• University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
University of Nottingham in China Featured Masters Courses
OCAD University Featured Masters Courses
University of Reading Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
"metallurgy"×
0 miles

Masters Degrees (Metallurgy)

We have 51 Masters Degrees (Metallurgy)

  • "metallurgy" ×
  • clear all
Showing 1 to 15 of 51
Order by 
Studying a PhD / MSc by Research at the University of Birmingham offers you a wealth of opportunities to expand and transform your thinking through independent inquiry. Read more
Studying a PhD / MSc by Research at the University of Birmingham offers you a wealth of opportunities to expand and transform your thinking through independent inquiry. By undertaking an intensive research project, backed by intellectual and scientific knowledge, you will be joining a vibrant and proactive research environment. All doctoral researchers are brought together by the University Graduate School, providing an abundance of opportunities to meet fellow researchers.

Metallurgical studies date back at Birmingham to 1881, but the School of Metallurgy and Materials continues to advance materials research and discovery. The School (including the IRC in Materials Processing) has more than 25 full-time academic staff and in addition to 40 honorary staff, up to 15 visiting staff, 65 research staff and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry, giving a total income of around £4 million per annum.

Research focuses on active collaboration with industrial partners across four main themes: Alloy Processing, Characterisation and Modelling, Engineering Properties of Materials and Functional Materials Processing.

MSc by Research:

Our MSc by Research programme is a one-year programme open to those with an upper second-class Honours degree in science or engineering. Competion of a Metallurgy and Materials MSc by Research consists of undertaking an extensive period of advanced research under the supervision and guidance of one or more experienced members of staff. To be awarded, you must complete an original work of merit in the form of a 30,000-word thesis.

Learning and Teaching:

Every doctoral researcher is assigned two academic supervisors as well as a mentor. Meetings with your supervisors take place typically every week or few weeks, depending on your need for support and the stage you are at in your research. Most PhD projects have industrial involvement, sometimes with formal industrial supervisory input. This provides you with useful experience of industry and adds a different perspective to your research.

Within the School, supports will be offered to train new students to use the equipment needed in research project. We also regularly run some specialised courses for doctoral researchers, such as the electron microscopy course, doctoral research induction course and courses to offer you guidance on how to write the report which you will need to submit during your first year.

To support you acquiring extra skills to advance your academic, personal and professional development a development needs analysis is undertaken. Throughout your research programme we keep track of your progress and invite you to reflect on your own academic and personal development, helping to offer you new directions in your research area. Normally, routine progress reviews are collaboratively completed by doctoral researchers and their supervisors, but for some PhD projects presentations with links to industry presentations may be required. There are more formal annual progress reviews, particularly at the end of the first and second years.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists. Read more
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists.

It will provide you with a knowledge and understanding of the core areas of mineral processing and extractive metallurgy.

As a graduate, you could obtain employment in the extractive metallurgy sector of mining and chemical companies or further your career within the minerals industry.

Career opportunities

Graduates can obtain employment in the extractive metallurgy sector of mining and chemical companies, or further their careers within the minerals industry.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Notes

A number of units include an on-campus laboratory requirement in Kalgoorlie. You will need to meet all travel and accommodation expenses incurred in meeting this requirement.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
This course is designed to meet the needs of professional metallurgists with an undergraduate qualification in this field. It will help you develop specialist knowledge and skills in extractive metallurgy and provide you with the knowledge and qualifications required to further your career in the minerals industry. Read more
This course is designed to meet the needs of professional metallurgists with an undergraduate qualification in this field. It will help you develop specialist knowledge and skills in extractive metallurgy and provide you with the knowledge and qualifications required to further your career in the minerals industry.

You will choose from a range of higher level coursework units to complement your educational background and career aspirations. You will also undertake project work which may involve research, field and laboratory work and you will complete a written report and/or dissertation on your findings.

Please note that this course includes three units that require you to attend laboratory sessions, totalling two or three days per semester, at the Kalgoorlie campus.

Career opportunities

Careers for extractive metallurgy specialists include in-house specialists in mining and chemical companies, consultants, academics and researchers.

