• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Kent Featured Masters Courses
Coventry University Featured Masters Courses
Cardiff University Featured Masters Courses
Swansea University Featured Masters Courses
"microelectronic"×
0 miles

Masters Degrees (Microelectronic)

  • "microelectronic" ×
  • clear all
Showing 1 to 15 of 33
Order by 
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0. Read more
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0

The objective of the master of science degree in microelectronic engineering is to provide an opportunity for students to perform graduate-level research as they prepare for entry into either the semiconductor industry or a doctoral program. The degree requires strong preparation in the area of microelectronics and requires a thesis.

Program outcomes

- Understand the fundamental scientific principles governing solid-state devices and their incorporation into modern integrated circuits.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Develop in-depth knowledge in existing or emerging areas of the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

- Apply microelectronic processing techniques to the creation/investigation of new process/device structures.

- Communicate technical material effectively through oral presentations, written reports, and publications.

Plan of study

The MS degree is awarded upon the successful completion of a minimum of 33 semester credit hours, including a 6 credit hour thesis.

The program consists of eight core courses, two graduate electives, 3 credits of graduate seminar and a thesis. The curriculum is designed for students who do not have an undergraduate degree in microelectronic engineering. Students who have an undergraduate degree in microelectronic engineering develop a custom course of study with their graduate adviser.

- Thesis

A thesis is undertaken once the student has completed approximately 20 semester credit hours of study. Planning for the thesis, however, should begin as early as possible. Generally, full-time students should complete their degree requirements, including thesis defense, within two years (four academic semesters and one summer term).

Curriculum

- First Year

Microelectronic Fabrication
Lithographic Materials and Processes
Thin Films
Microelectronics Research Methods
Microelectronic Man.
VLS Process Modeling
Graduate Elective*
Microelectronics Research Methods

- Second Year

Graduate Elective*
MS Thesis
Microelectronics Research Methods

* With adviser approval.
Physical Modeling of Semiconductor Devices

Read less
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status. Read more
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status.

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Engineering and Technology (IET), the course meets Chartered Engineer status requirements
•Study at one the UK’s leading Engineering Schools
•Programme informed by internationally-acclaimed research
•Close industry links
•Excellent career opportunities in roles such as system designers, analysts, and senior engineers in the fields of electrical engineering, process control, and related industries

This Masters course will equip you with the technical and management skills you need to progress to senior professional positions, specialising in the design, fabrication and testing of microelectronic devices.

You will study the fundamental principles that drive future developments in microelectronics. We offer the opportunity to develop the critical, analytical and experimental skills to solve practical problems and work at the cutting edge of this rapidly developing field.

You’ll learn how to critically analyse designs, their functionality and expected reliability and it will also be important for you to gain a strong understanding of the capabilities and limitations of modelling and simulation tools.

The programme design provides opportunities to practice communication skills at Chartered Engineer level. You’ll gain sought after professional behavioural traits to prepare you for technical and management roles in microelectrical system design.

You will also undertake an individual project giving the opportunity to focus on your area of interest, working with our world-leading researchers.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Dynamic systems simulation
Microelectronic systems design
VLSI devices, fabrication and testing
Embedded systems
VLSI design
Research skills
Modelling with Matlab and Simulink
MSc project
Advanced single processing
Operations research
Safety and reliability
Project management
Programming for engineering
LabVIEW
Professional and leadership skills

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This course is designed for students from a variety of engineering backgrounds, to enhance and develop electronic engineering knowledge and skills essential for the modern engineer. Read more
This course is designed for students from a variety of engineering backgrounds, to enhance and develop electronic engineering knowledge and skills essential for the modern engineer.

You will gain expertise and experience in the areas of analogue and digital systems and circuit design using state-of-the-art software and processors. You will gain the in-depth knowledge and skills you need for analysing, modelling and optimising the performance of advanced microelectronic and communication systems. The course covers a broad range of topics including advanced embedded system technologies, digital design automation and silicon electronic design, as well as optical fibre communication systems and wireless communications.

