• University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Kent Featured Masters Courses
Swansea University Featured Masters Courses
"metallurgy"×
0 miles

Masters Degrees (Metallurgy)

  • "metallurgy" ×
  • clear all
Showing 1 to 15 of 53
Order by 
Studying a PhD / MSc by Research at the University of Birmingham offers you a wealth of opportunities to expand and transform your thinking through independent inquiry. Read more
Studying a PhD / MSc by Research at the University of Birmingham offers you a wealth of opportunities to expand and transform your thinking through independent inquiry. By undertaking an intensive research project, backed by intellectual and scientific knowledge, you will be joining a vibrant and proactive research environment. All doctoral researchers are brought together by the University Graduate School, providing an abundance of opportunities to meet fellow researchers.

Metallurgical studies date back at Birmingham to 1881, but the School of Metallurgy and Materials continues to advance materials research and discovery. The School (including the IRC in Materials Processing) has more than 25 full-time academic staff and in addition to 40 honorary staff, up to 15 visiting staff, 65 research staff and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry, giving a total income of around £4 million per annum.

Research focuses on active collaboration with industrial partners across four main themes: Alloy Processing, Characterisation and Modelling, Engineering Properties of Materials and Functional Materials Processing.

MSc by Research:

Our MSc by Research programme is a one-year programme open to those with an upper second-class Honours degree in science or engineering. Competion of a Metallurgy and Materials MSc by Research consists of undertaking an extensive period of advanced research under the supervision and guidance of one or more experienced members of staff. To be awarded, you must complete an original work of merit in the form of a 30,000-word thesis.

Learning and Teaching:

Every doctoral researcher is assigned two academic supervisors as well as a mentor. Meetings with your supervisors take place typically every week or few weeks, depending on your need for support and the stage you are at in your research. Most PhD projects have industrial involvement, sometimes with formal industrial supervisory input. This provides you with useful experience of industry and adds a different perspective to your research.

Within the School, supports will be offered to train new students to use the equipment needed in research project. We also regularly run some specialised courses for doctoral researchers, such as the electron microscopy course, doctoral research induction course and courses to offer you guidance on how to write the report which you will need to submit during your first year.

To support you acquiring extra skills to advance your academic, personal and professional development a development needs analysis is undertaken. Throughout your research programme we keep track of your progress and invite you to reflect on your own academic and personal development, helping to offer you new directions in your research area. Normally, routine progress reviews are collaboratively completed by doctoral researchers and their supervisors, but for some PhD projects presentations with links to industry presentations may be required. There are more formal annual progress reviews, particularly at the end of the first and second years.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists. Read more
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists.

It will provide you with a knowledge and understanding of the core areas of mineral processing and extractive metallurgy.

As a graduate, you could obtain employment in the extractive metallurgy sector of mining and chemical companies or further your career within the minerals industry.

Career opportunities

Graduates can obtain employment in the extractive metallurgy sector of mining and chemical companies, or further their careers within the minerals industry.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Notes

A number of units include an on-campus laboratory requirement in Kalgoorlie. You will need to meet all travel and accommodation expenses incurred in meeting this requirement.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
This course is designed to meet the needs of professional metallurgists with an undergraduate qualification in this field. It will help you develop specialist knowledge and skills in extractive metallurgy and provide you with the knowledge and qualifications required to further your career in the minerals industry. Read more
This course is designed to meet the needs of professional metallurgists with an undergraduate qualification in this field. It will help you develop specialist knowledge and skills in extractive metallurgy and provide you with the knowledge and qualifications required to further your career in the minerals industry.

You will choose from a range of higher level coursework units to complement your educational background and career aspirations. You will also undertake project work which may involve research, field and laboratory work and you will complete a written report and/or dissertation on your findings.

Please note that this course includes three units that require you to attend laboratory sessions, totalling two or three days per semester, at the Kalgoorlie campus.

Career opportunities

Careers for extractive metallurgy specialists include in-house specialists in mining and chemical companies, consultants, academics and researchers.

Credit for previous study

Applications for credit for recognised learning (CRL) are assessed on an individual basis. If you hold a Curtin Graduate Diploma in Metallurgy or Bachelor of Engineering (Minerals Engineering), or equivalent, you can be granted up to 100 points of CRL. Other qualifications and/or experience may be considered in your application.

