• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
"micro" AND "manufacturin…×
0 miles

Masters Degrees (Micro Manufacturing)

We have 30 Masters Degrees (Micro Manufacturing)

  • "micro" AND "manufacturing" ×
  • clear all
Showing 1 to 15 of 30
Order by 
Why this course?. Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade. Read more

Why this course?

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade.

Manufacturing engineers therefore play a vital role in integrating technology and management within the sector to achieve added value and deliver superior performance.

This popular MSc programme is based within the Department of Design, Manufacture & Engineering Management, the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

This course is designed for:

  • graduates with experience in manufacturing, engineering, design or business who wish to develop their manufacturing expertise. This course is ideal for graduates wishing to transfer smoothly and effectively to a career in the manufacturing sector of industry
  • established manufacturing engineers, designers and managers working in the industry who are facing new challenges and increased areas of responsibility. New disruptive technologies also present a significant opportunity for existing professionals to further develop their career in advanced manufacturing technology systems

This course will prepare students for industrial careers within a reinvigorated global manufacturing sector. Students will develop specialist skills in areas such as:

  • manufacturing automation
  • advanced production techniques
  • micro/nano-manufacturing
  • materials and production technology
  • strategic technology management

At the end of the course you'll have a greater understanding of the methods, tools and techniques relating to advanced manufacturing technology and systems.

You'll be able to apply your knowledge and skills by taking part in projects to solve some of the technological problems currently faced by industry.

The course is run jointly with the Advanced Forming Research Centre (AFRC), a £35 million facility developing forming and forging technologies to support the development of high integrity components. The AFRC is one of seven elite centres that form the UK High Value Manufacturing Catapult which is the catalyst for the future growth and success of manufacturing in the UK.

Funded places

There are a limited number of funded places (fees) available for this programme for students with home status for fees purposes (Scotland & EU). As these are allocated on a first-come, first-served basis, applicants are encouraged to apply as early as possible.

You’ll study

You'll take a combination of compulsory and optional taught modules.

Major projects

During the programme, you'll undertake an individual and group project.

For group projects, you'll have the opportunity to work with fellow students and an industrial client to address a practical problem. You'll gain direct industry experience, develop skills and manage a project through to completion. Previous students have worked with organisations such as Rolls Royce, BAE Systems and Weir Group.

For individual projects, you'll have the opportunity to combine the skills learned in other course modules and apply them to an industry-involved or funded project within a specific area of manufacturing.

Facilities

Our facilities provide you with a large range of rapid prototyping and manufacturing tools and machinery. These will help you to design, prototype, manufacture and perform research on a broad range of items.

The AFRC has invested £35M in equipment for the development of forming and forging technologies.

Accreditation

Accreditation has been awarded for this programme from the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Accreditation has been awarded for this programme from the Institution of Engineering Designers (IED) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Accreditation has been awarded for this programme from the Institution of Mechanical Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Learning & teaching

Lectures, tutorials and practical laboratories.

Assessment

Major assessment formats are written assignments. There is also a group project and an individual Master project.



Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Innovation in product design and manufacturing has become a major driver for industrial competitiveness and profitablity in recent years. Read more
Innovation in product design and manufacturing has become a major driver for industrial competitiveness and profitablity in recent years. As enabling technologies become more easily accessible, engineers are faced with increasing demands for designing and producing more complex mechanical devices to serve the needs of the society. Next generation engineering products will be ‘smart’ with many functionalities; they will be made of new materials; they will increase energy efficiency and reduce environmental impact; they will vary in size from nano to mega scales; and they will be more closely integrated with information processing systems. Also as mechanical systems are becoming increasingly complex to analyze and expensive to experiment, more emphasis will have to be placed on computer aided analysis, design, verification and manufacturing. Our research program in mechanical engineering responds to these trends and focuses on basic research related to materials science and process engineering, product design, and information integrated manufacturing processes. In doing so applications to different physical processes are studied (e.g. energy systems, bioengineering, metal forming, polymer processing, discrete part manufacturing to name a few).

Current faculty projects and research interests:

• Computer Aided Numerical Control (CNC) Systems and Machine Tools
• Automation and Mechatronics
• Composite Materials Manufacturing
• Human and Machine Haptics
• Multi-Scale Experimental and Computational Mechanics of Materials
• Bioinspired and Biological Fluid Mechanics
• Cardiovascular Mechanics
• Vibrations and Structural Dynamics
• Modelling and Design of Micro /Macro Systems
• Computational Materials Science (Polymers, Biomaterials, Shape
Memory Alloys)
• Computational Fluid Dynamics
• Thermal and Bio/Micro Fluidic Systems
• Micro-Nano Electromechanical Systems (MEMS/NEMS)
• Microstructure Evolution Dynamics (Solidication, Crystal Groeth)
• Control systems and Robotic

Read less
The programme provides and cultivates interdisciplinary engineering skills, which are based on the systematic combination of knowledge and methods within… Read more

The programme provides and cultivates interdisciplinary engineering skills, which are based on the systematic combination of knowledge and methods within the fields of mechanical, control and computer engineering, thereby enabling the graduates to effectively solve complex technical problems related to design, analysis, quality assurance, maintenance, monitoring and diagnostics of macro and micro mechatronic systems.