This course can also be taken in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microelectronic-and-communication-engineering-msc-ft-dtfmiz6/

Learn From The Best

Our passion for research informs the curriculum and impacts our teaching, ensuring that course content stays current and our academic staff are amongst the best in the country. The team include published authors and industry experts with research interests including analogue electronics, networking, professionalism in practice, teaching and learning in technology and project management.

The department of Physics and Electrical Engineering is a top-35 research department with 79% of our outputs ranked world-leading or internationally excellent according to the 2014 UK wide Research Excellence Framework. This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Teaching And Assessment

Your progress will be monitored by lecturing staff and advice and appropriate links supplied to improve your learning. Web links are provided for further reading whilst online videos, where appropriate, are available for you to review taught material in your own time. Lecture material is enhanced with laboratory sessions which allow demonstration of theories and exploration of practical problems and limitations.

As a postgraduate student you will be expected to have a responsible and professional approach to learning, accessing the material and support provided and raising any problems with academic staff or your programme leader. You will have an opportunity to take an active role in the operation and content of the course via the departmental programme committee.

Module Overview
KD7019 - Advanced Embedded System Design Technology (Core, 20 Credits)
KD7020 - Digital Design Automation (Core, 20 Credits)
KD7063 - Wireless Communication Systems (Core, 20 Credits)
KD7064 - Optical Communications System (Core, 20 Credits)
KD7065 - MSc Engineering Project (Core, 60 Credits)
KD7066 - Analogue Electronic Design (Core, 20 Credits)
KD7067 - Engineering Research and Project Management (Core, 20 Credits)

Learning Environment

Whether your subject matter is renewable energy, astrophysics or communications, our range of specialist and general use facilities will support you. Throughout your work you will be able to measure, explore, experiment and model developments that are changing the way we all live our lives.

Technology to enhance learning in engineering is embedded throughout the programme. This takes the form of self-guided exercises, online tests with feedback, assessment feedback and videos and tutorials to support lectures. Self-development and employability are enhanced throughout the programme, especially with respect to communicating ideas in written and oral forms, the use of appropriate IT tools, personal time management, problem solving and independent learning skills.

Research-Rich Learning

Our course is at the forefront of current knowledge and practice, shaped by world-leading and internationally excellent research. All the modules are industry or research informed, based upon academic staff industrial experience, consultancy or personal research interests. This allows the knowledge and skills that you will acquire to meet the need and practical application for real world scenarios.

The course is supported by a team of academics who are highly respected by research groups around the world and who make a significant contribution to the faculty and University vision for the future of research within the higher education sector.

Give Your Career An Edge

A strong industrial and research based curriculum enhances your employability by considering real world scenarios in which known solutions are absent. You will be encouraged to research information from professional publications, company literature, etc. to determine innovative and appropriate solutions to these scenarios, enabling you to demonstrate relevant industry practice.

You will also be attached to one of the departmental or faculty research groups for your final dissertation, exposed to and incorporated into a working team and environment. This provides the opportunity for both work-related learning experience and professional career development.

Your Future

The rapid growth of the communications and microelectronics industries has created a strong demand for skilled engineers, who are able to design and manufacture semiconductors and freespace and optical communication systems. The UK Government’s commitment to high-speed broadband means that demand for communications engineers is expected to outstrip supply. UK and international demand for microelectronic engineers remains strong, with salaries reflecting employers’ need to attract the best candidates.

Upon graduation, you will be well-equipped to apply for roles such as communications engineer, electronic/electrical engineer, operational researcher, software engineer and systems developer. You may also consider the wider engineering and information technology sectors, including energy, transport, electronics and telecommunications, defence and manufacturing and engineering management.

Read less
This course is designed for students from a variety of engineering backgrounds, to enhance and develop electronic engineering knowledge and skills essential for the modern engineer. Read more
This course is designed for students from a variety of engineering backgrounds, to enhance and develop electronic engineering knowledge and skills essential for the modern engineer.

You will gain expertise and experience in the areas of analogue and digital systems and circuit design using state-of-the-art software and processors. You will gain the in-depth knowledge and skills you need for analysing, modelling and optimising the performance of advanced microelectronic and communication systems. The course covers a broad range of topics including advanced embedded system technologies, digital design automation and silicon electronic design, as well as optical fibre communication systems and wireless communications.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

It’s also possible to complete this course in one year without the Advanced Practice element.

