• University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"microbe"×
0 miles

Masters Degrees (Microbe)

We have 10 Masters Degrees (Microbe)

  • "microbe" ×
  • clear all
Showing 1 to 10 of 10
Order by 
The Bioscience MRes is a research-based postgraduate course designed to provide you with the necessary skills for a career in industry, the public sector or academia. Read more
The Bioscience MRes is a research-based postgraduate course designed to provide you with the necessary skills for a career in industry, the public sector or academia.

The course provides high-quality training in the methods and practice of research not normally offered in taught masters courses, and also allows you to choose from a host of optional modules according to your personal and professional interests.

You will build your knowledge of a wide range of organisms, from microbes to mammals, and develop both theoretical and practical skills that will help you to maximise your professional potential.

Your research project will examine a specialised subject within the fields of genetics, evolutionary biology, neuroscience, ageing and host microbe interactions.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

The course is structured to include a significant research component that comprises at least 50 per cent of the working year; a series of supporting taught modules make up the other half.

To be awarded the MRes, you must obtain 180 M-level credits, 80 credits from taught and subject-specific modules and 100 credits through the completion of the research project.

Areas of study

The particular focus of the course depends on your choice of project topic, which also determines which optional modules are available. The exact nature of the course is therefore to some extent unique to each student.

The core Research Methods module is at the heart of the MRes and equips you with a fundamental understanding of the research process across a wide and dynamic range of disciplines. Additional elements of the course aim to provide an integrated, employment-focused, research training programme for students wanting to develop their research skills in the biosciences.

Past research project topics have included human host-microbe interactions, pollination ecology and the loss of genetic diversity among threatened species.

Modules

Research Methods
Applied Molecular Biology
Research project

One from:

Medical Genetics
Microbiology and Public Health

Options:

Evaluating Research in Biomedical Sciences
Research Placement
Bioscience Independent Study
Clinical Infection Sciences
Current Topics in Infection
Zoonoses
Introduction to Statistics Using Excel and Minitab
Advanced Statistical Analysis

Careers and Employability

The MRes is aimed at individuals with a background in biological sciences wanting to pursue a career in the health sciences.

Our graduates are equipped with a foundation of knowledge for careers in research, industry, the public sector or academia. The MRes provides well-rounded, research-based training, plus the necessary transferable skills to prepare you for employment.

Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October. Read more
The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October.

It consists of two research projects performed in research groups focusing on plant genetic engineering, plant development, plant molecular biology, proteomics, plant biochemistry, plant-microbe interactions, transcriptomics and bioinformatics.

In parallel with your research project, you may also attend lectures from relevant advanced courses delivered at Imperial, such as Advanced Topics in Plant Molecular Biology.

You will also attend seminars organised either by individual research groups or collectively by the plant and microbial sciences academics.

Read less
This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology. Read more

This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology.

This grounding leads into the study of the complex mechanisms of host/microbe interactions that are involved in the pathogenesis of specific animal diseases, and provides insights into diagnosis and interventions, such as vaccines, essential for disease control.

You will enhance your critical and analytical skills and gain hands-on experience in the diagnosis of veterinary diseases, such that you may identify problems, formulate hypotheses, design experiments, acquire and interpret data, and draw conclusions.

Programme structure

This programme is studied full-time over one academic year.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Who is the programme for?

This is a full or part-time programme, intended mainly for graduates, those already working in veterinary diagnostic/research laboratories and staff from other laboratories who want to enhance their understanding of the role of microorganisms in animal health and disease.

Pharmaceutical research personnel, policymakers, veterinarians, public health personnel and environmental biologists will also benefit.

Part-time and short course study

Most modules are offered as standalone short courses. The fee structure for short courses is different to that for registered students, and details may be obtained via admissions enquiries, please refer to the contact details on this page.

The option to study the MSc on a part-time basis is only available following successful completion of three modules as stand-alone/CPD. Please contact the for further information.

Programme partners

This Masters programme is delivered by a consortium comprising the University of Surrey and two world class veterinary microbiology institutions: the BBSRC funded Pirbright Institute (PI), and the Government sponsored Animal & Plant Health Agency (APHA).

