• University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Southampton Solent University Featured Masters Courses
Cardiff University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
FindA University Ltd Featured Masters Courses
"microbial" AND "biotechn…×
0 miles

Masters Degrees (Microbial Biotechnology)

  • "microbial" AND "biotechnology" ×
  • clear all
Showing 1 to 15 of 47
Order by 
Why are microbes the most important group of organisms on our planet? How is knowledge of microbiology applied in medicine and industry, or in food production? What research techniques are used to study viruses, bacteria and other microbes? These are important questions, and you can find answers to these and many others in the study of Microbiology and microbial biotechnology. Read more
Why are microbes the most important group of organisms on our planet? How is knowledge of microbiology applied in medicine and industry, or in food production? What research techniques are used to study viruses, bacteria and other microbes? These are important questions, and you can find answers to these and many others in the study of Microbiology and microbial biotechnology.

Upon completing your degree, you will:
-Understand the global significance of microbes as remodelers and processors of life and the environment.
-Understand the potential for the use of microbes in the development of new applications, such as foodstuffs, drugs, and industrial processes.
-Understand the molecular mechanisms that underpin microbial function.
-Be able to evaluate the effects of changes in the environment on microbial communities and thus on the function of the biosphere.
-Be able to estimate the risks of microbes, and assess the use of microbes in a variety of environments and situations.
-Be able to evaluate ethical questions and the prerequisites of commercialisation related to the use of microbes and biotechnology.
-You will understand the most important functional mechanisms of the major groups of microbes.
-Be aware of the most important pathogens and virulence mechanisms.
-Have mastered the most important microbiological and biotechnological research methods, and become proficient in the interpretation and evaluation of research results.
-Be able to develop and evaluate new microbiological and biotechnological applications.
-Have the capability to plan and lead activities that involve microbiology and biotechnology, and will be able to propose appropriate actions in various situations.
-Know how to search for, produce and critically evaluate scientifically relevant information.
-Have developed the capacity for disseminating relevant information about your topic to various target groups in an appropriate manner within an international environment.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The key contents of the study programme in Microbiology and microbial biotechnology are:
-Research methods in microbiology, biotechnology and bioinformatics.
-Application of microbiological knowledge.
-Solving microbiological problems.
-Critical, research-based scientific thinking.
-Planning, implementation and reporting of microbiological and biotechnological research.
-Functional principles of microbial cells and communities.
-Development from research to product.
-Leadership, entrepreneurship and patenting.
-Other studies, through which you can adapt the degree towards your own interests.
-Discovery of novel findings in the field of biology.

Selection of the Major

Students graduating from the University of Helsinki bachelor’s programmes in Molecular biosciences, Food sciences, Environmental sciences and Biology can enter the master’s program in Microbiology and microbial biotechnology. Although each of the bachelor’s programmes provides a different base of knowledge, they all provide a sufficient preparation for the master’s programme in Microbiology and microbial biotechnology. Selection of students, if necessary, will be carried out according to study performance.

If you have obtained a bachelor’s degree at another university, or a suitable polytechnic degree at a university of applied sciences, you can apply to enter the master’s programme via a separate application process. When you apply for the programme under these conditions, you will be evaluated on the basis of your previously completed studies, language skills and motivation.

You can modify the master’s degree programme for your own interests with elective subjects.

Programme Structure

There is intensive interaction between teachers and students in the master’s programme in Microbiology and microbial biotechnology. A variety of learning methods are used in the courses, including:
-Laboratory work, seminars, lectures
-Oral presentations
-Written reports (individual, paired, group)
-Independent reading
-Work practice, instruction in research groups, project courses
-Oral group exams, written exams, home essays.

At least half of the study credits (60 of 120 credits) will be from courses in Microbiology and microbial biotechnology. By selecting elective and other study opportunities, you will be able to shape the study programme towards many subject areas, such as the environment, food, viruses, fungi, health and microbial diseases, or microbial biotechnology.

