• University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Cambridge Featured Masters Courses
Durham University Featured Masters Courses
Swansea University Featured Masters Courses
"micro" AND "engineering"…×
0 miles

Masters Degrees (Micro Engineering)

We have 119 Masters Degrees (Micro Engineering)

  • "micro" AND "engineering" ×
  • clear all
Showing 1 to 15 of 119
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the MSc in Communications Engineering, you will be provided with an in-depth understanding of the technology and architecture of computer communications, photonics and telecommunication networks, wireless telecommunications and related wireless information technologies.

Key Features of MSc in Communications Engineering

The practical knowledge and skills you will gain as a student on the MSc Communications Engineering course include being presented with the essential element of modern optical communication systems based on single mode optical fibres from the core to the access, evaluating bandwidth-rich contemporary approaches.

The MSc Communications Engineering course also covers advanced networking topics including network performance and network security. This is supported with some practical knowledge and skills for project and business management principles.

As a student on the MSc Communications Engineering course, you will also be introduced to technologies underlying the compressions and transmission of digital video over networking platforms, gain knowledge on the channel models and associated impairments that typically limit the performance of wireless systems, and learn to design optimum digital communication receivers for some basic communications channel models.

The MSc in Communications Engineering is modular in structure. Communications Engineering students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students on the Communications Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time MSc in Communications Engineering Delivery mode:

The part-time scheme is a version of the full-time equivalent MSc in Communications Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Communications Engineering programme are typically available one week prior to each semester.

Modules

Modules on the MSc Communications Engineering course can vary each year but you could expect to study:

RF and Microwave

Signals and Systems

Entrepreneurship for Engineers

Nanophotonics

Micro and Nano Electro-Mechnical Systems

Lasers and applications

Wireless Communications

Digital Communications

Optical Communications

Optical Networks

Communication Skills for Research Engineers

Research Dissertation

MSc Dissertation - Communications Engineering

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching which benefit students on the MSc in Communications Engineering course. In addition the University provides open access IT resources.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

This discipline has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students.

Careers

The MSc Communications Engineering is suitable for those who have a career interest in the field of communication systems, which has been fundamentally changing the whole world in virtually every aspect, and would like to gain lasting career skills and in-depth knowledge to carry out development projects and advanced research in the area of communication systems.

Communications Engineering graduates can seek employment in wireless communication systems and network administration, and mobile applications development.

Student Quotes

“I was fascinated by the natural beauty of Swansea before I came here. Swansea University is near the beach so you can walk around the beach at any time. This Master’s is very useful to enhance your ability and enrich your principle of the academic knowledge.”

Zhang Daping, MSc Communication Systems (now Communications Engineering)

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors

- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors

- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Read more
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Graduates from related disciplines can embrace engineering continuous improvement, operations management and enterprise requirement planning (ERP) applications in engineering.

About the programme

In many engineering organisations ERP is the main software system application that controls and assists in the management of all functional departments and the whole facility, often globally. This unique programme has a UK and global appeal for career development and future plans are currently being developed to offer SAP ERP certification. It satisfies both the operations management and continuous improvement (CI) elements within engineering, and the application of ERP systems such as SAP and/or Oracle. Many companies use ERP within the supply chain including Terex, Tata Steels, RollsRoyce, Honeywell, Audi, and BMW.

This programme will develop the skills you need to interface with functional users, other than engineers, giving you an informed view for further configuration or customisation.

Your learning

Core topics include ERP, continuous improvement and operations management with options of Total Productive Maintenance (TPM), Project Management and modules with further planning and management of resources.

Our lecturers are seasoned industry experts, and we complement their knowledge with industry visits to determine the effectiveness of various applications.

MSc students undertake a dissertation, selecting a specialism to achieve a greater understanding of the implementation and advanced use of software applications, management initiatives and planning within an engineering setting. There may be scope to integrate this dissertation with industry, where an engineering supervisor will be allocated to assist your MSc journey and to advise and introduce you to industry links.

Our Careers Adviser says

Graduates are equipped for the next step in their career in manufacturing and service operations. Most business organisations that implement ERP solutions use fully-trained, qualified implementation partners and consultants throughout their lifecycle.

There is demand for graduates who have had some initial education and training and hands-on experience in ERP solutions such as SAP. Businesses, ERP solution providers, and consulting organisations require top calibre trained ERP consultants and users. UWS graduates who are trained in ERP and supporting materials will possess a unique skill-set that will be a differentiator when competing in the employment market.

Professional recognition

We will seek accreditation for this programme in the near future from the Institution of Engineering and Technology (IET).

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more

The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

  • Electronics and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017). It was also ranked 1st in Scotland in the Guardian and Complete University Rankings 2018.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
  • You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
  • You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
  • This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

  • Integrated systems design project

Optional courses (a choice of two)

  • Computer communications
  • Electrical energy systems
  • Micro- and nano-technology
  • Microwave and millimetre wave circuit design
  • Microwave electronic and optoelectronic devices
  • Optical communications
  • Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects. 

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:

Project Engineer at TOTAL

Schedule Officer at OSCO SDN BHD

Control and Automation Engineer at an oil and gas company.



