• Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Worcester Featured Masters Courses
FindA University Ltd Featured Masters Courses
"micro" AND "engineering"…×
0 miles

Masters Degrees (Micro Engineering)

  • "micro" AND "engineering" ×
  • clear all
Showing 1 to 15 of 123
Order by 
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s. Read more
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s.

Since then, our sustained programme of building complete satellites, performing mission planning, working with international launch agencies and providing in-orbit operations has kept us at the forefront of the space revolution –utilising new advances in technology to decrease the cost of space exploration.

PROGRAMME OVERVIEW

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Space Dynamics and Missions
-Space Systems Design
-Space Robotics and Autonomy
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Space Avionics
-Advanced Guidance, Navigation and Control
-Launch Vehicles and Propulsion
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Tissue Engineering and Regenerative Medicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Tissue Engineering and Regenerative Medicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche
- Mechanical characterisation of stem cells and tissues
- Production of novel scaffolds for tissue engineering
- Electrospinning of scaffold materials
- Cartilage repair and replacement
- Bone repair and replacement
- The application of nanotechnology to regenerative medicine
- Wound healing engineering
- Reproductive Immunobiology
- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank
- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.
- The incorporation of pulsed electromagnetic fields into wound dressings.
- The application of pulsed electromagnetic fields for improved wound healing.
- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.
- The control of bacterial adhesion at surfaces relevant to regenerative medicine.
- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Communications Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Communications Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As a student on the MSc in Communications Engineering, you will be provided with an in-depth understanding of the technology and architecture of computer communications, photonics and telecommunication networks, wireless telecommunications and related wireless information technologies.

Key Features of MSc in Communications Engineering

The practical knowledge and skills you will gain as a student on the MSc Communications Engineering course include being presented with the essential element of modern optical communication systems based on single mode optical fibres from the core to the access, evaluating bandwidth-rich contemporary approaches.

The MSc Communications Engineering course also covers advanced networking topics including network performance and network security. This is supported with some practical knowledge and skills for project and business management principles.

As a student on the MSc Communications Engineering course, you will also be introduced to technologies underlying the compressions and transmission of digital video over networking platforms, gain knowledge on the channel models and associated impairments that typically limit the performance of wireless systems, and learn to design optimum digital communication receivers for some basic communications channel models.

The MSc in Communications Engineering is modular in structure. Communications Engineering students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students on the Communications Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time MSc in Communications Engineering Delivery mode:

The part-time scheme is a version of the full-time equivalent MSc in Communications Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Communications Engineering programme are typically available one week prior to each semester.

Modules

Modules on the MSc Communications Engineering course can vary each year but you could expect to study:

RF and Microwave
Signals and Systems
Entrepreneurship for Engineers
Nanophotonics
Micro and Nano Electro-Mechnical Systems
Lasers and applications
Wireless Communications
Digital Communications
Optical Communications
Optical Networks
Communication Skills for Research Engineers
Research Dissertation
MSc Dissertation - Communications Engineering

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching which benefit students on the MSc in Communications Engineering course. In addition the University provides open access IT resources.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

This discipline has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students.

Careers

The MSc Communications Engineering is suitable for those who have a career interest in the field of communication systems, which has been fundamentally changing the whole world in virtually every aspect, and would like to gain lasting career skills and in-depth knowledge to carry out development projects and advanced research in the area of communication systems.

Communications Engineering graduates can seek employment in wireless communication systems and network administration, and mobile applications development.

Student Quotes

“I was fascinated by the natural beauty of Swansea before I came here. Swansea University is near the beach so you can walk around the beach at any time. This Master’s is very useful to enhance your ability and enrich your principle of the academic knowledge.”

Zhang Daping, MSc Communication Systems (now Communications Engineering)

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors
- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors
- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK
With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets. Read more
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets.

