• University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Leeds Featured Masters Courses
University of London International Programmes Featured Masters Courses
"microbial" AND "pathogen…×
0 miles

Masters Degrees (Microbial Pathogenesis)

  • "microbial" AND "pathogenesis" ×
  • clear all
Showing 1 to 15 of 25
Order by 
The MRes in Biomedical Research. Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. Read more
The MRes in Biomedical Research: Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. The Bacterial Pathogenesis and Infection stream is a specialised stream on a larger course (the MRes in Biomedical Research). This programme will provide research training in fundamental aspects of bacterial pathogenesis, host immunity and antibiotic resistance, with particular attention to the scientific, technical and professional acumen required to establish research independence. The emphasis will be on molecular approaches to understanding bacterial infection biology, as a function of bacterial pathogenic strategy and physiology, as well as resistance to host defences and antibiotic therapy, and is comprised of two 20-week research projects embedded within research-intensive groups and a series of lectures, seminars, tutorials and technical workshops.

Based in the MRC Centre for Molecular Bacteriology and Infection, the course provides an opportunity to learn directly from internationally-respected scientists through sustained interaction for the duration of the course. This programme will deliver training in: Molecular microbiology, including integration of molecular and cellular information to understand the genetic basis of virulence; modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity; functionality and physiological relevance of microbial virulence factors; mechanisms of antibiotic resistance and persistence; derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Course Objectives
The emphasis is on molecular approaches to understanding infection as a function of bacterial pathogenic strategy and physiology. This research-oriented approach to training in biomedical science will comprise both theoretical and practical elements. The course will expose students to the latest developments in the field through two mini-research projects and a series of technical workshops. Students will gain experience in applying technologically advanced approaches to biomedical research questions.

Specifically the course will deliver research training in:

• Molecular bacteriology, integrating molecular and cellular information to understand the genetic basis of microbial virulence.
• Modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity.
• By experimentation, understanding the biochemical functions and physiological relevance of microbial virulence factors and antibiotic resistance.
• Derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Individuals who successfully complete the course will have developed the ability to:

• Demonstrate practical dexterity in the commonly employed and more advanced practical techniques of molecular and cellular microbiology
• Exercise theoretical and practical knowledge and competence required for employment in a variety of biomedical environments
• Identify appropriate methodology during experimental planning
• Interpret and present scientific data
• Interrogate relevant scientific literature and develop research plans
• Recognise the importance of justifying expenditure (cost and time) during experimental planning
• Recognise potential methodological failings and strategise accordingly
• Perform novel laboratory-based research, and exercise critical scientific thought in the interpretation of findings
• Write and defend research reports, which appraise the results of laboratory based scientific study
• Communicate effectively through writing, oral presentations and IT to facilitate further study or employment in molecular, cellular and physiological science
• Exercise a range of transferable skills

This will be achieved by providing:

• A course of lectures, seminars, tutorials and technical workshops. The programme is underpinned by the breadth and depth of scientific expertise in the participating department.
• Hands-on experience of a wide repertoire of scientific methods
• Two research projects
• Training in core transferable skills

The MRC Centre for Molecular Bacteriology and Infection (Departments of Medicine and Life Science) is located at the South Kensington Campus of Imperial College London. http://www.imperial.ac.uk/mrc-centre-for-molecular-bacteriology-and-infection

Candidates are expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK.

Please visit the course website for more information about how to apply, and for more information about the various streams of specialism which run within the course.

Early application is strongly advised. Please note that while applications can be considered after receipt of one recent reference, two will be required as standard for confirmation of acceptance by College.

If you have any questions, please contact:

Kylie Glasgow
Manager, Centre for Molecular Bacteriology and Infection
Imperial College London
London, SW7 2AZ
E-mail

-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2017 will be eligible to apply for the Faculty of Medicine Dean's Master’s Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit http://www.imperial.ac.uk/medicine/study/postgraduate/deans-masters-scholarships/. Applications for 2017 are not yet open (do check the website again early in the new year).

Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
Programme description. One year full-time, two years part-time. This programmes develop your skills and understanding in clinical microbiology, and gives you a thorough knowledge of associated subjects such as molecular biology. Read more
Programme description
One year full-time, two years part-time

This programmes develop your skills and understanding in clinical microbiology, and gives you a thorough knowledge of associated subjects such as molecular biology. Your formal teaching will include lectures, practicals and workshops. The lecturers are specialists in their fields and are invited from many institutions in the UK. The practicals are extensive and give you the maximum hands-on experience in all aspects of clinical microbiology. The practicals are taught in a large purpose-built teaching laboratory.