Learn From The Best

Our passion for research informs the curriculum and impacts our teaching, ensuring that course content stays current and our academic staffs are amongst the best in the country. The team include published authors and industry experts with research interests including analogue electronics, networking, professionalism in practice, teaching and learning in technology and project management.

The department of Physics and Electrical Engineering is a top-35 research department with 79% of our outputs ranked world-leading or internationally excellent according to the 2014 UK wide Research Excellence Framework. This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Teaching And Assessment

Your progress will be monitored by lecturing staff and advice and appropriate links supplied to improve your learning. Web links are provided for further reading whilst online videos, where appropriate, are available for you to review taught material in your own time. Lecture material is enhanced with laboratory sessions which allow demonstration of theories and exploration of practical problems and limitations.

As a postgraduate student you will be expected to have a responsible and professional approach to learning, accessing the material and support provided and raising any problems with academic staff or your programme leader. You will have an opportunity to take an active role in the operation and content of the course via the departmental programme committee.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KD7019 - Advanced Embedded System Design Technology (Core, 20 Credits)
KD7020 - Digital Design Automation (Core, 20 Credits)
KD7063 - Wireless Communication Systems (Core, 20 Credits)
KD7064 - Optical Communications System (Core, 20 Credits)
KD7066 - Analogue Electronic Design (Core, 20 Credits)
KD7067 - Engineering Research and Project Management (Core, 20 Credits)

Year Two
KD7065 - MSc Engineering Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Whether your subject matter is renewable energy, astrophysics or communications, our range of specialist and general use facilities will support you. Throughout your work you will be able to measure, explore, experiment and model developments that are changing the way we all live our lives.

Technology to enhance learning in engineering is embedded throughout the course. This takes the form of self-guided exercises, online tests with feedback, assessment feedback and videos and tutorials to support lectures. Self-development and employability are enhanced throughout the course, especially with respect to communicating ideas in written and oral forms, the use of appropriate IT tools, personal time management, problem solving and independent learning skills.

Research-Rich Learning

Our course is at the forefront of current knowledge and practice, shaped by world-leading and internationally excellent research. All the modules are industry or research informed, based upon academic staff industrial experience, consultancy or personal research interests. This allows the knowledge and skills that you will acquire to meet the need and practical application for real world scenarios.

The course is supported by a team of academics who are highly respected by research groups around the world and who make a significant contribution to the faculty and University vision for the future of research within the higher education sector.

Give Your Career An Edge

A strong industrial and research based curriculum enhances your employability by considering real world scenarios in which known solutions are absent. You will be encouraged to research information from professional publications, company literature, etc. to determine innovative and appropriate solutions to these scenarios, enabling you to demonstrate relevant industry practice.

You will also be attached to one of the departmental or faculty research groups for your final dissertation, exposed to and incorporated into a working team and environment. This provides the opportunity for both work-related learning experience and professional career development.

Your Future

The rapid growth of the communications and microelectronics industries has created a strong demand for skilled engineers, who are able to design and manufacture semiconductors and freespace and optical communication systems. The UK Government’s commitment to high-speed broadband means that demand for communications engineers is expected to outstrip supply. UK and international demand for microelectronic engineers remains strong, with salaries reflecting employers’ need to attract the best candidates.

Upon graduation, you will be well-equipped to apply for roles such as communications engineer, electronic/electrical engineer, operational researcher, software engineer and systems developer. You may also consider the wider engineering and information technology sectors, including energy, transport, electronics and telecommunications, defence and manufacturing and engineering management.

Read less
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems. Read more
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems.

The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

We cover the following core (compulsory) topics during the MSc:

- Embedded computer systems
- Digital system design
- IC design
- Microprocess systems
- Research skills and project management.

Part-time study is in co-operation with the students’ employers. Please contact the Programme Director before applying.

Projects

Your project work will earn you 60 credits towards your MSc degree. The project's examined by oral presentation and dissertation.