Why this programme

◾This exciting programme will enable you to benefit from the combined resources and complementary expertise of staff of two top ranking Scottish institutions, University of Glasgow and Glasgow School of Art.
◾Studio-based, student-centered learning based around design project activities. Students have access to state-of-the-art product design engineering prototyping and manufacturing processes in the PDE workshops at GSA and University of Glasgow.
◾There are increasing pressures, from both existing and emerging world marketplaces, for products which not only respond to the needs of function, user and society, but which can be brought to market ever more rapidly through state-of-the-art development and manufacturing processes. Industries which develop, manufacture and market today's products need high-caliber graduates equipped to handle these processes with management skill and creative drive, and this programme develops graduates with these skills.
◾The studio programme explores cultural, management, perceptual, process and psychological issues, offering a curriculum relevant to the needs of industry and an understanding of the role of the design engineer in society.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

You will attend lectures, seminars and tutorials and take part in lab, project, team and studio work, industrial visits, and workshops.

Core courses
◾Advanced manufacture
◾Core research skills for postgraduates
◾Human factors
◾Integrated engineering design
◾Micro-electronics in consumer products
◾Product design engineering introduction project
◾MSc project.

Optional courses
◾Instrumentation and data systems
◾Software engineering
◾The Glasgow School of Art elective (you will choose from a list of options).

Background/Aims

The MSc in Product Design Engineering aims to:
◾Offer each individual student the opportunity to critically develop his or her own work in the context of a rigorous but supportive intellectual climate;
◾Acquire key skills in the areas of user-centred design, product design, mechanical engineering, and electronic and electrical engineering;
◾Encourage students to identify and explore key contextual issues relevant to their practice;
◾Develop students' awareness and knowledge base in design philosophy, theory, practice and research in the context of innovative forms of design;
◾Enable students to achieve the highest possible standards in their work, so that graduates have the confidence, maturity and intellectual and interpersonal skills necessary to function successfully in the design engineering field;
◾Equip students with the highly developed intellectual, practical and interpersonal skills deemed necessary for their career.

Graduates destinations should expect to follow a similar pattern to our integrated masters programme which include Apple Computers (USA), BAESystems, Cambridge Consultants, Dyson, Hoover-Candy, JCB, Nokia, Philips, Polaroid, Schlumberger and Terex. Graduates could also establish their own companies.

Career prospects

Career opportunities include product research and development, system design, product manufacture and engineering design. The programme aims to provide opportunities to work on live projects with industry: this can lead to employment opportunities. Examples of companies that employ our Product Design Engineering graduates are Apple, DELL, Dyson, Jaguar-Land Rover, TomTom and Smart.

Accreditation

The MSc Product Design Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics. Read more
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are an electronics and electrical engineering graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline or physical science and you want to change field; looking for a well rounded postgraduate qualification in electronics and electrical engineering to enhance your career prospects, this programme is designed for you.
◾The MSc in Electronics and Electrical Engineering includes lectures on "Nanofabrication", "Micro- and Nanotechnology", "Optical Communications" and "Microwave and Millimetre Wave Circuit Design", "Analogue CMOS circuit design", VLSI Design and CAD", all research areas undertaken in the James Watt Nanofabrication Centre.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Electronics and Electrical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Courses include

(six normally chosen)
◾Bioelectronics
◾Computer communications
◾Control
◾Digital signal processing
◾Electrical energy systems
◾Energy conversion systems
◾Micro- and nano-technology
◾Microwave electronic and optoelectronic devices
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Power electronics and drives
◾Real-time embedded programming
◾VLSI design
◾MSc project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronics and Electrical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾This programme is aimed at training new graduates as well as more established engineers , covering a broad spectrum of specialist topics with immediate application to industrial problems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronics and Electrical Engineering include: Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, software development, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Read less
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Read more
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Graduates from related disciplines can embrace engineering continuous improvement, operations management and enterprise requirement planning (ERP) applications in engineering.

About the programme

In many engineering organisations ERP is the main software system application that controls and assists in the management of all functional departments and the whole facility, often globally. This unique programme has a UK and global appeal for career development and future plans are currently being developed to offer SAP ERP certification. It satisfies both the operations management and continuous improvement (CI) elements within engineering, and the application of ERP systems such as SAP and/or Oracle. Many companies use ERP within the supply chain including Terex, Tata Steels, RollsRoyce, Honeywell, Audi, and BMW.