Career Prospects

As a master of science graduating from the master’s programme in Microbiology and microbial biotechnology you will be well prepared to (a) continue your studies toward a doctoral degree, (b) specialise as a hospital microbiologist, or (c) proceed directly to a career in working life. Statistically, the situation for microbiologists proceeding to employment has been very favourable. As a microbiology graduate, you can work in the following sectors:
-Research and development (universities, research institutes, companies).
-Surveillance/monitoring in healthcare, food and environment (food industry, drug and diagnostics industry, regulatory authority).
-Administration, professional roles and consultancy (companies, ministries, supervision offices, EU).
-Business and management (companies, ministries, supervisory offices, EU).
-Teaching and education (universities, universities of applied sciences, vocational schools, high schools, comprehensive schools, organisations).

Internationalization

As a microbiology student you will have good opportunities to participate in international student exchanges. You can complete some parts of the degree at universities abroad. In addition, there are many international students and researchers on the Viikki campus, bringing a global multicultural atmosphere to your everyday life.

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Read more
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Through tutorials, lectures, assignments and a four-month research project, the programme focuses on the adaptation and application of biological processes for commercial and industrial use. This course would be suitable for graduates with a primary degree in the Biological Sciences who wish to extend their knowledge and skills for a career in the biotechnology sector.

Graduates have found employment in the pharmaceutical and food industries, and in diagnostic and research services, with companies such as Abbott, Allergan, ICON Clinical Research, Norbrook Laboratories and Pfizer. They are pursuing careers in manufacturing, quality assurance, product development and research, as well as the broader sectors of sales, marketing, and regulatory affairs.

Programme Content:

Core Modules

Research Project:

Five-month laboratory project with an academic research team on a biotechnology topic.

Frontiers in Biotechnology:

An interactive tutorial-based module that will develop students' transferable skill and knowledge of recent advances in biotechnology.

Current Methodologies in Biotechnology:

Experts will teach methodologies fundamental to biotechnological research and application.

Diagnostic Biotechnology:

A comprehensive overview of immunological and molecular diagnostics applied in current biotechnological applications.

Fundamental Concepts in Pharmacology:

Fundamental understanding of how drugs work and how they are discovered and developed.

Protein Technology:

Enhancing protein production and function of biopharmaceutical and industrial proteins on a commercial scale.

Introduction to Business:

Concepts of marketing, management and accountancy and their application in biotechnology businesses.

Optional Modules (Choose 2)

Advanced Industrial Process:

This module is designed to develop an awareness of microbial technologies and their applications to biotechnology.

Applied Concepts of Pharmacology:

This module introduces students to autonomic pharmacology and drug discovery and development.

Scientific Writing:

This module aims to provide students with an in-dept understanding of the process of scientific publications.

Immunology:

Emphasis on the clinical value of manipulation of the immune system.

Quality Management Systems:

QMS for the efficient and safe running of commercial and industrial biotechnology enterprises.

Cell & Molecular Biology: Advanced Technologies

This module outlines the fundamentals of cell and molecular biology.

Read less
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research. Read more
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research.

This course is designed to enhance your career in the medical or pharmaceutical biotechnology sectors in a variety of research, product and technology development and leadership roles.

Medical Biotechnology will equip you with broad theoretical knowledge and critical understanding of advanced principles in biotechnology. You'll also gain the practical skills required to underpin a career within a business or research environment.

See the website http://www.napier.ac.uk/en/Courses/MSc-Medical-Biotechnology-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in cell technology, bioprocessing and molecular analysis and how these approaches are applied in areas of specific relevance to medical and pharmaceutical applications such as drug design and discovery, immunology and microbial infection.

You’ll explore and critically evaluate the technologies driving discovery and modification of natural compounds for use in medicine; the relationship between progress in our understanding of disease and the development of diagnostics and treatments; as well as the application of theoretical concepts to the use of biological systems for production of drugs.