Studies

Mechatronics – engineering „decathlon“

Studies in Mechatronics occupy the crossroads of several engineering sciences and allow to gain and selectively deepen the knowledge and practical skills in mechanics, control systems, electronics and information technology through application of systems approach. The programme encompasses a wide range of elective courses, which provide favorable conditions for students to specialize in the preferred domain of mechatronics: from structural design to adaptive control, from product development to maintenance, from macro to micro mechatronics systems. The accumulated multidisciplinary background enables the graduates to opt for a research-oriented carrier by pursuing PhD degree in mechanical engineering or other fields related to mechatronics.

Knowledge and skills

Multidisciplinary competences for creative problem solving

Modern industry faces an increasing shortage of versatile professionals, who possess a wide-ranging engineering skillset. In this programme students gain knowledge in technical project management, integrated product development, computer-aided design and manufacturing. The syllabus focuses on methods and tools applied for design and analysis of electromechanical, automated, robotic, control and embedded systems as well as introduces to the methods and tools used in production information systems, nanoengineering, machine monitoring and diagnostics. These multidisciplinary courses provide a solid foundation for a graduate to become effective in design, development, installation and maintenance of a wide range of complex machinery and devices. It is not uncommon that experts in mechatronics take a leading role in the process of innovative product development.

Career

Mechatronic qualifications meet the needs of modern industry

The engineering industry is among the largest employers, therefore the students in Mechatronics have an ample selection when planning their carrier path. In Lithuania alone there are about 2000 companies, where many job positions are related to mechatronics to some extent. Therefore, the graduates are successfully employed in nearly all manufacturing and service sectors, where they pursue carriers as CAD designers and product developers, research analysts, automation and operation engineers, instrumentation and quality control engineers, maintenance and support engineers as well as sales engineers, technical consultants or project managers. Alternatively, the graduates may embark on a research path within the academia and R&D organizations or establish start-ups in order to develop and commercialize high added-value mechatronic products.

Demand

Competitive advantage in the job market of today and tomorrow

Due to interdisciplinary knowledge and skills the graduates of Mechatronics are valued by employers as being able to more rapidly adapt to specific requirements of a particular engineering-oriented job position. This professional flexibility facilitates pursuit of various carrier paths within different manufacturing industries as well as within technical service sector. Experts in mechatronics are crucial in highly innovative and internationally competing manufacturing companies, where process automation is inevitably based on mechatronic technologies. Mechatronics engineers are particularly welcome in industrial and R&D sectors of the developed countries, where smart macro/micro-mechatronic systems are continually developed and implemented in advanced technological machinery, robotics, medical and testing devices, aerospace and automotive equipment.

Infrastructure

The most advanced mechatronics laboratories in Lithuania

KTU pioneered the studies in mechatronics in Lithuania and has the long-standing experience in the field as well as provides open access to a wide range of the state-of-the-art educational and research facilities. As part of their curriculum, the students acquire useful hands-on experience in various mechatronics, robotics and clean-room laboratories.



Read less
Our Business and Management MPhil and PhD programmes aim to develop rigorous scholars who can advance both academic knowledge and business practice. Read more
Our Business and Management MPhil and PhD programmes aim to develop rigorous scholars who can advance both academic knowledge and business practice. The programmes are designed to equip you with the skills necessary to succeed in a knowledge-intensive environment and to open greater depth to your professional and personal life.

Our research is organised into 15 research centres and groups. Each of these involves externally funded research, international collaboration and the active involvement of doctoral students. A brief outline of some of the disciplines is outlined below.

Human resource management, work and employment

Members of the group have a wide range of research interests in the field of human resource management (HRM), organisational studies and management history. Currently, there are particular interests in the field of international political economy as well as in new patterns of work and organisation, public sector management, gender and industrial relations. Staff members engage in individual research and collaborate with others at universities across the UK and abroad.