Many students use the MSc as preparation for their FRCPath examinations and the degree is accredited by the Association of Clinical Microbiologists as part of the training for clinical scientists.

Programme outline
Your studies will be broad-based, with extensive coverage of the following topics:

Bacteriology
Virology
Mycology
Parasitology
Bacterial pathogenicity
Immunology
Molecular biology
Microbial disease � diagnosis, treatment and prevention
Antimicrobials and chemotherapy
Epidemiology and public health
Hospital infection.
Module 1: Clinical Microbiology: Pathogens and Commensals

Module 2: Diagnostic Microbiology and Laboratory Methods

Module 3: Molecular Biology, Microbial Pathogenesis and the Host Immune Response

Module 4: Antimicrobials

Module 5: Public Health and Communicable Disease Control

Module 6: Clinical Microbiology: Diagnosis and Management of Human Disease and Control of Hospital Infection

Module 7: Clinical Microbiology Research and Presentation Skills

Module 8: Advanced Clinical Microbiology and Laboratory Management

Module 9: Research Dissertation.

Read less
This course, accredited by the Institute of Biomedical Science, provides an in-depth understanding of disease processes. It links academic knowledge to the practical applications of biomedical science, particularly in relation to modern diagnostic methods. Read more
This course, accredited by the Institute of Biomedical Science, provides an in-depth understanding of disease processes. It links academic knowledge to the practical applications of biomedical science, particularly in relation to modern diagnostic methods. You can choose to study one of two pathways – haematology or medical microbiology. Taught by researchers and expert practitioners, the course content is kept up to date through extensive links with leading healthcare and research laboratories such as GlaxoSmithKline, the Institute of Cancer Research and local hospitals.

-Employability is embedded within the curriculum to maximise job opportunities in a wide variety of biomedical-science-related careers including hospital and commercial laboratories, research, teaching and sales.
-Research-led and research-informed teaching with increased opportunities for postgraduate research and 'capstone' projects.
-Research projects possible within one of our research groups or as part of an industrial placement.
-Single modules may be taken as part of a continuing professional development (CPD) programme.

What will you study?

Core modules will familiarise you with the theoretical and practical aspects of molecular medicine used in research and hospital laboratories; the molecular basis of immunological mechanisms; and cellular mechanisms of disease, the physiological manifestations and implications to public health. You will learn about the principles and practice of laboratory management in biomedical science, and you will acquire the skills required for researching and communicating in biomedical science. You will also study modules in your elected specialist route. In addition to subject-specific knowledge, the course aims to develop your communication and other skills.

Assessment

Essays, practical reports, critical analysis, poster presentations, written exam, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Research Techniques and Scientific Communication
-Immunology and the Biology of Disease
-Research Project

Haematology modules
-Anaemia, Haemostasis and Blood Transfusion
-Haematological Malignancy

Medical Microbiology modules
-Taxonomy of Microorganisms and Diagnosis of Infectious Disease
-Microbial Pathogenesis and Control of Infectious Disease

Read less
The language and concepts of infection and immunity, from basic science to translational clinical research, are taught by our world class investigators. Read more
The language and concepts of infection and immunity, from basic science to translational clinical research, are taught by our world class investigators. The programme emphasises data interpretation, critical analysis of current literature and culminates in a full-time research project: excellent preparation for a research career.

Degree information

The programme provides insight into state-of-the-art infection and immunity research, current issues in the biology of infectious agents, the pathogenesis, prevention and control of infectious diseases, and immunity and immune dysfunction.

Students learn from UCL scientists about their research and are trained in the art of research by carrying out a full-time research project in a UCL laboratory.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits). A Postgraduate Diploma comprising four core modules and four optional modules (120 credits, full-time nine months, part-time, flexible study two to five years) is offered. A Postgraduate Certificate comprising four core modules (60 credits, full-time three months, and flexible study up to two years) is offered.