Business and entrepreneurship are also a core feature of this programme. You’ll address themes that influence the success of any biotechnology venture such as intellectual property, bioethics, sustainability and public perception through the development of a novel business concept.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices such as mammalian cell culture and fermentation. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or bio-industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Cell technology
• Business and bioethics
• Research skills
• Biotechnology and drug discovery
• Molecular pathogenesis of microbial infection
• Research project

One optional module from
• Advanced immunology
• Current practice in drug development
• Molecular pharmacology and toxicology

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Within the life sciences, biotechnology is the most rapidly growing sector and it is predicted that the global expansion in this field will be a key driver in the world economy.

This programme provides opportunities for laboratory-based or research management and product development work in a variety of industries ranging from multi-national companies to smaller biotechnology enterprises in the medical, pharmaceutical, nutraceutical and biochemical sectors.

Opportunities may also exist in contract research companies and service providers to the biotechnology sector, in addition to research institutes and local government.

Successful completion of the MSc programme provides a sound platform for further study in a research setting; graduates will be qualified to continue to PhD studies in the bio-molecular sciences.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Biotechnology studies help prepare students for careers in the management of bioscience firms and organizations. Biotechnology is among six concentrations leading to the Master of Science (M.S.) in Professional Sciences at MTSU. Read more
Biotechnology studies help prepare students for careers in the management of bioscience firms and organizations. Biotechnology is among six concentrations leading to the Master of Science (M.S.) in Professional Sciences at MTSU. The program is a combination of business and science to offer training to work in leadership roles in scientific companies and agencies. Opportunities with the Biotechnology master’s degree include research science positions in laboratories applying biotechnology to problems in medicine, industry, and agriculture, as well as management positions in the biotechnology and pharmaceutical industries. The program features industry experience in a 250-hour internship that is completed prior to graduation instead of a thesis or comprehensive exams. Coursework includes classes in the specific scientific concentration, along with a business management core. A limited number of graduate assistantships are available.

The Master of Science (M.S.) with a major in Professional Science includes a business core with specific concentrations in Actuarial Sciences, Biostatistics, Biotechnology, Engineering Management, Geosciences, and Health Care Informatics.

The M.S. in Professional Sciences is a new type of two-year degree in the sciences and mathematics to equip people for work in public and private business enterprises and in academia. The goal for this degree, started initially with support from the Alfred P. Sloan Foundation, is to enhance the interface between science and business by emphasizing expertise in both areas.

Career

With the growth of positions in the biotechnology industry in Tennessee and nationwide, the demand for persons with training in both biological science and management is expected to grow significantly. Jobs may be found in agricultural, chemical, environmental and pharmaceutical research and industries. Examples of some occupations with this degree include:

Biochemist
Bioinformatician
Biomedical engineer
Biophysicist
Biotechnology/pharmaceutical sales rep
Biotechnology lab technician
Clinical trials manager
Consultant
Corporate manager
Crime lab technician
Environmental scientist
Epidemiologist
Food scientist
Forensic scientist
Marketing executive
Microbiologist
Pharmaceutical analyst
Process development specialist
Quality control analyst
Quality control engineer
Regulatory biomanufacturing specialist
Research and development scientist
Research associate
Research facility director
Senior scientist
Technical manager
University/research professor

Employers of MTSU alumni include

Aegis Sciences Corporation
Biogen Idec
Calhoun Community College
Columbia State Community College
East Tennessee State University
Emory University
Encapsula Nanosciences
ESC Lab Sciences
Genetics Associates, Inc.
McGraw-Hill Education
Microbial Discovery Group
Middle Tennessee State University
Novus International
Tennessee Valley Authority
Unilever
S. Department of Agriculture, Iowa
Vanderbilt University Medical Center

Read less
Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today. Read more

Programme description

Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today.

In this MSc you will learn research and development skills to enable the creation of new products and services. You will investigate the economic basis for current biotechnology structures and areas of future demand, including the global pharmaceutical industry and carbon sequestration.