Specific areas of research expertise include:
-Business elites and corporate governance in France and the UK
-Entrepreneurial philanthropy
-The International Labor Organisation (ILO) and the ‘decent work’ agenda
-The harmonisation of international aid
-Critical perspectives on international business, post socialist transition, migration and trans-nationalism
-Public service mergers and multi-agency working in the public sector
-New working patterns in mental health services
-Gender and work
-The application of Foucauldian and governmentality perspectives to HRM and management – especially to developments in public services in the UK
-Graduate careers
-Industrial relations and trade union renewal
-Human resource management and performance
-Employee voice and representation
-The micro political economy of work, particularly inter-organisational structures and social networks
-Aging societies, older workers and the world of work
-Embodied and aesthetic labour

Marketing, operations and systems

Our research group activities broadly cover the areas of innovation, enterprise and entrepreneurship, and policy. We have particular interests in the development and pursuit of entrepreneurial opportunities within and outside existing organisations and on the way in which emerging technology trends are interacting with new businesses, management and policy models. Specific areas of research expertise include:
-Corporate entrepreneurship
-E-Business, E-Government and E-Learning
-Entrepreneurial opportunities and new venture emergence
-Information systems and social informatics
-Innovation management and policy
-Knowledge management and organisational learning
-Technology and organisation

Operations

Specific areas of research expertise in this group include:
-Lean operations (both manufacturing and service sectors, particularly health)
-Manufacturing planning, scheduling including optimisation in stochastic environments
-Layout optimisation
-Group technology (applied to design and manufacturing processes)
-Computer aided production management systems
-Modelling, analysis and optimisation of manufacturing systems
-Manufacturing and business strategy

Strategy, organisations and society

This group uses social theory to explore strategic and organisational issues. Grounded in the critical/interpretative tradition, the group has a specific expertise in issues of power, discourse and change. Specific areas of research expertise include:
-Strategy and politics
-Business elites
-Corporate philanthropy
-Discourse analysis and the global financial crisis
-Changes in the media
-Organisational change
-Mega-projects
-Strategy and discourse analysis

Read less
This MSc programme provides students with structured training in Scalable Innovation and Laser enabled bioprinting in academic year 2018/19. Read more

This MSc programme provides students with structured training in Scalable Innovation and Laser enabled bioprinting in academic year 2018/19. This training is underpinned by advanced courses in Optical Design, Advanced Materials, and Tissue Engineering. The programme is particularly focused on digital additive and subtractive processes—targeting personalised medical devices and sensors— pivotal for addressing future key healthcare challenges. Students will gain hands on experience on state of the art manufacturing research platforms enabling them to demonstrate their research potential.

The programme is an ideal opportunity for launching a career in research for industry or academia; it is informed by the goals of three key Science Foundation Ireland Research Centres, CÚRAM Centre for Medical Devices, I-FORM Centre in Advanced Manufacturing and the IPIC Centre in Photonics Technologies.

Key Enabling Technologies are recognised by the European Union to be the building blocks for future product and process technologies.Europe’s future competitiveness depends on how its labour force will apply and master the fusion of two or more key enabling technologies on advanced manufacturing test-beds. This interdisciplinary programme prepares technologists for this societal challenge.

The six key enabling technologies are:

  • Photonics
  • Advanced Materials
  • Industrial Biotechnology
  • Advanced Manufacturing
  • Nanotechnology
  • Micro- / Nano- electronics

In September 2018/19, students will work on individual research projects aligned with a team-based challenge. All projects will converge towards the central theme encompassing the application of multiple key enabling technologies to create electrically, optically and thermally activated medical device concepts using an additive (inkjet & spray) and subtractive (laser) advanced manufacturing test bed.



Read less
This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. Read more

This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. It will also provide excellent preparation for those wishing to undertake a PhD. The MSc Advanced Mechanical Engineering is a broad-based programme covering an important and industrially-relevant portfolio of mechanical engineering modules, such as Biofuels and Combustion, Manufacturing Processes, MEMS, and Automation and Robotics. 

All the teaching is delivered by highly experienced and qualified members of academic staff who are at the cutting-edge of research in their respective fields. This programme will be attractive to graduates of mechanical engineering or related subjects.

With leading research into Advanced Mechanical Engineering, the University of Birmingham is the ideal location for bright graduates, looking for a solid and well-respected postgraduate qualification which will act as a springboard for a successful future. 

  • 120 credits of taught modules studied during October-April
  • 60 credits of project-based module carried out during June-September
  • Assessment methods include a range of examinations, assignments and projects

The MSc Advanced Mechanical Engineering is fully accredited by the Institution of Mechanical Engineers (IMechE) for both of its full-time and part-time modes of study.

Course details

The programme will include 9 subject-specific technical modules of 10 credits each covering vehicle engineering, mechanics, thermal systems, energy, computational geometry, manufacturing processes, robotics, biomechanics, and micro electro-mechanical systems. A 20-credit synoptic mechanical engineering module has been integrated into the programme and provides research-focused teaching of selected novel case studies from various research areas being carried out within the School in order to enhance the relevant knowledge base of the students. 