Core modules
-Laboratory Introduction to Basic Bacteriology
-Molecular Virology
-Immunology in Health and Disease
-Epidemiology and Infectious Diseases
-Data Interpretation

Optional modules
-Microbial Pathogenesis
-Tropical Microbiology
-Advanced Virology
-HIV Frontiers from Research to Clinic
-Immunological Basis of Disease
-Immunodeficiency and Therapeutics
-Infectious Diseases Epidemiology and Global Health Policy

Dissertation/report
All MSc students undertake independent research which culminates in a 4,000-word dissertation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, paper review sessions, laboratory practicals, an independent research project and self-directed learning. A diverse range of assessment methods is used; coursework may be in the form of presentations, essays, data interpretation exercises, poster preparation, and group working. Many modules also have unseen written examination.

Careers

The programme produces graduates who are equipped to embark on research careers. Immersion in the superb research and teaching environment provided by UCL and the Division of Infection & Immunity, gives our graduates a unique understanding of the cutting edge of infection and immunity research and how world-class research is carried out.

Opportunities for networking with UCL senior investigators with international reputations and their world-wide collaborators can provide the inside track for career development. Graduates are well placed to move onto PhD programmes, research positions in diverse biomedical fields, clinical research positions, further training and positions in associated professions.

Top career destinations for this degree:
-Research Assistant, UCL (University College London)
-Research Officer, A*STAR Agency for Science, Technology and Research
-Biology, The University of Cambridge
-Research Assistant, Stanford University
-PhD Immunology, Cardiff University (Prifysgol Caerdydd)

Employability
Graduates are exceptionally well prepared for a career in research. The combination of research-informed teaching and practical research training provides an ideal preparation for a PhD and is equally applicable for clinicians seeking specialist training or wishing to pursue the clinical academic career track.

More broadly, a rigorous grounding in scientific method, critical analysis, data interpretation and independent thinking provides a pallet of marketable and transferable skills applicable to many professional career paths.

Why study this degree at UCL?

The UCL Division of Infection & Immunity is a vibrant and world-class research community. Students are embedded in this superb training environment which provides a challenging and stimulating academic experience.

Programme content reflects the research and clinical excellence within the division as well as cross-disciplinary research from all over UCL. First-class teaching and research supervision is provided by UCL academics, many of whom have international reputations.

Read less
The aim of the MRes is to provide training at Masters level for intercalating medical undergraduates, medical and science graduates and career academics-in-training, so meeting regional and national demands for research oriented skills in these disciplines. Read more
The aim of the MRes is to provide training at Masters level for intercalating medical undergraduates, medical and science graduates and career academics-in-training, so meeting regional and national demands for research oriented skills in these disciplines.

A key element of the programme design is the development of relevant, appropriate research skills, in addition to a systematic understanding and critical awareness of the research process.

The programme prepares the student for doctoral research training and satisfies the criteria of the Research Councils for Master of Research training.

Programme objectives
Provide training in transferable skills, techniques, and knowledge appropriate to postgraduate research students at Masters level
Develop the capacity for individual work and teamwork in an interdisciplinary research environment
Conduct independent research through practical experience in formulating appropriate research strategies, methods, data collection and analysis via three 12-week research projects
Develop communication skills both oral and written to enable research debate (with scientific and lay audiences) and peer reviewed journal publications
Equip the student to take the first postgraduate steps leading to future roles in biomedical research in the clinical, industrial, and public sectors
Prepare the student for entry into a PhD programme.
The programme is built around the research interests of the Institutes of Ageing & Chronic Disease and Infection & Global Health and consists of eleven Programme Pathways (listed below) reflecting the world-class research being carried out in these areas within both Institutes.

Programme pathways
Clinical Infection & Global Health
Emerging & Zoonotic Infections
Eye and Vision Science
Infection Immunology
Microbial Pathogenesis
Musculoskeletal Biology
Neurological Infections
Obesity & Endocrinology
One Health
Translation Bacteriology
Veterinary Science
During the course you will undertake three 12-week research projects with academics (both clinical and non-clinical) from these Institutes. By carrying out three research projects linked to one of the pathways highlighted above, you will graduate with the pathway branding in your degree certificate, for example MRes in Clinical Sciences (Emerging & Zoonotic Infections) [or other appropriate pathway].

Alternatively, you are able to experience a broader range of research by carrying out projects across different pathways, and receive the qualification MRes in Clinical Sciences.

Further details of the academic members of staff who contribute to the MRes and the research interests of the Institutes can be found at the following websites: https://www.liv.ac.uk/infection-and-global-health/ and https://www.liv.ac.uk/ageing-and-chronic-disease/.