You will learn how technology can be applied to solve pressing real-world biological problems and gain the skills and expertise needed for future developments in biotechnology.

Programme structure

This programme consists of two semesters of taught courses followed by a research project or industrial placement, leading to a dissertation.

Compulsory courses:

Economics and Innovation in the Biotechnology Industry
Intelligent Agriculture
Research Project Proposal
MSc Dissertation (Biotechnology).

Option courses:

Biobusiness
Bioinformatics
Bioinformatics Programming & System Management
Drug Discovery
Commercial Aspects of Drug Discovery
Enzymology and Biological Production
Gene Expression and Microbial Regulation
Industry & Entrepreneurship in Biotechnology
Management of R&D and Product Innovation
Molecular Modelling and Database Mining
Social Dimensions of Systems and Synthetic Biology
Stem Cells and Regenerative Medicine
Biochemistry A
Principles of Industrial Biotechnology
Environmental Gene Mining and Metagenomics
Vaccines and Molecular Therapies
Programming for the Life Sciences

Research and laboratory work:
There will be a considerable practical element to the programme. You will work in a biotechnology laboratory and learn how experimental technology is designed and operated.

Industrial placement:
Your dissertation can be based on a laboratory-based project or an industrial placement. You can work with employers in the thriving Scottish biotechnology sector in areas such as multiple sclerosis research (Aquila BioMedical), vaccines research (BigDNA) or biorecovery and bioregeneration (Recyclatec).

Career opportunities

The programme will open up a wide variety of career opportunities, ranging from sales and marketing, to research and development, to manufacturing and quality control and assurance.

Read less
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare. Read more
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare.

This is coupled with rigorous practical training in the design, production and characterisation of biomolecules using state-of-theart biotechnological and bioengineering analytical and molecular technologies.

You acquire practical, academic and applied skills in data analysis, systems and modelling approaches, and bioinformatics, together with transferable skills in scientific writing, presentation and public affairs. On successful completion of the programme, you will be able to integrate these skills to develop novel solutions to modern biotechnological issues from both academic and industrial perspectives.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/213/biotechnology-and-bioengineering

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Biotechnology and Bioengineering involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Industrial Biotechnology Centre, an interdisciplinary research centre whose aim is to solve complex biological problems using an integrated approach to biotechnology and bioengineering. It is administered by the School of Biosciences who also contribute to the programme.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
CB613 - Enterprise (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI845 - Research project (60 credits)

Assessment

Assessment is by coursework and the research project.

Programme aims

You will gain the following transferable skills:

- the ability to plan and manage workloads

- self-discipline and initiative

- the development of reflective learning practices to make constructive use of your own assessment of performance and use that of colleagues, staff and others to enhance performance and progress

- communication: the ability to organise information clearly, create and respond to textual and visual sources (eg images, graphs, tables), present information orally, adapt your style for different audiences.

- enhanced understanding of group work dynamics and how to work as part of a group or independently.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/213

Read less
This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries. Read more

Programme description

This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries.

You will employ elements of the developing field of synthetic biology to bring about significant changes and major innovations that address the challenges of rapidly changing human demographics, resource shortages, energy economy transition and the concomitant growth in demand for more and healthier food, sustainable fuel cycles, and a cleaner environment.

Programme structure

You will learn through a variety of activities, including:

lectures
workshops
presentations
laboratory work
field work
tutorials
seminars
discussion groups and project groups
problem-based learning activities

You will attend problem-based tutorial sessions and one-to-one meetings with your personal tutor or programme director.

You will carry out research at the frontier of knowledge and can make a genuine contribution to the progress of original research. This involves carrying out project work in a research laboratory, reviewing relevant papers, analysing data, writing reports and giving presentations.