In your work you'll need to demonstrate an in-depth understanding of your topic, mastery of research techniques, and the ability to analyse assembled data and assess outcomes.

Why Electrical Engineering and Electronics?

World-class facilities, including top industry standard laboratories

We have specialist facilities for processing semiconductor devices, optical imaging spectroscopy and sensing, technological plasmas, equipment for testing switch gear, specialist robot laboratories, clean room laboratories, e-automation, RF Engineering, bio-nano engineering labs and excellent mechanical and electrical workshops.

A leading centre for electrical and electronic engineering expertise

We are closely involved with over 50 prominent companies and research organisations worldwide, many of which not only fund and collaborate with us but also make a vital contribution to developing our students.

Career prospects

Our postgraduate students get to be a part of the cutting edge research projects being undertaken by our academic staff.

Here are some of the areas these projects cover:-

Molecular and semiconductor integrated circuit electronics
Technological plasmas
Communications
Digital signal processing
Optoelectronics
Nanotechnology
Robotics
Free electron lasers
Power electronics
Energy efficient systems
E-Automation
Intelligence engineering.

You'll get plenty of industry exposure too. Our industrial partners include ARM Holdings Plc, a top 200 UK company that specialises in microprocessor design and development.

As a result our postgraduates have an impressive record of securing employment after graduation in a wide range of careers not limited to engineering.

Read less
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. Read more
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. The Microelectronics group at the University of Bristol has many collaborative links with multinational companies in the microelectronics industry that have identified a shortfall in graduates with the necessary qualifications and professional skills to work in the sector. This programme has been designed to meet this need.

A range of taught subjects cover core topics such as advanced architectures and system design using FPGA and DSP platforms, before progressing into more specialised areas such as digital and analogue ASIC design, integrated sensors and actuators and mixed-signal design. Changes are made periodically to reflect important emerging disciplines, such as electronics for internet of things, bio-medical applications and neuromorphic computing.

The programme offers you the opportunity to learn from experts in micro- and nanoelectronics and computer science, to allow you to start working straight after your degree or continue your studies via a PhD. Special emphasis is put on providing you with a range of contemporary design skills to supplement theoretical knowledge. Lectures are accompanied by lab exercises in state-of-the-art industrial EDA software to give you experience of a professional environment.

Programme structure

The course consists of 120 credits of taught units and an individual research project worth 60 credits. The following core subjects, each worth 10 credit points (100 learning hours), are taken over autumn and spring:
-Design Verification
-Analogue Integrated Circuit Design
-Integrated Circuit Electronics
-Digital Filters and Spectral Analysis (M)
-Advanced DSP & FPGA Implementation
-VLSI Design M
-Embedded and Real-Time Systems
-Wireless Networking and Sensing in e-Healthcare

Additionally students are able to choose any two out of the following four 10-credit units (some combinations may not be possible due to timetabling constraints).

-Device Interconnect - Principles and Practice
-Advanced Computer Architecture
-Sustainability, Technology and Business
-Computational Neuroscience
-Bio Sensors

In the spring term, students also take Engineering Research Skills, a 20-credit unit designed to introduce the fundamental skills necessary to carry out the MSc project.

After completing the taught units satisfactorily, all students undertake a final project which involves researching, planning and implementing a major piece of work relating to microelectronics systems design. The project must have a significant scientific or technical component and may involve on-site collaboration with an industrial partner. The thesis is normally submitted by the end of September.

The programme structure is under continual discussion with the National Microelectronics Institute and our industrial advisory board in order that it remains at the cutting edge of the semiconductor industry. It is therefore subject to small changes on an ongoing basis to generally improve the programme and recognise important emerging disciplines.

Careers

This course gives graduating students the background to go on to a career in a variety of disciplines in the IT sector, due to the core and specialist units that cover key foundational concepts as well as advanced topics related to hardware design, programming and embedded systems and system-level integration.

Typical careers are in soft fabrication facilities and design houses in the semiconductor industry, electronic-design automation tool vendors, embedded systems specialists and software houses. The course also covers concepts and technologies related to emerging paradigms such as neuromorphic computing and the Internet of Things and prepares you for a career in academic research.