A further 10 credit module covering research skills, project management and business enterprise will provide the necessary training to enhance the competencies in professional skills that modern mechanical engineers are expected to possess. The latter part of the programme will include a 60 credit summer project module. The project can either be based at the University, or be carried out in industry.

Related links

Learning and teaching

The modules will be delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods, providing a well-rounded educational experience and an opportunity to further develop skills prized by employers.

There will be a strong emphasis on enquiry-based learning throughout, further enhancing students’ ability to think independently and creatively.

Employability

The graduates of this programme will be ideally placed to gain employment in a wide field of careers in mechanical and related engineering. The typical functional roles include design, consultancy, maintenance, operations, and R&D in a spectrum of industrial sectors such as manufacturing, aerospace, energy, automotive, micro/nano technology, nuclear and defence

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
If you want to develop a specialist career in multinational enterprises, this course offers high-level strategic learning in a range of areas. Read more
If you want to develop a specialist career in multinational enterprises, this course offers high-level strategic learning in a range of areas.

This course will provide you with the specialist knowledge to manage and adapt supply chains, and pioneer logistics in a growing field of industry. If you are looking to refine your skills or further progress within the profession, this course will enable you to gain a better understanding of how to apply strategic thinking in senior decision-making roles.

The University of South Wales is a preferred provider of professional and Masters level qualifications for the Chartered Institute of Logistics and Transport (CILT) and the Chartered Institute of Purchasing and Supply (CIPS). The course is also accredited by the Institute of Operations Management (IOM). These accreditations highlight the industry-level standards embedded within the course and ensure your learning can be applied and inform best practice in the modern workplace.

Upon successful completion of this course, you will gain MCIPS (in addition to three years’ work experience) and MCILT (with an average mark of 50% across the course with work experience, which will be assessed by the professional body). You are also set to gain from further exemptions from the Institute of Operations Management.

This course includes field trips that enable you to understand the practical implications of logistics and supply chain management in a variety of industrial settings (additional costs may apply).

See the website http://courses.southwales.ac.uk/courses/492-msc-international-logistics-and-supply-chain-management

What you will study

There are two pathways available to students studying the MSc International Logistics and Supply Chain Management course. Modules of study for each pathway depend upon whether students complete a 60 Credit Dissertation or a 20 Credit management project. The normal mode of study will be to undertake the 20 credit management project route.

Route One

- Sustainable Supply Chain Management (20 credits)
The module will explore the strategic need, role and value for logistics, purchasing and supply chain research within organisations in order to achieve sustainable supply chain networks in the future. Examining the major changes that are currently affecting logistics and supply chain strategies and how management in the future will be influenced by new structures, reconfiguration of material and information flows, the role of technology in evolving supply chains and the key issues in managing this transition process. This module aims to provide an integrative view of the complex inter- and intra-organisational dynamics which contribute to sustained organisational success and maximisation of competitive advantage. Exploring the sustainable supply chain from a global and local perspective.

- Commercial Relationships (20 credits)
This module explores the
 theory and practical application that underpins the processes involved in
formation of commercial agreements and relationships with external organizations.The module will examine the
current and relevant approaches to achieve an effective commercial agreements
by identifying with and critically evaluating the activities and documentation involved; the legal processes and terms and the main contractual arrangements required for a commercial agreements and relationship with customers and / or suppliers.

- Strategic Operations Management (20 credits)
This module aims to provide an appreciation of operational processes, techniques, planning and control systems with reference to both manufacturing and service industries from a qualitative and quantitative perspective.

- Globalisation of Logistics and Supply Chain Management (20 credits)
This module aims to identify the key drivers and trends that are increasing the globalisation of industries, markets and sectors, including the role of the SME. Also explore the structure and management and main activities of a global and international logistics and supply networks.

- Strategic Systems Thinking (20 credits)
This module aims to develop and enhance the skills and knowledge explored to enable participants to actively consider how they may personally make a difference in the different strategic contexts which may confront them. In particular, students will focus on innovative practices and an inclusive social approach to business and organisational development.

- Economies, Markets and Decision Making in International Contexts (20 credits)
The module aims to develop the ability to analyse the macroeconomic and micro frameworks within which strategic decisions are made. To develop the ability to solve problems which relate to management decision-making in the context of changing economic and market conditions.

- Project Management and Consultancy Skills (20 credits)
This module aims to critically explore and examine project management and consultancy skills in a business and supply chain context. Enabling students to understand and explore relevant and key project management techniques and principles and the impact that they have on operations, supply chain and business processes. Students will be able to use consultancy skills to reflect, monitor and evidence the ‘management of self’ in a marketing and business context.

- Research Methods (20 credits)
The module aims to develop your understanding and research skills in a management and/or professional development context; critically reviewing a range of research methodologies and methods of providing management information for decision making.