Credit for previous study

Applications for credit for recognised learning (CRL) are assessed on an individual basis. If you hold a Curtin Graduate Diploma in Metallurgy or Bachelor of Engineering (Minerals Engineering), or equivalent, you can be granted up to 100 points of CRL. Other qualifications and/or experience may be considered in your application.

Notes

The equivalent of one semester's worth of units may be taken from other universities such as the University of Queensland, towards this degree with the approval of the course coordinator.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
First established in the early 1950s, the MMet course has produced over 700 graduates, with many now working in senior positions within metallurgical companies across the globe. Read more

About the course

First established in the early 1950s, the MMet course has produced over 700 graduates, with many now working in senior positions within metallurgical companies across the globe.

You’ll receive an in-depth and up-to-date understanding of current developments in metallurgy and metallurgical engineering. You’ll learn the fundamentals of thermodynamics, structure and mechanical behaviour. As well as the option to study the more advanced courses on engineering alloys, processing, modelling and performance in service.

Fully accredited by the IoM3 graduates will have the underpinning knowledge for later professional registration as a Chartered Engineer (CEng).

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Metals; Metallurgical Processing; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials with Application; Advanced Materials Manufacturing; Deformation, Fracture and Fatigue; Research Project in an area of your choice.

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more

Overview

This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

The main aims of the programme are:
- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Learning Outcomes

By the end of the programme, students will have:
- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

Teaching

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

- Feedback
Students can expect a formal discussion with their supervisor, and a written report (via the University's on-line system) on their progress, at least once a term. Written feedback will be provided on drafts of the dissertation.

Assessment

- Thesis
Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Course detail

The main aims of the programme are:

- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

Assessment

Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
Materials underpin almost all industrial sectors and the global challenges have increased the demand for new materials. Accordingly, there is a growing demand for materials engineers and researchers worldwide and in rapidly developing countries in particular. Read more
Materials underpin almost all industrial sectors and the global challenges have increased the demand for new materials. Accordingly, there is a growing demand for materials engineers and researchers worldwide and in rapidly developing countries in particular. The School of Metallurgy and Materials has long been a centre of excellence in materials research and education.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as the Team Skills Development module undertaken in a residential environment to facilitate the development of the team ethos and interpersonal skills.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year. The project report (which should be a maximum of 8,000 words in length) will be internally assessed by two academic staff.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Read more
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry. Our research income is around ?4 million per annum.

Most of our research projects involve active collaboration with industrial partners.

This EPSRC-sponsored programme can be taken on a full- or part-time basis. The programme comprises a major research project, which can be based in the University or in industry, and six taught modules, four compulsory and two optional.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Department of Materials Engineering offers opportunities for study in the following fields. Read more

Program Overview

The Department of Materials Engineering offers opportunities for study in the following fields: casting and solidification of metals; ceramic processing and properties; refractories; corrosion; composites; high temperature coatings; biomaterials; extractive metallurgy including hydrometallurgy, bio-hydrometallurgy, electrometallurgy, and pyrometallurgy; physical metallurgy; thermo-mechanical processing related to materials production; environmental issues related to materials productions; electronic materials; nanofibers; textile structural composites.

Materials Engineers are experts on the entire life cycle of materials, including recovery of materials from minerals, making engineered materials, manufacturing materials into products, understanding and evaluating materials performance, proper disposal and recycling of materials, and evaluating societal and economic benefits.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Materials Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Registration options: Full-time
- Faculty: Faculty of Applied Science

Research focus

Composites, Microstructure Engineering, Extractive Metallurgy, Solidification, Biomaterials & Ceramics

Research highlights

In our research, we work closely with industry partners internationally. We have faculty with world-renowned expertise in hydrometallurgy, sustainability, nanomaterials, biomaterials and ceramics. Recent research developments in the department are helping to reduce environmental impact in the mining industry and enabling new possibilities in medical treatments. We also have a leading role in MagNet, an initiative that aims to achieve significant reductions in carbon dioxide emissions in the transportation sector. We have a long history of providing excellence in education and offer one of the top-rated materials programs in North America. Graduates of our program are enjoying rewarding careers locally and internationally in a wide range of industries from mining to advanced electronics, health care and aerospace.