The programme has a modular structure and is delivered by lectures, tutorials, seminars, workshops and individual tuition for the research projects.

Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI837 - The Molecular and Cellular Basis of Cancer (15 credits)
BI838 - Genomic Stability and Cancer (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI857 - Cancer Research in Focus (15 credits)
BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/226

Read less
This programme focuses on the study of the molecular and genetic basis of human health and disease, using biotechnological methods to advance our current research. Read more
This programme focuses on the study of the molecular and genetic basis of human health and disease, using biotechnological methods to advance our current research.

The wealth of genomic and proteomic data from the Human Genome Project has broadened our understanding of the biochemical and genetic basis of several diseases. In particular, this programme will cover the rapid developments in the field of cancer and metastasis, neurodegenerative conditions, microbial pathogenesis and immune evasion science.

The MSc programmes in Biology & Biochemistry are designed for students who wish to specialise further in a particular field or wish to change direction from their first degree (in a related area).

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/msc-medical-biosciences/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here- http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare. Read more
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare.

This is coupled with rigorous practical training in the design, production and characterisation of biomolecules using state-of-theart biotechnological and bioengineering analytical and molecular technologies.

You acquire practical, academic and applied skills in data analysis, systems and modelling approaches, and bioinformatics, together with transferable skills in scientific writing, presentation and public affairs. On successful completion of the programme, you will be able to integrate these skills to develop novel solutions to modern biotechnological issues from both academic and industrial perspectives.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/213/biotechnology-and-bioengineering

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Biotechnology and Bioengineering involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Industrial Biotechnology Centre, an interdisciplinary research centre whose aim is to solve complex biological problems using an integrated approach to biotechnology and bioengineering. It is administered by the School of Biosciences who also contribute to the programme.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
CB613 - Enterprise (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI845 - Research project (60 credits)

Assessment

Assessment is by coursework and the research project.

Programme aims

You will gain the following transferable skills:

- the ability to plan and manage workloads

- self-discipline and initiative

- the development of reflective learning practices to make constructive use of your own assessment of performance and use that of colleagues, staff and others to enhance performance and progress

- communication: the ability to organise information clearly, create and respond to textual and visual sources (eg images, graphs, tables), present information orally, adapt your style for different audiences.

- enhanced understanding of group work dynamics and how to work as part of a group or independently.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/213

Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biologoy. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1235/biochemistry

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Associated centres

- Kent Fungal Group

The Kent Fungal Group (KFG) brings together a number of research groups in the School of Biosciences that primarily use yeasts or other fungi as ‘model systems’ for their research. One strength of the KFG is the range of model fungi being exploited for both fundamental and medical/translational research. These include Bakers’ yeast (Saccharomyces cerevisiae) and Fission yeast (Schizosaccharomyces pombe) and yeasts associated with human disease, specifically Candida albicans and Cryptococcus neoformans.

In addition to studying key cellular processes in the fungal cell such as protein synthesis, amyloids and cell division, members of the KFG are also using yeast to explore the molecular basis of human diseases such as Alzheimer’s, Creutzfeldt-Jakob, Huntington’s and Parkinson’s diseases as well as ageing. The KFG not only provides support for both fundamental and medical/translational fungal research, but also provides an excellent training environment for young fungal researchers.

- Industrial Biotechnology Centre

The School houses one of the University’s flagship research centres – the Industrial Biotechnology Centre (IBC). Here, staff from Biosciences, Mathematics, Chemistry, Physics, Computing and Engineering combine their expertise into a pioneering interdisciplinary biosciences programme at Kent, in order to unlock the secrets of some of the essential life processes. These approaches are leading to a more integrated understanding of biology in health and disease. In the Centre, ideas and technology embodied in different disciplines are being employed in some of the remaining challenges in bioscience. With such an approach, new discoveries and creative ideas are generated through the formation of new collaborative teams. In this environment, the IBC is broadening and enriching the training of students and staff in science and technology.