Notes

The equivalent of one semester's worth of units may be taken from other universities such as the University of Queensland, towards this degree with the approval of the course coordinator.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
First established in the early 1950s, the MMet course has produced over 700 graduates, with many now working in senior positions within metallurgical companies across the globe. Read more

About the course

First established in the early 1950s, the MMet course has produced over 700 graduates, with many now working in senior positions within metallurgical companies across the globe.

You’ll receive an in-depth and up-to-date understanding of current developments in metallurgy and metallurgical engineering. You’ll learn the fundamentals of thermodynamics, structure and mechanical behaviour. As well as the option to study the more advanced courses on engineering alloys, processing, modelling and performance in service.

Fully accredited by the IoM3 graduates will have the underpinning knowledge for later professional registration as a Chartered Engineer (CEng).

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Metals; Metallurgical Processing; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials with Application; Advanced Materials Manufacturing; Deformation, Fracture and Fatigue; Research Project in an area of your choice.

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more

Overview

This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

The main aims of the programme are:
- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Learning Outcomes

By the end of the programme, students will have:
- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

Teaching

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

- Feedback
Students can expect a formal discussion with their supervisor, and a written report (via the University's on-line system) on their progress, at least once a term. Written feedback will be provided on drafts of the dissertation.

Assessment

- Thesis
Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Course detail

The main aims of the programme are:

- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

Assessment

Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
“New sustainable energy technologies invariably depend on advances in the application of Materials Science. These technologies will play a vital role in reducing green house gas emissions and in conserving vital raw materials.”. Read more
“New sustainable energy technologies invariably depend on advances in the application of Materials Science. These technologies will play a vital role in reducing green house gas emissions and in conserving vital raw materials.”
Professor Rex Harris FREng, Metallurgy and Materials

The University of Birmingham has been active in energy research for more than a century, with more than 100 academics currently active in this area. We are a partner in the Midlands Energy Consortium, with the University of Nottingham and Loughborough University.

Metallurgy and Materials is one of the largest centres for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students. Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. The School has particularly active R&D activities in: hydrogen energy materials & systems, hard magnetic materials, and functional materials for energy applications.

This EPSRC-sponsored programme can be taken on a full- or part-time basis. The programme comprises one major research project in Materials for Sustainable Energy Technologies, which can be based in the University or in industry, plus six taught modules, five compulsory and one optional.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Materials underpin almost all industrial sectors and the global challenges have increased the demand for new materials. Accordingly, there is a growing demand for materials engineers and researchers worldwide and in rapidly developing countries in particular. Read more
Materials underpin almost all industrial sectors and the global challenges have increased the demand for new materials. Accordingly, there is a growing demand for materials engineers and researchers worldwide and in rapidly developing countries in particular. The School of Metallurgy and Materials has long been a centre of excellence in materials research and education.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as the Team Skills Development module undertaken in a residential environment to facilitate the development of the team ethos and interpersonal skills.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year. The project report (which should be a maximum of 8,000 words in length) will be internally assessed by two academic staff.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Read more
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry. Our research income is around ?4 million per annum.

Most of our research projects involve active collaboration with industrial partners.

This EPSRC-sponsored programme can be taken on a full- or part-time basis. The programme comprises a major research project, which can be based in the University or in industry, and six taught modules, four compulsory and two optional.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Read more
Metallurgy and Materials and the IRC in Materials Processing together make up the largest centre for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students.

Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. Research is funded from a wide range of sources including the UK research councils, the EU and a cross-section of UK and overseas industry. Our research income is around ?4 million per annum.

Most of our research projects involve active collaboration with industrial partners.

This programme comprises one major research project in Biomaterials, which can be based in the University or in industry, plus six taught modules, five compulsory and one optional. It is open to those with an upper second-class Honours degree in Science, Health Science or Engineering, and can be taken on a full- or part-time basis.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Department of Materials Engineering offers opportunities for study in the following fields. Read more

Program Overview

The Department of Materials Engineering offers opportunities for study in the following fields: casting and solidification of metals; ceramic processing and properties; refractories; corrosion; composites; high temperature coatings; biomaterials; extractive metallurgy including hydrometallurgy, bio-hydrometallurgy, electrometallurgy, and pyrometallurgy; physical metallurgy; thermo-mechanical processing related to materials production; environmental issues related to materials productions; electronic materials; nanofibers; textile structural composites.