- Management Project (20 credits)
The module explores the concept, theories and practice of project management and consultancy skills. This module builds on the research methodology skills and requirements of critical debate established throughout the program and shows how these key skills are vital within a business context to ensure rigorous decision making. It examines combining the traditional research skills with project management and consultancy skills to enable an evidenced based approach to problem solving within an organisation.

Route Two

- Sustainable Supply Chain Management (20 credits)
The module will explore the strategic need, role and value for logistics, purchasing and supply chain research within organisations in order to achieve sustainable supply chain networks in the future. Examining the major changes that are currently affecting logistics and supply chain strategies and how management in the future will be influenced by new structures, reconfiguration of material and information flows, the role of technology in evolving supply chains and the key issues in managing this transition process. This module aims to provide an integrative view of the complex inter- and intra-organisational dynamics which contribute to sustained organisational success and maximisation of competitive advantage. Exploring the sustainable supply chain from a global and local perspective.

- Strategic Operations Management (20 credits)
This module aims to provide an appreciation of operational processes, techniques, planning and control systems with reference to both manufacturing and service industries from a qualitative and quantitative perspective.

- Globalisation of Logistics and Supply Chain Management (20 credits)
This module aims to identify the key drivers and trends that are increasing the globalisation of industries, markets and sectors, including the role of the SME. Also explore the structure and management and main activities of a global and international logistics and supply networks.

- Strategic Systems Thinking (20 credits).
This module aims to develop and enhance the skills and knowledge explored to enable participants to actively consider how they may personally make a difference in the different strategic contexts which may confront them. In particular, students will focus on innovative practices and an inclusive social approach to business and organisational development.

- Economies, Markets and Decision Making in International Contexts (20 credits)
The module aims to develop the ability to analyse the macroeconomic and micro frameworks within which strategic decisions are made. To develop the ability to solve problems which relate to management decision-making in the context of changing economic and market conditions.

- Research Methods (20 credits)
The module aims to develop your understanding and research skills in a management and/or professional development context; critically reviewing a range of research methodologies and methods of providing management information for decision making.

- Dissertation in Purchasing, Logistics, Supply Chain (60 credits)
You’ll be required to produce an extended piece of written postgraduate research, involving a significant piece of student-directed learning, based on a detailed investigation into a key area.

Learning and teaching methods

You can study the MSc International Logistics and Supply Chain Management full-time, part-time or online. The full-time programme starts in September and February.

Full-time: Full-time students study Stages One and Two in an academic year, followed directly by the dissertation. Part-time students usually complete one stage each academic year followed by the dissertation.

Part-time: We offer part-time weekend delivery, where you come to the University for one weekend every six weeks. For those who want to tailor a programme that suits their needs, we can be flexible in terms of when, where and how often lectures take place. This is useful for organisations and associations.

Online: The University of South Wales also offers online delivery through our partners the Chartered Institute of Logistics and Transport (CILT). Please note that CIPS accreditation is not available through our online course.

Work Experience and Employment Prospects

Graduates are able to demonstrate specialist knowledge to help them manage and adapt their global supply chains to respond to the dynamic needs of 21st century business. You will also be able to lead logistics and supply chain management in a growing field, and develop a specialist role in multinational enterprises. The additional professional accreditations associated with this Masters course will enable you to make a significant step in developing your professional career moving forward.

Assessment methods

Part-time students usually complete one stage each academic year followed by the dissertation, which can be completed in nine months.

Read less
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Read more
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Graduates from related disciplines can embrace engineering continuous improvement, operations management and enterprise requirement planning (ERP) applications in engineering.

About the programme

In many engineering organisations ERP is the main software system application that controls and assists in the management of all functional departments and the whole facility, often globally. This unique programme has a UK and global appeal for career development and future plans are currently being developed to offer SAP ERP certification. It satisfies both the operations management and continuous improvement (CI) elements within engineering, and the application of ERP systems such as SAP and/or Oracle. Many companies use ERP within the supply chain including Terex, Tata Steels, RollsRoyce, Honeywell, Audi, and BMW.

This programme will develop the skills you need to interface with functional users, other than engineers, giving you an informed view for further configuration or customisation.

Your learning

Core topics include ERP, continuous improvement and operations management with options of Total Productive Maintenance (TPM), Project Management and modules with further planning and management of resources.

Our lecturers are seasoned industry experts, and we complement their knowledge with industry visits to determine the effectiveness of various applications.

MSc students undertake a dissertation, selecting a specialism to achieve a greater understanding of the implementation and advanced use of software applications, management initiatives and planning within an engineering setting. There may be scope to integrate this dissertation with industry, where an engineering supervisor will be allocated to assist your MSc journey and to advise and introduce you to industry links.