Read less
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1. Read more
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1

The master of engineering in microelectronics manufacturing engineering provides a broad-based education for students who are interested in a career in the semiconductor industry and hold a bachelor’s degree in traditional engineering or other science disciplines.

Program outcomes

After completing the program, students will be able to:

- Design and understand a sequence of processing steps to fabricate a solid state device to meet a set of geometric, electrical, and/or processing parameters.

- Analyze experimental electrical data from a solid state device to extract performance parameters for comparison to modeling parameters used in the device design.

- Understand current lithographic materials, processes, and systems to meet imaging and/or device patterning requirements.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Perform in a microelectronic engineering environment, as evidenced by an internship.

- Appreciate the areas of specialty in the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

Plan of study

This 30 credit hour program is awarded upon the successful completion of six core courses, two elective courses, a research methods course, and an internship. Under certain circumstances, a student may be required to complete bridge courses totaling more than the minimum number of credits. Students complete courses in microelectronics, microlithography, and manufacturing.

Microelectronics

The microelectronics courses cover major aspects of integrated circuit manufacturing technology, such as oxidation, diffusion, ion implantation, chemical vapor deposition, metalization, plasma etching, etc. These courses emphasize modeling and simulation techniques as well as hands-on laboratory verification of these processes. Students use special software tools for these processes. In the laboratory, students design and fabricate silicon MOS integrated circuits, learn how to utilize semiconductor processing equipment, develop and create a process, and manufacture and test their own integrated circuits.

Microlithography

The microlithography courses are advanced courses in the chemistry, physics, and processing involved in microlithography. Optical lithography will be studied through diffraction, Fourier, and image-assessment techniques. Scalar diffraction models will be utilized to simulate aerial image formation and influences of imaging parameters. Positive and negative resist systems as well as processes for IC application will be studied. Advanced topics will include chemically amplified resists; multiple-layer resist systems; phase-shift masks; and electron beam, X-ray, and deep UV lithography. Laboratory exercises include projection-system design, resist-materials characterization, process optimization, and electron-beam lithography.

Manufacturing

The manufacturing courses include topics such as scheduling, work-in-progress tracking, costing, inventory control, capital budgeting, productivity measures, and personnel management. Concepts of quality and statistical process control are introduced. The laboratory for this course is a student-run factory functioning within the department. Important issues such as measurement of yield, defect density, wafer mapping, control charts, and other manufacturing measurement tools are examined in lectures and through laboratory work. Computer-integrated manufacturing also is studied in detail. Process modeling, simulation, direct control, computer networking, database systems, linking application programs, facility monitoring, expert systems applications for diagnosis and training, and robotics are supported by laboratory experiences in the integrated circuit factory. The program is also offered online for engineers employed in the semiconductor industry.

Internship

The program requires students to complete an internship. This requirement provides a structured and supervised work experience that enables students to gain job-related skills that assist them in achieving their desired career goals.

Students with prior engineering-related job experience may submit a request for internship waiver with the program director. A letter from the appropriate authority substantiating the student’s job responsibility, duration, and performance quality would be required.

For students who are not working in the semiconductor industry while enrolled in this program, the internship may be completed at RIT. It involves an investigation or study of a subject or process directly related to microelectronic engineering under the supervision of a faculty adviser. An internship may be taken any time after the completion of the first semester, and may be designed in a number of ways. At the conclusion of the internship, submission of a final internship report to the faculty adviser and program director is required.

Read less
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems. Read more
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems.

The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

The first two sections consist of lectures, laboratory classes and seminars, with a final section devoted to an individually supervised project.

We cover the following core (compulsory) topics during the MSc:

Embedded computer systems
Digital system design
IC design
Microprocess systems
Research skills and project management.
To meet the increasing demands for MSc students with industry experience, the Department of Electrical Engineering and Electronics has introduced a 2-year MSc programme for graduates of the highest calibre, to develop advanced knowledge and skills in microelectronic systems and give students the opportunity to put their knowledge into practice through valuable work experience during a one year industrial placement.