Read less
The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets. Read more

The Masters in Product Design Engineering, taught in collaboration with the School of Design, Glasgow School of Art will develop your ability to design products with significant engineering content, address user needs, and optimise solutions for specific markets.

Why this programme

  • This exciting programme will enable you to benefit from the combined resources and complementary expertise of staff of two top ranking Scottish institutions, University of Glasgow and Glasgow School of Art.
  • Studio-based, student-centered learning based around design project activities. Students have access to state-of-the-art product design engineering prototyping and manufacturing processes in the PDE workshops at GSA and University of Glasgow.
  • There are increasing pressures, from both existing and emerging world marketplaces, for products which not only respond to the needs of function, user and society, but which can be brought to market ever more rapidly through state-of-the-art development and manufacturing processes. Industries which develop, manufacture and market today's products need high-caliber graduates equipped to handle these processes with management skill and creative drive, and this programme develops graduates with these skills.
  • The studio programme explores cultural, management, perceptual, process and psychological issues, offering a curriculum relevant to the needs of industry and an understanding of the role of the design engineer in society.
  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

You will attend lectures, seminars and tutorials and take part in lab, project, team and studio work, industrial visits, and workshops.

Core courses

  • Advanced manufacture
  • Core research skills for postgraduates
  • Human factors
  • Integrated engineering design
  • Micro-electronics in consumer products 
  • Product design engineering introduction project
  • MSc project.

Optional courses

  • Instrumentation and data systems
  • Software engineering
  • The Glasgow School of Art elective (you will choose from a list of options).

Career prospects

Career opportunities include product research and development, system design, product manufacture and engineering design. The programme aims to provide opportunities to work on live projects with industry: this can lead to employment opportunities. Examples of companies that employ our Product Design Engineering graduates are Apple, DELL, Dyson, Jaguar-Land Rover, TomTom and Smart.

Accreditation

The MSc Product Design Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. Read more
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. The School offers an MRes programme in Electronic Engineering, with a variety of specialist areas of study available. Each programme is aligned to the research conducted within the School:

MRes Electronic Engineering Optoelectronics
MRes Electronic Engineering Optical Communications
MRes Electronic Engineering Organic Electronics
MRes Electronic Engineering Polymer Electronics
MRes Electronic Engineering Micromachining
MRes Electronic Engineering Nanotechnology
MRes Electronic Engineering VLSI Design
MRes Electronic Engineering Bio-Electronics

The MRes programme provides a dedicated route for high-calibre students who (may have a specific research aim in mind) are ready to carry out independent research leading to PhD level study or who are seeking a stand alone research based qualification suitable for a career in research with transferable skills for graduate employment.
It is the normal expectation that the independent research thesis (120 credits) should be of at a publishable standard in a high quality peer reviewed journal.
The MRes programme is a full-time one year course consisting of 60 taught credits at the beginning of the programme which lead on to the 120 credit thesis.
Each MRes shares the taught element of the course, after successful completion of the taught element students are then able to specialise in a specific subject for their thesis.
The taught provision has four distinct 15 credit modules that concentrate on specific generic skill.

Modelling and Design
Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Introduction to Nanotechnology and Microsystems
Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Project Planning
Focuses on the skills required to scope, plan, execute and report the
outcomes of a business and research project.

Mini Project
Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the substantive research project.
MRes Research Project: After the successful completions of the taught component of the programme, the major individual thesis will be undertaken within the world-leading research groups of the School.
Student Study Support
All students are assigned a designated supervisor, an academic member of staff who will provide formal supervision and support on a daily basis.
The School’s Director of Graduate Studies will ensure that the appropriate level of support and guidance is available for all postgraduate students, and each Course Director is available to help and advise their students as and when required.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. Read more
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. This research programme requires an understanding of biology, chemistry, physics, engineering, socio-economics and legislation to develop solutions for the sustainable provision of clean air, land and water for humankind.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on environmental civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

This research programme is ideal if you are enthusiastic about environmental engineering research. Our main research themes in environmental engineering are:
-Engineered biological systems
-Mining and metals in the environment
-Biochemical processes in contaminated water, soils and sediments
-Safe water and sanitation in developing countries

We offer MPhil and PhD supervision in the following research areas:
-Anaerobic digestion
-Manipulation of the fate of micro-pollutants
-Pollutant sequestration
-Bioremediation
-Risk assessment
-Sanitation and low-cost water supplies for developing countries
-Waste stabilisation ponds
-Constructed wetlands
-Minewater treatment
-Carbon neutral initiatives
-Geothermal energy

Our microbiological research has a strong emphasis on understanding and engineering biological processes using ecological theory, underpinned by exploration of molecular techniques, eg fluorescent in situ hybridisation, quantitative PCR, and denaturing gradient gel electrophoresis.

Delivery

We have extensive contacts in the UK and overseas to enable research to be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience. Professor Thomas Curtis and Professor David Graham, both Professors of Environmental Engineering, are a couple of our notable academic staff.