Compulsory courses:

Applications of Synthetic Biology
Tools for Synthetic Biology
Social Dimensions of Systems & Synthetic Biology
Environmental Gene Mining & Metagenomics
Research Project Proposal
MSc Project and Dissertation

Option courses:

BioBusiness
Biochemistry
Bioinformatics
Bioinformatics Programming & System Management
Biological Physics
Biophysical Chemistry
Commercial Aspects of Drug Discovery
Data Mining & Exploration
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Enzymology & Biological Production
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in the Biotechnology Industry
Information Processing in Biological Cells
Intelligent Agriculture
Introduction to Scientific Programming
Molecular Modelling & Database Mining
Next Generation Genomics
Machine Learning & Pattern Recognition
Practical Skills in Biochemistry
Practical Systems Biology
Principles of Industrial Biotechnology
Stem Cells & Regenerative Medicine

Learning outcomes

By the end of the programme you will have gained:

a strong background knowledge in the fields underlying synthetic biology and biotechnology
an understanding of the limitations and public concerns regarding the nascent field of synthetic biology including a thorough examination of the philosophical, legal, ethical and social issues surrounding the area
the ability to approach the technology transfer problem equipped with the skills to analyse the problem in scientific and practical terms
an understanding of how biotechnology relates to real-world biological problems
the ability to conduct practical experimentation in synthetic biology and biotechnology
the ability to think about the future development of research, technology, its implementation and its implications
a broad understanding of research responsibility including the requirement for rigorous and robust testing of theories and the need for honesty and integrity in experimental reporting and reviewing

Career opportunities

You will enhance your career prospects by acquiring current, marketable knowledge and developing advanced analytical and presentational skills, within the social and intellectual sphere of a leading European university.

The School of Biological Sciences offers a research-rich environment in which you can develop as a scientist and entrepreneur.

Read less
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. Read more
Our established programme in Biotechnology, which has been extensively updated, includes a wide range of modern molecular biology techniques and how biotechnology can be used by today's society. You will complement your theoretical studies with hands on experience of fully controlled fermenters that are up to pilot-plant scale, and are linked to modern monitoring and control systems.

You will study a range of subjects in considerable depth, including bioactive compounds, industrial bioprocesses, microbial physiology and fermentation technology, microbial production of novel metabolites, monitoring and control of fermentation, topics in biotechnology, and types of bioreactors.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-APPLIED MOLECULAR BIOLOGY
-FERMENTATION TECHNOLOGY
-INDUSTRIAL AND ENVIRONMENTAL BIOTECHNOLOGY
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT
-SCIENCE, TECHNOLOGY AND COMMERCIALISATION

Option modules
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-MOLECULAR BIOINFORMATICS
-MOLECULAR AND CELLULAR THERAPEUTICS
-REGENERATIVE MEDICINE
-SYSTEMS BIOLOGY

Associated careers

The course is aimed at those aspiring to be researchers and managers in the biotechnology and pharmaceutical industries or other biosectors.

Read less
This programme equips you for the biotechnology/life science profession or enables you to progress to PhD research studies. Designed and delivered with industry input, it is career-focused and vocationally-relevant. Read more
This programme equips you for the biotechnology/life science profession or enables you to progress to PhD research studies. Designed and delivered with industry input, it is career-focused and vocationally-relevant.

About the programme

The programme will develop your knowledge and understanding of a range of theoretical and practical skills relevant to the biotechnology industry; advance your understanding of the industry; and grow your research skills.

Your understanding of the principles of commercialisation in the biotechnology industry will be developed through either a bioindustry
or work-related learning module. This combination of theory and practice will fully prepare you for employment in the biotechnology sector or for progression to further research.

The University’s Institute of Biomedical and Environmental Health Research (IBEHR) brings together life, physical and environmental scientists in a holistic approach to research. Your research skills are developed throughout the programme and applied in the individual research project.

Practical experience

You will develop practical laboratory skills through taught modules and apply these in your research project. It is possible to undertake a work related learning module.

Your learning

The programme offers current theory and practical skills in a range of relevant techniques including microbiology, immunology, and cell culture. The MSc is awarded on successful completion of 180 credits at Level 11. Full-time students study three 20 credit modules in trimesters 1 and 2 and a 60 credit research project in Trimester 3.