Graduates will be capable of undertaking research and development work in microelectronic Systems and also developing and managing R&D programmes.

This 2-year MSc programme EEMI shares the same taught modules with its equivalent 1-year MSc in Microelectronic Systems (EEMS) in year 1. But unlike the 1-year MSc students who do their MSc project over the summer, students on the 2 year MSc (EEMI) are required to undertake an industrial project and placement (either in the UK or overseas) in year 2, typically 30 weeks from September to next June.

This opportunity to work in industry will help students strengthen their career options by

Undertaking the project work in an industrial setting;
Applying theory learnt in the classroom to real-world practice;
Developing communications and interpersonal skills;
Building networks and knowledge which will be invaluable throughout their career.

The placement

During the placement year students will spend time working in a relevant company suitable for the MSc. This is an excellent opportunity to gain practical engineering experience which will boost students’ CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University’s Careers and Employability Services (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews. Placements can be near or far in the UK or overseas.

The University has very good links with industry; companies (such as ARM Plc) have offered our MSc students competitive placements. Although industry placements are not guaranteed, the University offers students opportunities and support throughout the process to ensure that the chance for a student to find a placement is high.

If a student is unable to secure a suitable placement by the end of April during year 1, the student will be transferred onto the 1-year MSc to undertake the MSc project over the summer and graduate after one year.

Read less
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives. Read more
Develop expertise in contemporary design and practice within computer science. You graduate with the ability to explore further how technology influences people’s lives.

Our MSc Advanced Computer Science provides you with the flexibility to master the areas of computing that interest and excite you most. You choose from a range of topics including:
-Intelligent systems and robotics
-Machine learning and data mining
-Human language understanding and text processing
-Computer game development
-Cloud and web technologies
-Computer security
-Evolutionary computation

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from brain-computer interfaces, human language understanding and technology, intelligent and adaptive systems, information and data analysis, robotics and embedded systems, to future networks, optoelectronics and radio frequency and signal processing foundations, with many of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, C++, Perl, MySQL, Matlab, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our graduates have achieved success in a variety of professions. Many have pursued careers in computing and information technology, while others have gone on to work in research organisations or become university academics.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Advanced Computer Science
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Group Project
-Computer Security
-Intelligent Systems and Robotics (optional)
-Text Analytics (optional)
-Advanced Web Technologies (optional)
-Mobile & Social Application Programming
-Information Retrieval (optional)

Read less
Web applications are continuing to revolutionise the way modern enterprises conduct their business, both internally and externally. Read more
Web applications are continuing to revolutionise the way modern enterprises conduct their business, both internally and externally.

On this course, we educate you in the design and construction of web and e-commerce applications, and develop your understanding of current trends in this rapidly-evolving area. You acquire skills in using cutting-edge technologies including:
-Server-side frameworks like ASP.NET
-Client-side frameworks based on JavaScript
-Mobile application development on Android
-Relational database access
-MVC, AJAX, Web services, XML, JSON
-Cloud computing

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff
Our research covers a range of topics, from brain-computer interfaces, human language understanding and technology, intelligent and adaptive systems, information and data analysis, robotics and embedded systems, to future networks, optoelectronics and radio frequency and signal processing foundations, with many of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, C++, Perl, MySQL, Matlab, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Graduates of our MSc Advanced Web Engineering can work in a wide range of web-application and commerce-related companies.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Web Engineering
-MSc Project and Dissertation
-Advanced Web Technologies
-E-Commerce Programming
-Group Project
-Mobile & Social Application Programming
-Professional Practice and Research Methodology
-Cloud Technologies and Systems (optional)
-Computer Security (optional)
-Creating and Growing a New Business Venture (optional)
-High Performance Computing (optional)
-Natural Language Engineering (optional)
-Text Analytics (optional)

Read less
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms. Read more
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms.

You focus on linking artificial intelligence techniques to real-world applications and projects, including artificial intelligence in business and financial applications, artificial intelligence in games, artificial intelligence in biological sciences and medicine, and artificial intelligence in industrial control.