Our Careers Adviser says

Graduates are equipped for the next step in their career in manufacturing and service operations. Most business organisations that implement ERP solutions use fully-trained, qualified implementation partners and consultants throughout their lifecycle.

There is demand for graduates who have had some initial education and training and hands-on experience in ERP solutions such as SAP. Businesses, ERP solution providers, and consulting organisations require top calibre trained ERP consultants and users. UWS graduates who are trained in ERP and supporting materials will possess a unique skill-set that will be a differentiator when competing in the employment market.

Professional recognition

We will seek accreditation for this programme in the near future from the Institution of Engineering and Technology (IET).

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets. Read more

The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets.

Why this programme

  • This exciting programme will enable you to benefit from the combined resources and complementary expertise of staff of two top ranking Scottish institutions, University of Glasgow and Glasgow School of Art.
  • Studio-based, student-centered learning based around design project activities. Students have access to state-of-the-art product design engineering prototyping and manufacturing processes in the PDE workshops at GSA and University of Glasgow.
  • There are increasing pressures, from both existing and emerging world marketplaces, for products which not only respond to the needs of function, user and society, but which can be brought to market ever more rapidly through state-of-the-art development and manufacturing processes. Industries which develop, manufacture and market today's products need high-caliber graduates equipped to handle these processes with management skill and creative drive, and this programme develops graduates with these skills.
  • The studio programme explores cultural, management, perceptual, process and psychological issues, offering a curriculum relevant to the needs of industry and an understanding of the role of the design engineer in society.
  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

You will attend lectures, seminars and tutorials and take part in lab, project, team and studio work, industrial visits, and workshops.

Core courses

  • Advanced manufacture
  • Core research skills for postgraduates
  • Human factors
  • Integrated engineering design
  • Micro-electronics in consumer products 
  • Product design engineering introduction project
  • MSc project.

Optional courses

  • Instrumentation and data systems
  • Software engineering
  • The Glasgow School of Art elective (you will choose from a list of options).

Career prospects

Career opportunities include product research and development, system design, product manufacture and engineering design. The programme aims to provide opportunities to work on live projects with industry: this can lead to employment opportunities. Examples of companies that employ our Product Design Engineering graduates are Apple, DELL, Dyson, Jaguar-Land Rover, TomTom and Smart.

Accreditation

The MSc Product Design Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.



Read less
Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. Read more

Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. It is focused on 4 themes: Energy, Health, New and Advanced Molecules and Materials, and Water and the Environment. These research initiatives transcend the traditional discipline boundaries, integrate the core areas of inorganic, organic, physical and analytical chemistries and intersect with other scientific disciplines, engineering and medicine.

Key Features of MSc by Research in Chemistry

The new Department of Chemistry has excellent, purpose-built modern laboratories and has access to a diverse type of laboratories research infrastructures to develop its research. For example, high-quality, high-impact chemistry research is already taking place in World Class Centres based in Swansea such as The Centre for NanoHealthThe Institute of Mass SpectrometryThe Institute of Life SciencesThe Energy Safety Research InstituteMultidisciplinary Nanotechnology CentreThe Centre for Water Advanced Technologies and Environmental Research and The Materials Research Centre. The integration of the new Chemistry Department with Engineering, the Medical School and other departments in the College of Science provides an environment of research excellence and allows our chemistry students and research staff to invent, innovate and develop products in a way that is best suited to research in the 21st century and the need to generate disruptive, step-change advances with impact on current global challenges.

Department of Chemistry Research Group:

Energy: One of the key areas where advances in chemistry will be needed is in providing solutions to the global energy challenge. Chemistry research in Swansea University is participating in fundamental and applied research initiatives focused on: 

  • Conversion and storage of electrochemical and solar energy 
  • Capture, storage, and chemical conversion of carbon dioxide 
  • Development of new molecules, materials and nanotechnologies related to energy production, conversion, transport, and storage and their incorporation into devices.
  • Electron transfer reactions
  • Development and implementation of advanced characterisation techniques for acquiring in-depth understanding of photovoltaics, batteries and processes, which enable improvement in performance.
  • Routes for rapid processing and manufacturing at scale.
  • Optimized utilization of fossil energy 
  • Hydrogen as an energy vector

Health: Chemistry research provides new routes to more effective, cheaper and less toxic therapies and to non-invasive disease detection and diagnosis tools – a requirement to transform the entire landscape of drug discovery, development and healthcare, which is unaffordable and needs to benefit more patients. The chemistry research laboratories for this theme are adjacent to Swansea Medical School – which ranked 1st in the UK for research environment, and 2nd for overall research quality in the REF 2014.