Modules include:
• Nucleic Acid and Protein Technology
• Microbial Technology
• Medical Biotechnology
• Bioanalysis
• Research Design
• Bioindustry or Placement Learning

MSc

Upon successful completion of the taught modules listed above you will undertake the MSc research project.

Our Careers Adviser says

Many of our students continue their studies to PhD level, either in the UK or abroad. It may also be possible to complete the MSc project abroad, bringing a global perspective to your studies. It’s not unusual for our graduates to travel further afield, for example we have a graduate studying for a PhD at Kyushu University, Japan, and another at Berlin-Brandenburg School for Regenerative Therapies. Alternatively you could go on to secure employment within the life science industry in the UK or abroad. One of our graduates is project co-ordinator at Quintiles.

Financial support

In session 2015/16 the Postgraduate Diploma element of this programme carried SAAS postgraduate loan funding for eligible students. Check http://www.saas.gov.uk for 2016/17 loan info.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
Biotechnology is a key international growth area and this course is driven by the latest commercial and research advances in the field. Read more
Biotechnology is a key international growth area and this course is driven by the latest commercial and research advances in the field. Students have the opportunity to learn from experienced academic researchers with the possibility of undertaking a research project in industry.

This exciting course is designed to give you the theoretical and practical skills needed for a career in Biotechnology within companies and research organisations.

This course is ideal if you:

-Are a recently qualified undergraduate and are looking for the professional skills needed to obtain a job in a Biotechnology company
-Are working in an organisation and want a masters-level qualification to give you a competitive edge
-Require the skills and experience needed to study for a research degree
-Are an international student who would like to study abroad
-Would like a course delivered by experienced research academics, with the possibility of completing a research project in industry.

Modules

-Research Methods and IT
-Practical Techniques in Genomics and Proteomics
-Research Project; Molecular Biology and DNA Technology
-Cell Culture and Antibody Technology
-Enzyme Technology and Biocatalysis
-Microbial Physiology and Genomics

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The course provides detailed insight into the technologies that allow development and production of biopharmaceuticals from start to finish (from pre-clinical studies, to clinic, through to marketing) that could lead to cures to most major diseases. Read more
The course provides detailed insight into the technologies that allow development and production of biopharmaceuticals from start to finish (from pre-clinical studies, to clinic, through to marketing) that could lead to cures to most major diseases. A high practical content prepares graduates to quickly enter an industrial setting.

The course is inter-disciplinary and is based on the teaching/research expertise of staff in the disciplines of pharmacy, biotechnology, pharmacology, toxicology, bioinformatics and business. In the global sphere, pharmaceutical biotechnology courses are rare and no other course offers such a broad scope.

•This course provides a response to the rapidly expanding field of biopharmaceuticals (DNA and protein-based medicines) by running an intensive taught programme covering the first two semesters with the opportunity of conducting independent research in this area in the third semester
•Suitable for students progressing on from undergraduate study, professionals in the sector, and international students looking to further their knowledge in this subject area in the UK
•The course has received positive feedback from international experts in higher education, large pharmaceutical companies, and agents involved in recruiting foreign students for the UK/US
•We have received major Government and private funds to develop our state-of-the-art laboratories and purchase specialist equipment to match that in the best industrial labs

Learning outcomes are not only targeted in terms of knowledge but also skills matched for employment, such as being confident, self-motivated, self-starting and a team player.

The learning environment for the first two semesters will be varied with lectures, tutorials, laboratories and computer laboratories. You can expect to spend about half of your directed study time working at the bench in our research laboratories. In the third semester the learning venue will depend on your dissertation topic and will be aimed at guided self-study.

Modules include:
• Biopharmaceuticals and Molecular Toxicology
• Microbial Fermentation/Downstream Processing, Drug Development
• Gene Cloning, Expression and Analysis
• Bioinformatics I and II
• Entrepreneurship and Innovation
• Research Methods
• Research Dissertation

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X