Our unique course covers the theoretical, applied and practical aspects of artificial intelligence, with an emphasis on:
-Genetic algorithms
-Evolutionary programming
-Fuzzy systems
-Neural networks
-Connectionist systems
-Hybrid intelligent systems

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our course opens up employment opportunities designing intelligent software – in banks and businesses designing prediction systems, in computer games companies designing adaptive games, in pharmaceutical companies designing intelligent systems that model a given drug and its various interactions, and in heavy industries designing control systems.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Artificial Intelligence - MSc
-MSc Project and Dissertation
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Group Project
-Intelligent Systems and Robotics
-Computer Vision (optional)
-Game Artificial Intelligence (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Natural Language Engineering (optional)
-Artificial Neural Networks (optional)
-Virtual Worlds (optional)
-Creating and Growing a New Business Venture (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)

Read less
Our modern world is witnessing a growth of online data in a variety of forms, including web documents, blogs, social networks, digital libraries and medical records. Read more
Our modern world is witnessing a growth of online data in a variety of forms, including web documents, blogs, social networks, digital libraries and medical records. Much of this data contains valuable information, such as emerging opinions in social networks, search trends from search engines, consumer purchase behaviour, and patterns that emerge from these huge data sources.

The sheer volume of this information means that traditional stand-alone applications are no longer suitable to process and analyse this data. Our course equips you with the knowledge to contribute to this rapidly emerging area.

We give you hands-on experience with various types of large-scale data and information handling, and start by providing you with a solid understanding of the underlying technologies, in particular cloud computing and high-performance computing. You explore areas including:
-Mobile and social application programming
-Human-computer interaction
-Computer vision
-Computer networking
-Computer security

You also obtain practical knowledge of processing textual data on a large scale in order to turn this data into meaningful information, and have the chance to work on projects that are derived from actual industry needs proposed by our industrial partners.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our staff are driven by creativity and imagination as well as technical excellence. We are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist staff working on data analytics include:
-Dr Luca Citi – machine learning, learning from biological signals and data (EEG, etc)
-Dr Adrian Clark – automatic construction of vision systems using machine learning and evaluation of algorithms, data visualisation and augmented reality
-Professor Maria Fasli – analysis of structured/unstructured data, machine learning, adaptation, semantic information extraction, ontologies, data exploration, recommendation technologies
-Professor John Gan – machine learning for data modelling and analysis, dimensionality reduction and feature selection in high-dimensional data space
-Dr Udo Kruschwitz – natural language processing, analysis textual/unstructured data, information retrieval
-Professor Massimo Poesio – cognitive science of language, text mining, computational linguistics
-Professor Edward Tsang – applied AI, constraint satisfaction, computational finance and economics, agent-based simulations

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Demand for skilled graduates in the areas of big data and data science is growing rapidly in both the public and private sector, and there is a predicted shortage of data scientists with the skills to understand and make commercial decisions based on the analysis of big data.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Big Data and Text Analytics - MSc
-MSc Project and Dissertation
-Information Retrieval
-Cloud Technologies and Systems (optional)
-Group Project
-High Performance Computing
-Machine Learning and Data Mining
-Natural Language Engineering
-Professional Practice and Research Methodology
-Text Analytics
-Advanced Web Technologies (optional)
-Data Science and Decision Making (optional)
-Big-Data for Computational Finance (optional)
-Computer Security (optional)
-Computer Vision (optional)
-Creating and Growing a New Business Venture (optional)
-Mobile & Social Application Programming (optional)

Read less
Cloud-based systems are the latest development in large-scale computing, and it is predicted that billions of Euros will be spent by European businesses on cloud computing in the coming years. Read more
Cloud-based systems are the latest development in large-scale computing, and it is predicted that billions of Euros will be spent by European businesses on cloud computing in the coming years. But despite this, there are still surprisingly few graduate-level courses in this area.