Current chemistry research includes: 

  • Nanoparticle-based drug delivery
  • Antibody-drug conjugates
  • Nanoparticle-enabled chemoimmunotherapy and immunoengineering
  • Chemical systems for cell and tissue imaging
  • Stimuli-responsive and adaptive systems for drug activation and release
  • Construction of biofunctional artificial motor systems
  • Bioelectronic medicines and sensors
  • Mass spectrometric analysis of clinical samples, lipids, proteins and natural products
  • Pharmaceutical analysis and analytical technologies for medical/chemical analysis
  • Magnetic nanoparticles for magnetic resonance and multimodal imaging
  • Silicon processing, microfabrication and microelectronic fabrication
  • Self-assembly of colloids at interfaces and the use of colloids and nanoparticles dispersed in complex biological fluids
  • Microneedles for transdermal blood sampling and drug delivery
  • Biosensors – surface functionalization, fluorescence detection, electrochemistry, chemical sensing and lab-on-a-chip
  • Microfluidics and MEMS 
  • Studying structure, dynamics and function of enzymes as a route to understanding and controlling nature's chemistry
  • Natural products biosynthesis (particularly involving compounds with antibiotic, antifungal, or other medically relevant activity).

New and Advanced Molecules and Materials: There is major interest in synthesing, designing and controllling molecular and macromolecular assemblies at multiple length scales. In Swansea this research involves use of: 

  • Soft condensed matter including surfactants, colloids and polymers
  • Synthesis and characterization of transition metal-based and organic dye molecules for application in dye sensitized solar cells
  • Materials for efficient multiphoton absorption and upconversion 
  • Natural products
  • Molecular recognition and self-assembly to generate novel materials
  • Continuous flow synthesis
  • Molecular scale and nanoscale characterisation of ordered and amorphous assemblies
  • Development of nanocomposites comprising metallic nanoparticles and hydrogels
  • Autonomous and remotely guided micro- and nanoscale objects
  • Studying and tuning the characteristics of nanomaterials and biomaterials 

Water and the Environment: Chemistry at Swansea university has a strong profile in the development of analytical tools for measuring environmental impact, environmental impact assessment of polymer-based materials through their lifetime (including the effects of recycling and biopolymers), technologies for the efficient removal of environmentally harmful materials (and thus reduced emissions per output of discharge), membrane technologies and new methodologies for desalination, and for dewatering and killing pathogens for sanitation applications and the use of new molecules and materials for photocatalytic water splitting and development of self-propelled micro and nanomotor systems for environmental remediation. In collaboration with the Biocontrol and Natural Products (BANP) group in the Department of Biosciences, there is also growing research interest around the characterisation and application of natural products, in particular those derived from fungi and microalgae, to provide therapeutics and nutraceuticals and to act as agents for biocontrol and bioremediation.

Facilities in the Department of Chemistry

Our new state-of-the-art teaching laboratories are being built as part of a multi-million pound investment to create a chemistry hub for the high quality Chemical Sciences research being carried out across the Colleges of Science, Engineering and Medicine.

Careers for Chemistry Graduates

A chemistry qualification opens the door to a wide range of careers options, both in and out of the lab. There are endless interesting and rewarding science-based jobs available – these can be in research, outdoors or in other industries you might not have thought of. Please visit the Royal Society of Chemistry website for details. 

Find out more about the huge range of jobs in chemistry by exploring the job profiles on the Royal Society of Chemistry website (eg Cancer Researcher, Flavourist & Innovation Director, Chief Chemist, Sustainability Manager, Fragrance Chemist, Household Goods Senior Scientist, Analytical Scientist, and many more).



Read less
Investigate the potential of applying nanotechnology through smart and functional materials to transform whole sectors of industry from healthcare to energy. Read more

Investigate the potential of applying nanotechnology through smart and functional materials to transform whole sectors of industry from healthcare to energy. This course covers the technologies to design, realise and analyse micro and nano-scale devices, materials and systems.

Who is it for?

This course is suitable for graduates with science, engineering or related degrees keen to develop careers at the cutting edge of micro-engineering; graduates currently working in industry keen to extend their qualifications or individuals with other qualifications who possess considerable relevant experience.

Why this course?

There are numerous benefits associated with undertaking a postgraduate programme of study at Cranfield University, including:

  • Study in a postgraduate-only environment where Masters' graduates can secure positions in full-time employment in their chosen field, or undertake academic research
  • Teaching by leading academics as well as industrial practitioners
  • Work alongside a strong research team
  • Dedicated support including extensive information resources managed by Cranfield University's library
  • Consultancy to companies supporting their employees on part-time programmes, in relation to individual projects.

Informed by Industry

Our courses are designed to meet the training needs of industry and have a strong input from experts in their sector. Students who have excelled have their performances recognised through course awards. The awards are provided by high profile organisations and individuals, and are often sponsored by our industrial partners. Awards are presented on Graduation Day.