Related Study Areas

Biomaterials, Ceramics, Composites, Hydrometallurgy, Microstructure Engineering, Corrosion

Facilities

Research is carried out in both the Frank Forward Building and the Brimacombe Building (AMPEL) on UBC campus.

Read less
What is the Master of Welding Engineering all about?. The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. Read more

What is the Master of Welding Engineering all about?

The Advanced Master is the ideal stepping-stone to a high-level job in the field of welding and joining technology. In many countries, there is a permanent and growing demand for scientists and engineers who are knowledgeable and trained at an academic level in the field of welding engineering.

The programme is indispensable (and obligatory) for engineers seeking to work as Responsible Welding Coordinators. Engineers interested in R&D, quality, design, production, maintenance and particularly welding metallurgy will also find the programme instructive.

Structure

4 Clusters in the programme:

  • Welding processes and equipment
  • Materials and their behaviour during welding
  • Construction and design
  • Fabrication, applications engineering

Degrees and certifications

Upon successful completion of the entire programme (60 ECTS), you will be awarded the degree of MSc in Welding Engineering

Upon successful completion of the course (40 ECTS), you gain access to the International Institute of Welding oral examination. A passing score results in IIW accreditation as a certified International Welding Engineer (IWE) and European Welding Engineer (EWE).

Technology Campus De Nayer, Authorised Training Body

The green KU Leuven Technology Campus De Nayer, near Mechelen, is certified as an Authorised Training Body for International Welding Engineering by the Belgian Welding Association (BVL), which represents the International Institute of Welding (IIW).

Objectives

This advanced master's programme strives to offer students a complete training in the professional niche of Welding Engineering. The programme has the following goals:

  • Guaranteeing a complete accordance with the minimal requirements of the International Institute of Welding as described in its IIW Guideline in document IAB 252r2-14 "Minimum Requirements for the Education, Examination and Qualification for Personnel with Responsibility for Welding Coordination";
  • Provide broad and in-depth knowledge and skills of all kinds of courses related to welding necessary for a welding engineer to function in the current social and economic context. These courses include welding processes, materials science, metallurgy of high and low alloy steels, non-ferrous materials, metallurgy of compounds of heterogenous materials, the prevention of corrosion and abrasion, construction codes, welding standards, design exercises, quality control, production and manufacturing techniques.

To this end, students must acquire sufficient knowledge, skills and abilities in order to:

  • Work as a qualified welding engineer with a sufficient scientific background in welding (i.e. materials science, corrosion and protection, welding processes, standards and codes, quality, workshop lay-outing) to tackle welding-related problems individually or as part of a team.
  • Be well acquainted with legal aspects, business economics, professional ethics and safety.
  • Obtain a professional attitude that demonstrates a clear volition towards technological innovation, creativity and lifelong learning.
  • Use available information sources in a fast and efficient manner (scientific databases, patent databases, norms and codes).

Career Options

This programme opens up a wide spectrum of professional possibilities and exposes you to an extremely varied field of action: petrochemistry, the aviation and aero-space industry, civil construction, assembly plants, the nuclear sector, shipping and logistics, general construction, and more. As a welding engineer, you will carry out a wide range of duties, including research, design, production, maintenance, sales and quality inspection. 

Our graduates find employment in local SMEs, large multinational industrial companies as well as private and public organisations at home and abroad. There is a real need for experts with the capability to conduct research, carry out quality control analyses, and perform inspections, monitoring and certification in the broad field of welding. Some graduates start a career as independent consultants. 



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The Department of Materials Engineering offers opportunities for study in the following fields. Read more

Program Overview

The Department of Materials Engineering offers opportunities for study in the following fields: casting and solidification of metals; ceramic processing and properties; refractories; corrosion; composites; high temperature coatings; biomaterials; extractive metallurgy including hydrometallurgy, bio-hydrometallurgy, electrometallurgy, and pyrometallurgy; physical metallurgy; thermo-mechanical processing related to materials production; environmental issues related to materials productions; electronic materials; nanofibers; textile structural composites.