This programme will develop the skills you need to interface with functional users, other than engineers, giving you an informed view for further configuration or customisation.

Your learning

Core topics include ERP, continuous improvement and operations management with options of Total Productive Maintenance (TPM), Project Management and modules with further planning and management of resources.

Our lecturers are seasoned industry experts, and we complement their knowledge with industry visits to determine the effectiveness of various applications.

MSc students undertake a dissertation, selecting a specialism to achieve a greater understanding of the implementation and advanced use of software applications, management initiatives and planning within an engineering setting. There may be scope to integrate this dissertation with industry, where an engineering supervisor will be allocated to assist your MSc journey and to advise and introduce you to industry links.

Our Careers Adviser says

Graduates are equipped for the next step in their career in manufacturing and service operations. Most business organisations that implement ERP solutions use fully-trained, qualified implementation partners and consultants throughout their lifecycle.

There is demand for graduates who have had some initial education and training and hands-on experience in ERP solutions such as SAP. Businesses, ERP solution providers, and consulting organisations require top calibre trained ERP consultants and users. UWS graduates who are trained in ERP and supporting materials will possess a unique skill-set that will be a differentiator when competing in the employment market.

Professional recognition

We will seek accreditation for this programme in the near future from the Institution of Engineering and Technology (IET).

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. Read more
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. The School offers an MRes programme in Electronic Engineering, with a variety of specialist areas of study available. Each programme is aligned to the research conducted within the School:

MRes Electronic Engineering Optoelectronics
MRes Electronic Engineering Optical Communications
MRes Electronic Engineering Organic Electronics
MRes Electronic Engineering Polymer Electronics
MRes Electronic Engineering Micromachining
MRes Electronic Engineering Nanotechnology
MRes Electronic Engineering VLSI Design
MRes Electronic Engineering Bio-Electronics

The MRes programme provides a dedicated route for high-calibre students who (may have a specific research aim in mind) are ready to carry out independent research leading to PhD level study or who are seeking a stand alone research based qualification suitable for a career in research with transferable skills for graduate employment.
It is the normal expectation that the independent research thesis (120 credits) should be of at a publishable standard in a high quality peer reviewed journal.
The MRes programme is a full-time one year course consisting of 60 taught credits at the beginning of the programme which lead on to the 120 credit thesis.
Each MRes shares the taught element of the course, after successful completion of the taught element students are then able to specialise in a specific subject for their thesis.
The taught provision has four distinct 15 credit modules that concentrate on specific generic skill.

Modelling and Design
Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Introduction to Nanotechnology and Microsystems
Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Project Planning
Focuses on the skills required to scope, plan, execute and report the
outcomes of a business and research project.

Mini Project
Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the substantive research project.
MRes Research Project: After the successful completions of the taught component of the programme, the major individual thesis will be undertaken within the world-leading research groups of the School.
Student Study Support
All students are assigned a designated supervisor, an academic member of staff who will provide formal supervision and support on a daily basis.
The School’s Director of Graduate Studies will ensure that the appropriate level of support and guidance is available for all postgraduate students, and each Course Director is available to help and advise their students as and when required.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. Read more
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. This research programme requires an understanding of biology, chemistry, physics, engineering, socio-economics and legislation to develop solutions for the sustainable provision of clean air, land and water for humankind.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on environmental civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

This research programme is ideal if you are enthusiastic about environmental engineering research. Our main research themes in environmental engineering are:
-Engineered biological systems
-Mining and metals in the environment
-Biochemical processes in contaminated water, soils and sediments
-Safe water and sanitation in developing countries

We offer MPhil and PhD supervision in the following research areas:
-Anaerobic digestion
-Manipulation of the fate of micro-pollutants
-Pollutant sequestration
-Bioremediation
-Risk assessment
-Sanitation and low-cost water supplies for developing countries
-Waste stabilisation ponds
-Constructed wetlands
-Minewater treatment
-Carbon neutral initiatives
-Geothermal energy

Our microbiological research has a strong emphasis on understanding and engineering biological processes using ecological theory, underpinned by exploration of molecular techniques, eg fluorescent in situ hybridisation, quantitative PCR, and denaturing gradient gel electrophoresis.