Our course targets a known need in industry, providing an opportunity for you to study this exciting underlying technology. You gain hands-on experience with various types of cloud models and modern computing systems that use or support cloud computing. You will master areas including:
-Application development for cloud systems
-Cloud management technologies
-System architectures
-High-performance computing
-Social networking application development
-Computer and Network Security

We equip you with the knowledge and understanding to contribute fully to this quickly changing and developing area so that you can enter a range of employment roles related to cloud systems, including developing cloud based applications, managing cloud systems and designing cloud infrastructures.

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our course is supported by the strong research interest and expertise in cloud and related technologies within our School of Computer Science and Electronic Engineering, ensuring you will learn the most up-to-date information in an engaging manner.

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Cloud Technologies and Systems
-Computer Security
-Converged Networks and Services
-Group Project
-High Performance Computing
-Professional Practice and Research Methodology
-E-Commerce Programming (optional)
-IP Networking and Applications (optional)
-Mobile & Social Application Programming (optional)
-Network Security and Cryptographic Principles (optional)
-Advanced Web Technologies (optional)
-Creating and Growing a New Business Venture (optional)
-Information Retrieval (optional)

Read less
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Read more
Advances in technology are yielding smaller and higher-performance computer systems permeating into a wide range of applications, from communication systems to consumer products and common household appliances. Computer engineering encompasses the principles, methods, and modern tools for the design and implementation of computing systems.

Our MSc Computer Engineering is the first in the UK and provides a balanced perspective of both hardware and software elements of computing systems, and their relative design trade-offs and applications. It will build on your knowledge in mathematics, science, and engineering to ensure you have a sound foundation in the areas needed for a career in this field.

Laboratory experiences enable you to understand experimental design and simulation techniques. We are internationally leading in this and you will have access to unique computer engineering platforms including our:
-Intelligent Flat (iSpace)
-Robotics Arena
-Networked intelligent campus (iCampus)
-Advanced networking and multimedia labs

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Upon graduation, you can look for employment in:
-Heavy industries, designing advanced computer systems and control
-Hardware companies, designing and developing microprocessors, personal computers, and supercomputers
-Communication and mobile phone companies, designing advanced computer systems for communications systems
-Large computer and microelectronics companies, writing software and firmware for embedded microcontrollers, and designing VLSI chips, analog sensors, mixed signal circuit boards, and operating systems
-Embedded system companies, developing advanced computer systems, and mobile applications and phones
-Banks and businesses, designing intelligent distributed systems to serve their operations
-Computer games companies, designing advanced computer games
-Our recent graduates have progressed to a variety of senior positions in industry and academia.

Some of the companies and organisations where our former graduates are now employed include Electronic Data Systems, Pfizer Pharmaceuticals, Bank of Mexico, Visa International, Hyperknowledge (Cambridge), Hellenic Air Force, ICSS (Beijing), United Microelectronic Corporation (Taiwan) and within our University.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Converged Networks and Services
-Digital Signal Processing
-High Level Logic Design
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Advanced Embedded Systems Design (optional)
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Electronic System Design & Integration (optional)
-Intelligent Systems and Robotics (optional)
-Mobile Communications (optional)

Read less
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. Read more
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. This field has allowed us to develop everything from satellites and submarines, to racecars and robots.

Research carried out by our team has resulted in appearance in the Robot Soccer World Cup final, an autonomous robot fish in the London Aquarium, and a self-programming computer vision system.

Our course provides a comprehensive coverage of contemporary intelligent systems, with robots serving as a major example of the technology. Thanks to the leading research being undertaken in our School, you will gain a solid understanding of the foundations of this technology, exploring areas including:
-The principles by which sensed data are converted into useful information
-The practical aspects of developing intelligent and robotic systems
-Biologically-inspired robots
-Biometrics
-Computational intelligence

Our MSc Intelligent Systems and Robotics is delivered by our team of internationally recognised researchers, with expertise spanning the entire range of intelligent systems and experience of developing robots intended for land, under water and in the air.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Vision
-Group Project
-Intelligent Systems and Robotics
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Electronic System Design & Integration (optional)
-Evolutionary Computation and Genetic Programming (optional)
-High Level Logic Design (optional)
-Game Artificial Intelligence (optional)
-Virtual Worlds (optional)
-Natural Language Engineering

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X