Read less
MSc. This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. Read more
MSc:

This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. The course provides essential knowledge both for electrical
engineers wanting to work within the renewable energy systems industry, and for engineers planning a research career in the field.

Students will develop:
advanced and comprehensive knowledge of the specialist
engineering skills required by an engineer working in this field
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
the technical knowledge and skills to equip them for a leading career in engineering for renewable and sustainable energy technologies, electrical engineering and power engineering
the ability to design, analyse and evaluate hardware and software aspects of renewable and energy efficient power systems
decision making powers in relation to the specification and solution of power electronics, power systems and electrical
engineering problems for appropriate renewable and sustainable energy technologies

Following the successful completion of the taught modules, an individual research project is undertaken during the summer term.

Previous research projects on this course have included:
the design of a DC-DC voltage convertor with maximum power tracking for a photovoltaic module
electrical modelling of a PEM fuel Cell
microprocessor based control of a wind turbine generator
optimisation of the operation of a renewable energy micro grid

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

PGDip:

The Postgraduate Diploma Electrical Engineering for Sustainable and Renewable Energy is designed to provide instruction and training in the most recent developments in the equipment and systems used to interface and control renewable and sustainable energy systems.

This knowledge is essential both for an engineer wanting to work in research and development in electrical engineering for renewable energy systems in industry. The course will give you an advanced and comprehensive coverage of the specialist engineering skills required by an engineer working in electrical technology for renewable and sustainable energy systems.

Key facts

Read less
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. Read more
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. It is also ideal for engineers holding a BEng degree that require a further learning element to qualify for Chartered Engineer registration.

About the programme

This programme is designed to deepen and widen your knowledge and understanding of mechanical engineering specialist topics. It offers a wide range of core modules that advances the core knowledge base of the disciplines and provides the necessary and continuing development of appropriate interpersonal and transferable skills at a level that a Mechanical Engineer would be expected to have, allowing you to function in an advanced engineering environment as senior engineers and managers. While the main focus of the programme is on taught modules, you will have the opportunity to explore a specific subject in more detail through the dissertation.

Your learning

The programme will be delivered by highly-qualified and experienced members of the School’s teaching staff through a combination of lectures, tutorials, practical classes, laboratories, case studies and specialist guest lectures. Assessment is principally by coursework assignments, laboratory investigations and examinations.

A key component of the programme is the research based dissertation. This will give you the opportunity to investigate a project in your chosen field of interest.

You will also be expected to present your work to internal staff and external industrialists as part of the learning and assessment process.

Core modules include:
- Advanced Structural Integrity
- Advanced Fluid Mechanics
- Computational Fluid Mechanics
- Advanced Finite Element Methods and Analysis
- Instrumentation and Measurement
- Advanced CAD/CAM
- Advanced Heat Transfer
- Composites Design and Analysis
- Project Management
- Research Methods.

Our Careers Adviser says

Our graduates will have developed expertise to improve their employability within design and development of the automotive, aerospace, offshore, oil and gas and all main stream mechanical engineering industry sectors.

It is expected that graduates will obtain professional employment with companies such as Rolls Royce, Howdens, Doosan Babcock, Babcock International, Spirit AeroSystems, BAE Systems, and Thales Optronics.

Professional recognition

The programme has been designed to satisfy the accreditation requirements of the Institution of Mechanical Engineers (IMechE) for CEng registration and we will be seeking this accreditation in the near future.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
This technical Masters programme is aimed at engineering graduates aspiring to responsible positions within consulting and contracting organisations, and is also for engineers who require the additional learning that addresses current Joint Board of Moderators (JBM) requirements for candidates to obtain chartered engineer status. Read more
This technical Masters programme is aimed at engineering graduates aspiring to responsible positions within consulting and contracting organisations, and is also for engineers who require the additional learning that addresses current Joint Board of Moderators (JBM) requirements for candidates to obtain chartered engineer status. Graduates from related disciplines can embrace further technical training that includes structural, geotechnical, materials engineering with project design and management at a level that prepares them well for senior positions within their areas of expertise.

About the programme

This programme has a UK and global appeal for career development and future plans are currently being developed to offer students the requisite skills to become CEng qualified through the Joint Board of Moderators. It satisfies the technical and managerial expectations required by civil engineering employers as the programme will develop the skills needed to interface with functional users, other than engineers, giving you a more holistic view of the processes behind successfully delivering a civil engineering project.

Your learning

Transferable and key skills are delivered throughout the programme through online material, specialist lectures, site visits, laboratory work, integrated project work and interaction with experienced professionals. Teaching staff are all experienced within industry and academia. Assessment is principally from coursework assignments, examinations and a research dissertation. You will also be expected to present your design work to internal staff and external industrialists as part of the learning and assessment process.

Our Careers Adviser says

Graduate employment may be found in both public or private sectors within civil engineering and other built environment disciplines such as transportation or public health dealing with many key activities such as construction, design, infrastructure, sustainability, environmental and transportation impacts and project management.

Professional recognition

We will seek accreditation for this programme as a technical MSc in the near future from the JBM.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less

Show 10 15 30 per page



Cookie Policy    X