Delivery

We have extensive contacts in the UK and overseas to enable research to be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience. Professor Thomas Curtis and Professor David Graham, both Professors of Environmental Engineering, are a couple of our notable academic staff.

Read less
MSc. This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. Read more
MSc:

This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. The course provides essential knowledge both for electrical
engineers wanting to work within the renewable energy systems industry, and for engineers planning a research career in the field.

Students will develop:
advanced and comprehensive knowledge of the specialist
engineering skills required by an engineer working in this field
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
the technical knowledge and skills to equip them for a leading career in engineering for renewable and sustainable energy technologies, electrical engineering and power engineering
the ability to design, analyse and evaluate hardware and software aspects of renewable and energy efficient power systems
decision making powers in relation to the specification and solution of power electronics, power systems and electrical
engineering problems for appropriate renewable and sustainable energy technologies

Following the successful completion of the taught modules, an individual research project is undertaken during the summer term.

Previous research projects on this course have included:
the design of a DC-DC voltage convertor with maximum power tracking for a photovoltaic module
electrical modelling of a PEM fuel Cell
microprocessor based control of a wind turbine generator
optimisation of the operation of a renewable energy micro grid

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

PGDip:

The Postgraduate Diploma Electrical Engineering for Sustainable and Renewable Energy is designed to provide instruction and training in the most recent developments in the equipment and systems used to interface and control renewable and sustainable energy systems.

This knowledge is essential both for an engineer wanting to work in research and development in electrical engineering for renewable energy systems in industry. The course will give you an advanced and comprehensive coverage of the specialist engineering skills required by an engineer working in electrical technology for renewable and sustainable energy systems.

Key facts

Read less
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. Read more
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. It is also ideal for engineers holding a BEng degree that require a further learning element to qualify for Chartered Engineer registration.

About the programme

This programme is designed to deepen and widen your knowledge and understanding of mechanical engineering specialist topics. It offers a wide range of core modules that advances the core knowledge base of the disciplines and provides the necessary and continuing development of appropriate interpersonal and transferable skills at a level that a Mechanical Engineer would be expected to have, allowing you to function in an advanced engineering environment as senior engineers and managers. While the main focus of the programme is on taught modules, you will have the opportunity to explore a specific subject in more detail through the dissertation.

Your learning

The programme will be delivered by highly-qualified and experienced members of the School’s teaching staff through a combination of lectures, tutorials, practical classes, laboratories, case studies and specialist guest lectures. Assessment is principally by coursework assignments, laboratory investigations and examinations.

A key component of the programme is the research based dissertation. This will give you the opportunity to investigate a project in your chosen field of interest.

You will also be expected to present your work to internal staff and external industrialists as part of the learning and assessment process.

Core modules include:
- Advanced Structural Integrity
- Advanced Fluid Mechanics
- Computational Fluid Mechanics
- Advanced Finite Element Methods and Analysis
- Instrumentation and Measurement
- Advanced CAD/CAM
- Advanced Heat Transfer
- Composites Design and Analysis
- Project Management
- Research Methods.

Our Careers Adviser says

Our graduates will have developed expertise to improve their employability within design and development of the automotive, aerospace, offshore, oil and gas and all main stream mechanical engineering industry sectors.

It is expected that graduates will obtain professional employment with companies such as Rolls Royce, Howdens, Doosan Babcock, Babcock International, Spirit AeroSystems, BAE Systems, and Thales Optronics.

Professional recognition

The programme has been designed to satisfy the accreditation requirements of the Institution of Mechanical Engineers (IMechE) for CEng registration and we will be seeking this accreditation in the near future.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X