The Veterinary Medicines Directorate (VMD) and Public Health England (PHE) also contribute to the programme.

Visits

You will have the unique opportunity to gain hands-on experience in the diagnosis of important veterinary diseases within the world reference laboratories of the APHA and Pirbright Institute (PI).

There will also be an opportunity to visit Public Health England (PHE) to gain a detailed knowledge of how zoonotic diseases outbreaks are investigated, and to visit the Veterinary Medicines Directorate (VMD), a livestock abattoir and an intensive livestock farm.

Colleagues from the CEFAS laboratory will also contribute to the programme, and further research training will be provided during your practical research project.

Educational aims of the programme

This is a one year full-time programme aimed at preparing graduates to work in a range of fields in which a detailed understanding of veterinary microbiology is a valuable asset.

These fields include research, commerce, government and policy, reference laboratory and diagnostic work, epidemiology and disease mapping, veterinary science, farming especially animal production, wild and zoo animal conservation and education.

As such, it is intended that graduates will achieve the highest levels of professional understanding of veterinary microbiology within a range of contexts.

The programme combines the study of the theoretical foundations of, and scholarly approaches to, understanding the application and various practices of veterinary microbiology within the contexts described above along with the development of practical and research skills.

The main aims are to enable students to:

  • Acquire sound knowledge of the major principles of veterinary microbiology
  • Develop the skills to perform relevant interpretation and evaluation of data
  • Apply those acquired skills in practice through research
  • To utilise acquired knowledge and evaluative skills to communicate successfully with stakeholders

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

The learning outcomes have been aligned with the descriptor for qualification at level 7 given in the Framework for Higher Education Qualifications (FHEQ) produced by the Quality Assurance Agency (QAA) for Higher Education.

Knowledge and understanding

Following completion of the programme, students should display knowledge of:

  • The main principles of current veterinary microbiology
  • The methods and approaches used for the molecular characterisation, and diagnosis of disease agents
  • The main principles of infectious diseases epidemiology
  • The analysis of disease and disease carriage that impact on the development and application of control measures to combat diseases
  • Modes of control of infectious diseases
  • Modes of transmission
  • The various aspects of host pathology and immune responses to disease agents
  • Analytical skills to allow interpretation of data and formulation of conclusions

Intellectual/cognitive skills

Following completion of the programme, students should be able to:

  • Critically appraise scholarly and professional writing on a wide range of subjects pertaining to the various aspects of veterinary microbiology
  • Critically analyse experimental data to enable the formulation of hypotheses
  • Design relevant experiments to test formulated hypotheses
  • Efficiently analyse new developments in technology and critically assess their utilisation to answer existing and new problems

Professional practical skills

Following completion of the programme, students should be able to:

  • Plan and execute an experiment/investigation, act autonomously and demonstrate originality
  • Analyse numerical data using appropriate computer tools including specialist computer packages
  • Communicate experiments at a project level, including report writing
  • Perform specific specialised experimental skills

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
Our MRes in Plant and Microbial Biology provides a unique opportunity to learn from research leaders investigating topics such as global food security, the impact on plants of climate change and plant-microbe interactions. Read more

About the course

Our MRes in Plant and Microbial Biology provides a unique opportunity to learn from research leaders investigating topics such as global food security, the impact on plants of climate change and plant-microbe interactions. Research ranges from molecules to whole organisms, ecosystems and global systems.

Our MRes degrees are excellent preparation for a career in research or industry. These courses enable you to develop your own research skills and contribute new knowledge to your chosen field.

Where your masters can take you

Our MRes programme will provide you with an excellent foundation for a career in research or industry. It is ideal preparation for a PhD degree, whilst also providing advanced level skills in research methods, data analysis, and clear communication of research findings, all of which are in high demand from employers.

Tailor your masters to your own research interests

Our MRes programme is uniquely research-focused. You will be assigned to a research supervisor on the basis of your particular research interests. You’ll be embedded within a research group, working alongside PhD students, postdoctoral researchers, and academic staff who are at the forefront of their research field.

You will conduct an extended research project over several months, with the aim of producing original work of publishable quality.