Materials Engineers are experts on the entire life cycle of materials, including recovery of materials from minerals, making engineered materials, manufacturing materials into products, understanding and evaluating materials performance, proper disposal and recycling of materials, and evaluating societal and economic benefits.

Quick Facts

- Degree: Master of Science
- Specialization: Materials Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Applied Science

Read less
Offered as part of the. Continuing Professional Development. (CPD) programme. Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials. Read more

Offered as part of the Continuing Professional Development (CPD) programme.

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

Programme structure

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

  • To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
  • To address issues of sustainability such as degradation and recycling
  • To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
  • To enable students to prepare, plan, execute and report an original piece of research
  • To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The different major classes of advanced materials
  • Routes for manufacturing and processing of advanced materials
  • Characterisation techniques for analysing bonding and microstructure
  • Mechanical, chemical and physical properties of advanced materials
  • Processing -microstructure - property relationships of advanced materials
  • Material selection and use
  • Appropriate mathematical methods

Intellectual / cognitive skills

  • Reason systematically about the behaviour of materials
  • Select materials for an application
  • Predict material properties
  • Understand mathematical relationships relating to material properties
  • Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills

  • Research information to develop ideas and understanding
  • Develop an understanding of, and competence, in using laboratory equipment and instrumentation
  • Apply mathematical methods, as appropriate

Key / transferable skills

  • Use the scientific process to reason through to a sound conclusion
  • Write clear reports
  • Communicate ideas clearly and in an appropriate format
  • Design and carry out experimental work

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Read more
The MSc in Corrosion Control Engineering provides you with a thorough training in corrosion and its control. Initially, you will study the fundamental chemistry, physics, and metallurgy underpinning corrosion processes. Subsequently, you will learn about approaches to corrosion control, ranging from material selection, through cathodic protection, to corrosion inhibition and protective coatings. Finally, you will cover industrial scenarios where knowledge of corrosion and its control is paramount, e.g. oil production. This MSc is the ideal preparation for a career either in industry as a corrosion scientist or engineer, or for cutting-edge academic research.

Aims of the course:
-To produce competent, professionally qualified graduates who are appropriately trained and will secure immediate, rewarding and useful employment in UK, European or overseas industries as corrosion scientists or engineers.
-To provide conversion training, which is intellectually challenging, as well as being industrially relevant.
-To satisfy the needs of practising engineers, scientists and technologists wishing to develop professional competence in the areas of corrosion and corrosion control methods.

Special features

Embarking upon the Corrosion Control Engineering MSc gives you direct access to the knowledge, skills and expertise of 10 leading academics in the field of corrosion. They will teach you the fundamentals of corrosion, and provide you with insight into cutting-edge corrosion engineering problems and solutions in their specialist fields. Latterly, you will work more closely with one of these academics, becoming an active member of their research group during your dissertation project. Further to the teaching by academics, eminent guest speakers from industry are a key feature of the course, delivering invaluable first-hand practical knowledge and case studies.

Coursework and assessment

Unit 1 is assessed by an in-sessional exam at the end of the Unit. Units 2-6 are examined by both exam (75%) and coursework (25%). The nature of the coursework differs from Unit to Unit, but is largely a mix of laboratory reports and case studies. As regards the research project, the mark for this section of the course is based upon the independent assessment of two academics.

Career opportunities

Opportunities for our graduates are wide ranging, with the majority of graduates going on to fill key posts as corrosion scientists, engineers, managers, and consultants in industry, or proceeding towards a career in academia. Our graduates are highly sought after and employed across a diverse range of sectors such as oil and gas, nuclear, energy production, and manufacturing. Leading industrial players target our students, with many going on to develop their careers in world renowned companies, e.g. Shell, Rolls Royce, Tata Steel, and BP.

Accrediting organisations

The MSc in Corrosion Control Engineering is accredited by the Institute of Materials Minerals and Mining (IoM3).

Read less

Show 10 15 30 per page



Cookie Policy    X