Accreditation

The MSc in Applied Nanotechnology is accredited by the Institute of Materials, Minerals & Mining (IOM3), Institute of Engineering & Technology (IET), Royal Aeronautical Society (RAeS) and Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Please note accreditation applies to the MSc award. PgDip and PgCert do not meet in full the further learning requirements for registration as a Chartered Engineer.

Course details

The course comprises eight assessed modules, a group project and an individual research project. The modules include lectures and tutorials, and are assessed through practical work, written examinations, case studies, essays, presentations and tests. These provide the 'tools' required for the group and individual projects.

Group project

The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.

Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems are concerned.

Individual project

Students select the individual project in consultation with the Course Director. The individual project provides students with the opportunity to demonstrate their ability to carry out independent research, think and work in an original way, contribute to knowledge, and overcome genuine problems.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%

Your career

Successful students will secure positions in the newly developing microsystems and nanotechnology-based industries as well as more traditional industries, such as microelectronics and precision engineering, requiring skills related to those taught. Graduates are able to pursue careers in a diverse range of industries including automotive, aerospace, cosmetics and pharmaceutical.



Read less
Welding is integral to the manufacture of a wide-range of products. This course provides the practical and theoretical knowledge required to become a welding engineer and a materials and joining specialist. Read more

Welding is integral to the manufacture of a wide-range of products. This course provides the practical and theoretical knowledge required to become a welding engineer and a materials and joining specialist. The course covers modern welding techniques, automation, metallurgy, materials science, welding processes, weld design, and quality.

Who is it for?

This course will provide you with a fundamental understanding of welding technologies and an awareness of recent technical developments within the relevant industries. It will also improve your communication, presentation, analytical and problem solving skills. Our graduates are highly sought after by international companies using welding and joining technologies, and are able to attain positions of significant engineering responsibility.

In addition, you will be qualified to act as responsible persons as defined by European and international quality standards, and will have met a major part of the requirements for membership of the appropriate professional organisations with knowledge, skills and experience of managing research and development projects.

Why this course?

Welding is integral to the manufacture of a wide-range of products, from high power laser welding of large ships, to micro-joining of thin wires. Joining technologies continue to expand; and are used in the oil and gas; automotive; aerospace, nuclear, shipbuilding, and defense industries. Furthermore many of the student projects involve Wire + Arc Additive Manufacture which is a technology where Cranfield University is a world leader. All our projects are industrially linked and usually involve a new development never before undertaken. You will have the opportunity to be supervised by a world leading academic in this area.

There are numerous benefits associated with undertaking a postgraduate programme of study at Cranfield University, including:

  • Study in a postgraduate-only environment where Masters' graduates can secure positions in full-time employment in their chosen field, or undertake academic research
  • Teaching by leading academics as well as industrial practitioners
  • Work alongside a strong research team
  • Dedicated support for off-campus learners including extensive information resources managed by Cranfield University's library
  • Consultancy to companies supporting their employees on part-time programmes, in relation to individual projects.

Informed by Industry

Some organisations that we regularly work with and can be mentioned are:

  • Airbus
  • BAE Systems
  • FMC Technip
  • GE
  • Bombardier

Accreditation

The MSc in Welding Engineering is accredited by The Welding Institute (TWI), Institute of Materials, Minerals & Mining (IOM3), Institution of Engineering & Technology (IET), Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergradudate first degree to comply with full CEng registration requirements.

Please note accreditation applies to the MSc award. PgDip and PgCert do not meet in full the further learning requirements for registration as a Chartered Engineer.

Course details

The course comprises seven assessed modules, a group project and an individual research project. The modules include lectures and tutorials, and are assessed through practical work, written examinations, case studies, essays, presentations and tests. These provide the 'tools' required for the group and individual projects.

Group project

The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.

Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems are concerned.

Individual project

This provides experience of undertaking research into a specific welding or Wire + Arc Additive Manufacture (WAAM) topic that is of interest and benefit to industry. For full-time students the project is performed using our state-of-the-art welding and WAAM equipment in the Welding Engineering and Laser Processing Centre. In some cases, it may be possible to undertake the research project with an industry sponsor at their premises. For part-time students, the research project is usually performed at their employer's premises.

Assessment

Taught modules 40%, Group projects 20%, Individual project 40%

Your career

Successful students develop diverse and rewarding careers in engineering management in a wide-range of organisations deploying welding technologies. Roles include the management of welding manufacturing operations, and management of design and fabrication of welded structures. The international nature of such activities means that career opportunities are not restricted to the UK. Cranfield graduates develop careers around the world in oil and gas, automotive, and aerospace sectors.



Read less

Show 10 15 30 per page



Cookie Policy    X