- The Centre for Interdisciplinary Studies of Reproduction (CISoR)

The centre comprises several like-minded academics dedicated to the study of reproduction in all its forms. Drawing on a range of academic disciplines, CISoR's core philosophy is that the study of this fascinating field will advance further through a multidisciplinary approach. Impactful, excellent research forms the basis of CISoR’s activities including scientific advance, new products and processes, contribution to public policy, and public engagement.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/index.html

Read less
The MSc in Infectious Diseases has been designed for students who wish to gain an advanced education and training in the biological sciences, within the context of a range of human diseases that affect a significant proportion of the global population. Read more
The MSc in Infectious Diseases has been designed for students who wish to gain an advanced education and training in the biological sciences, within the context of a range of human diseases that affect a significant proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, you apply this training towards the development of new strategies to combat the spread of infectious diseases.

You learn skills in experimental design using appropriate case studies that embed you within the relevant research literature. You also gain experience of analysis and statistical interpretation of complex experimental data.

The programme culminates with a research project under the supervision of faculty that currently perform research on disease-causing microorganisms.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/361/infectious-diseases

About the School of Biosciences

The University of Kent’s School of Biosciences ranks among the most active in biological sciences in the UK. We have recently extended our facilities and completed a major refurbishment of our research laboratories that now house over 100 academic, research, technical and support staff devoted to research, of whom more than 70 are postgraduate students.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Infectious Diseases involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The assessment of the course will involve a mixture of practical classes, innovative continuous assessment to gain maximise transferable and professional skills, and examinations.

In addition to traditional scientific laboratory reports, experience is gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year. Please note the modules listed below for this programme are compulsory core modules:

BI845 Research project (60 credits)
BI853 - Bacterial Pathogens (15 credits)
BI854 - Fungi as Human Pathogens (15 credits)
BI855 - Advances in Parasitology (15 credits)
BI856 - Viral Pathogens (15 credits)
BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)

Assessment

Assessment is by examination, coursework and the research project.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate level education in the field of infectious diseases, their biology and treatments

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of diseases that affect a high proportion of the global population

- promote engagement with biological research into infectious diseases and inspire students to pursue scientific careers inside or outside of the laboratory

- develop subject-specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

The MSc in Infectious Diseases provides advanced research skills training within the context of diseases that affect significant proportions of the UK and global populations. With the UK being a world leader in infectious diseases research and pharmaceutical development, and Kent having a strong research focus in this area, there are significant opportunities for career progression for graduates of this programme in academia (PhD) and industry.

There are also opportunities for careers outside the laboratory in advocacy, media, public health and education.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/361

Read less
The Masters program is a research based program with 12 credits of course work. On average students finish the program within 2-3 years or switch to the PhD program after 1-2 years of successful course and research progress. Read more

MASTERS PROGRAM

The Masters program is a research based program with 12 credits of course work. On average students finish the program within 2-3 years or switch to the PhD program after 1-2 years of successful course and research progress. On average Master Student enrollment within the Department is 30 students with an additional 60 PhD students.

Program Overview

The Department of Microbiology and Immunology offers opportunities for original research in the areas of molecular and applied microbiology, biotechnology, cell and developmental biology, epigenetics, geomicrobiology, molecular biology, molecular genetics, molecular immunology, microbial ecology, microbial pathogenesis, and virology. The Department has excellent research funding and a commitment to high quality research. A list of faculty and associate members and their research interests is available from the Department.

Students must satisfy the admission requirements of the Faculty of Graduate and Postdoctoral Studies International students are required to take the Graduate Record Examination (GRE) and an English proficiency exam such as the TOEFL or IELTS. The GRE is optional for North American students.

Quick Facts

- Degree: Master of Science
- Specialization: Microbiology and Immunology
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biology. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1236/cell-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Our research degrees are based around lab-based and computational research projects. MScs are based around one-year research projects (Full Time). Both types of degree are also available on a part-time basis. In all our research degrees you undertake a single, focused, research project from day one, and attend only certain components of our transferable skills modules. Our research degree students are supervised by supervisory teams which comprise their main supervisor(s) as well as supervisory chairs that give independent advice on progression.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/1236

Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allow us to exploit technology and develop ground-breaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biology. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Our research degrees are based around lab-based and computational research projects. The MSc is a one year full-time programme (two years part-time).

In all our research degrees you undertake a single, focused, research project from day one, and attend only certain components of our transferable skills modules. You are supervised by a team which comprises your main supervisor(s) as well as supervisory chairs that give independent advice on progression.

Visit the website https://www.kent.ac.uk/courses/postgraduate/apply-online/1237

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here -

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X