Materials Engineers are experts on the entire life cycle of materials, including recovery of materials from minerals, making engineered materials, manufacturing materials into products, understanding and evaluating materials performance, proper disposal and recycling of materials, and evaluating societal and economic benefits.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Materials Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Registration options: Full-time
- Faculty: Faculty of Applied Science

Research focus

Composites, Microstructure Engineering, Extractive Metallurgy, Solidification, Biomaterials & Ceramics

Research highlights

In our research, we work closely with industry partners internationally. We have faculty with world-renowned expertise in hydrometallurgy, sustainability, nanomaterials, biomaterials and ceramics. Recent research developments in the department are helping to reduce environmental impact in the mining industry and enabling new possibilities in medical treatments. We also have a leading role in MagNet, an initiative that aims to achieve significant reductions in carbon dioxide emissions in the transportation sector. We have a long history of providing excellence in education and offer one of the top-rated materials programs in North America. Graduates of our program are enjoying rewarding careers locally and internationally in a wide range of industries from mining to advanced electronics, health care and aerospace.

Related Study Areas

Biomaterials, Ceramics, Composites, Hydrometallurgy, Microstructure Engineering, Corrosion

Facilities

Research is carried out in both the Frank Forward Building and the Brimacombe Building (AMPEL) on UBC campus.

Read less
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering. Visit the website http://mte.eng.ua.edu/graduate/ms-program/. Read more
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering.

Visit the website http://mte.eng.ua.edu/graduate/ms-program/

The program options include coursework only or by a combination of coursework and approved thesis work. Most on-campus students supported on assistantships are expected to complete an approved thesis on a research topic.

Plan I is the standard master’s degree plan. However, in exceptional cases, a student who has the approval of his or her supervisory committee may follow Plan II. A student who believes there are valid reasons for using Plan II must submit a written request detailing these reasons to the department head no later than midterm of the first semester in residence.

All graduate students, during the first part and the last part of their programs, will be required to satisfactorily complete MTE 595/MTE 596. This hour of required credit is in addition to the other degree requirements.

Course Descriptions

MTE 519 Principles of Casting and Solidification Processing. Three hours.
Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, and defects, and the use of analytical and computational tools for the design, understanding, and use of solidification processes.

MTE 520 Simulation of Casting Processes Three hours.
This course will cover the rationale and approach of numerical simulation techniques, casting simulation and casting process design, and specifically the prediction of solidification, mold filling, microstructure, shrinkage, microporosity, distortion and hot tearing. Students will learn casting simulation through lectures and hands-on laboratory/tutorial sessions.

MTE 539 Metallurgy of Welding. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.

MTE 542 Magnetic Recording Media. Three hours.
Prerequisite: MTE 271.
Basic ferromagnetism, preparation and properties of magnetic recording materials, magnetic particles, thin magnetic films, soft and hard film media, multilayered magnetoresistive media, and magneto-optical disk media.

MTE 546 Macroscopic Transport in Materials Processing. Three hours.
Prerequisite: MTE 353 or permission of the instructor.
Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.

MTE 547 Intro to Comp Mat. Science Three hours.
This course introduces computational techniques for simulating materials. It covers principles of quantum and statistical mechanics, modeling strategies and formulation of various aspects of materials structure, and solution techniques with particular reference to Monte Carlo and Molecular Dynamic methods.

MTE 549 Powder Metallurgy. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Describing the various types of powder processing and how these affect properties of the components made. Current issues in the subject area from high-production to nanomaterials will be discussed.

MTE 550 Plasma Processing of Thin Films: Basics and Applications. Three hours.
Prerequisite: By permission of instructor.
Fundamental physics and materials science of plasma processes for thin film deposition and etch are covered. Topics include evaporation, sputtering (special emphasis), ion beam deposition, chemical vapor deposition, and reactive ion etching. Applications to semiconductor devices, displays, and data storage are discussed.

