with emphasis on nanotechnology, microstructure/property relationships, thin films and materials processing)
- thermofluids (with emphasis on heat transfer, microfluidics and environmental/biological transport phenomena)

The master of science (MS) program provides a balance of advanced theory and practical knowledge necessary for either practice within the profession or advancement to a doctoral program.

The master of engineering (MEng) program prepares students for careers in professional practice through a flexible course selection and requires no thesis or project.

The PhD program prepares students for basic and applied research in mechanical engineering through multidisciplinary research areas reflective of the interests of ME faculty.

Recent doctoral graduate placements include: Caterpillar Inc., Universal Instruments, Corning Inc., General Electric Research, Apple, Electrolux.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
Explore how engineering principles can be applied to biological challenges, work with the latest nanoscale applications, and learn about the innovations that are driving the world of nanotechnology. Read more
Explore how engineering principles can be applied to biological challenges, work with the latest nanoscale applications, and learn about the innovations that are driving the world of nanotechnology.

KEY LEARNING OUTCOMES

Through the master's degree in the field of bioengineering and nanotechnology you:
-Gain an understanding of emerging biomedical technologies, including microfluidics for cellular analysis, tissue regeneration, and the use of nanomaterial for drug delivery.
-Build experience in experimental or case study design, scientific data analysis, writing and communication, ethical practices, and effective collaboration.
-Develop knowledge in life science theory as it relates to biotechnology.

PROGRAM OVERVIEW

The degree includes nine courses—at least four taken on campus—and a thesis.
-Get started. You begin by completing three admission courses from the program curriculum. This is your opportunity to demonstrate your commitment and ability to perform well as a Harvard student.
-Apply to the program. While you are completing your third admission course, you may submit your application. We have application periods in the fall, spring, and summer.
-Continue your studies, online and on campus. As you progress through the program, you may choose from courses offered on campus or online, in the fall, spring, or summer. You are required to take at least four courses on campus as part of your degree.
-Complete your thesis. Working with a thesis director, you conduct in-depth research on a topic relevant to your work experience or academic interests, producing publishable quality results. You’ll emerge with a solid understanding of how scientific research is executed and communicated.
-Graduate with your Harvard degree. You participate in the annual Harvard Commencement, receiving your Harvard University degree: Master of Liberal Arts (ALM) in extension studies, field: Bioengineering and Nanotechnology.

COST

Affordability is core to our mission. Our 2016–17 graduate tuition is $2,550 per course; the total tuition cost of earning the graduate degree is approximately $25,500.

FINANCIAL SERVICES

The Student Financial Services staff can assist you in identifying funds that will help you meet the costs of your education. You can find more information here: http://www.extension.harvard.edu/tuition-enrollment/financial-aid

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X