Course structure

Each programme has a common element where you will learn about the most recent developments in your research area and discuss them with research leaders from the UK and around the world.

You will gain advanced skills in experimental design, data analysis and presentation, as you learn how to become a research leader yourself.

Core modules

Advanced Trends in Biology; Advanced Biological Analysis; Research and Study Skills in Biology; Tutorials; Literature Review; and Research Project. The latter accounts for half of your final grade.

Teaching and assessment

Teaching is via working in a research laboratory or on a field-based research project, tutorials, discussion groups, attendance at seminars, and statistics and other workshops.

Assessment includes, but is not limited to, project report, literature review, critiques, short reports and essays, oral presentations including a viva.

Read less
This course, offered by a leading research institute in grass-microbe-animal interactions in relation to sustainable efficient farming, is aimed at professionals working within the agri-food sector. Read more

Course Starts September, January or May

Course Description

This course, offered by a leading research institute in grass-microbe-animal interactions in relation to sustainable efficient farming, is aimed at professionals working within the agri-food sector. It provides students with an in-depth understanding of the components of ruminant production and mixed farming systems, focussing on the latest research into how these systems can be made more sustainable and efficient.

The aim of this Professional Doctorate programme is to produce a qualification which, whilst being equivalent in status and challenge to a PhD, is more appropriate for those pursuing professional rather than academic careers. Our DAg programme comprises taught modules and two work-based research projects, carried out through two-day workshops, distance learning and a mixture of live and virtual supervisory meetings. While the primary academic focus is on the completion of an advanced piece of research, the collaborative route provided by a work-based research project provides an ideal opportunity to embed new knowledge in the work place and ensure that research is relevant to industry. As such, it is crucial that a student’s employer is supportive of both their research aims and the time commitment that the proposed research will involve. Self-employed students should aim to undertake research which will be closely aligned to their business.

Modules

The ATP DAg is delivered in two parts:

Part I is undertaken for a minimum of two years and comprises two taught modules from the ATP menu*, a taught ‘Research Methodologies’ module; and a portfolio of work or a research thesis (approximately 20,000 words in length). Each taught module is worth 20 credits and takes 12-14 weeks to complete. The short Part 1 thesis should involve analysing existing data from the candidate’s workplace. For example: Reviewing historical mineral deficiency data by species and region; analysing and interpreting the findings. Students may exit here with an MRes.

Part II is undertaken for a minimum of three years and comprises a longer portfolio of work or a research thesis (up to 60,000 words). It will involve experimentation and must embody the methodology and results of original research. It should, ideally, be built upon the Part 1 thesis. Thus, from the example above, could be something like: Changing practices and introducing innovation to combat mineral deficiencies.

* Optional taught modules - some of which are delivered by Bangor University (BU) - may be chosen from:

• Genetics and Genomics
• Grassland Systems
• Home-Grown Feeds
• Organic and Low Input Ruminant Production
• Ruminant Gut Microbiology
• Ruminant Health & Welfare
• Ruminant Nutrition
• Global Ruminant Production
• Silage Science
• Farm Business Management
• Plant Breeding
• Agro Ecosystems Services (BU)
• Carbon Footprinting & Life Cycle Assessment (BU)
• Resource Efficient Farming (BU)
• Soil Management (BU)
• Upland Farming (BU)

Each module is worth 20 credits and takes 12-14 weeks to complete.

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. In general, the group use molecular biology, plant pathology, proteomics, genetics, microscopy and bioinformatics to investigate the functional role of genes in various conditions. These include biotic stress, flowering, cell cycling, circadian rhythm, receptor-ligand interactions, identification of pathogen secreted molecules and their function, targeted genome editing using CRISPR technology, comparisons of bacterial genomes using next generation sequencing and bioinformatics.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines. The team members have collaborations within and outside the UK, thus possibilities for travelling and longer term visits exist at national and international partner universities.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Institute of Science and the Environment has an excellent range of resources available to support your learning and your research project.

Recent research
Regulation of effectors by circadian rhythm; Identification of PAMPs and apoplastic effectors from downy mildew pathogen; Role of heterozygosity in effector-triggered immunity, investigating immune system of plants using genome editing technology and biopesticides.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X