MTE 556 Advanced Mechanical Behavior of Materials I: Strengthening Methods in Solids. Three hours. Same as AEM 556.
Prerequisite: MTE 455 or permission of the instructor.
Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.

MTE 562 Metallurgical Thermodynamics. Three hours.
Prerequisite: MTE 362 or permission of instructor.
Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.

MTE 574 Phase Transformation in Solids. Three hours.
Prerequisites: MTE 373 and or permission of the instructor.
Topics include applied thermodynamics, nucleation theory, diffusional growth, and precipitation.

MTE 579 Advanced Physical Metallurgy. Three hours.
Prerequisite: Permission of the instructor.
Graduate-level treatments of the fundamentals of symmetry, crystallography, crystal structures, defects in crystals (including dislocation theory), and atomic diffusion.

MTE 583 Advanced Structure of Metals. Three hours.
Prerequisite: Permission of the instructor.
The use of X-ray analysis for the study of single crystals and deformation texture of polycrystalline materials.

MTE 585 Materials at Elevated Temperatures. Three hours.
Prerequisite: Permission of the instructor.
Influence of temperatures on behavior and properties of materials.

MTE 587 Corrosion Science and Engineering. Three hours.
Prerequisite: MTE 271 and CH 102 or permission of the instructor.
Fundamental causes of corrosion problems and failures. Emphasis is placed on tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining this with prevention and materials selection.

MTE 591:592 Special Problems (Area). One to three hours.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

MTE 595:596 Seminar. One hour.
Discussion of current advances and research in metallurgical engineering; presented by graduate students and the staff.

MTE 598 Research Not Related to Thesis. One to six hours.

MTE 599 Master's Thesis Research. One to twelve hours. Pass/fail.

MTE 622 Solidification Processes and Microstructures Three hours.
Prerequisite: MTE 519
This course will cover the fundamentals of microstructure formation and microstructure control during the solidification of alloys and composites.

MTE 643 Magnetic Recording. Three hours.
Prerequisite: ECE 341 or MTE 271.
Static magnetic fields; inductive head fields; playback process in recording; recording process; recording noise; and MR heads.

MTE 644 Optical Data Storage. Three hours.
Prerequisite: ECE 341 or MTE 271.
Characteristics of optical disk systems; read-only (CD-ROM) systems; write-once (WORM) disks; erasable disks; M-O recording materials; optical heads; laser diodes; focus and tracking servos; and signal channels.

MTE 655 Electron Microscopy of Materials. One to four hours.
Prerequisite: MTE 481 or permission of the instructor.
Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.

MTE 670 Scanning Electron Microscopy. Three hours
Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.

MTE 680 Advanced Phase Diagrams. Three hours.
Prerequisite: MTE 362 or permission of the instructor.
Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.

MTE 684 Fundamentals of Solid State Engineering. Three hours.
Prerequisite: Modern physics, physics with calculus, or by permission of the instructor.
Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.

MTE 691:692 Special Problems (Area). One to six hours.
Credit awarded is based on the amount of work undertaken.

MTE 693 Selected Topics (Area). One to six hours.
Topics of current research in thermodynamics of melts, phase equilibra, computer modeling of solidification, electrodynamics of molten metals, corrosion phenomena, microstructural evolution, and specialized alloy systems, nanomaterials, fuel cells, and composite materials.

MTE 694 Special Project. One to six hours.
Proposing, planning, executing, and presenting the results of an individual project.

MTE 695:696 Seminar. One hour.
Presentations on dissertation-related research or on items of current interest in materials and metallurgical engineering.

MTE 698 Research Not Related to Dissertation. One to six hours.

MTE 699 Doctoral Dissertation Research. Three to twelve hours. Pass/Fail.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
The Department of Materials Science and Engineering (MSE) offers graduate programs leading to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). Read more
The Department of Materials Science and Engineering (MSE) offers graduate programs leading to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). Graduate courses and research opportunities are offered to qualified students in a wide range of subjects.

Typical subjects in extractive and process metallurgy involve a study of the equilibria existing during the reduction of oxides with carbon and metals, life cycle analysis of materials, properties of iron and steelmaking slags, the fundamental properties of fused salt solutions, fused salt electrolysis of reactive metals, kinetics of high-temperature reactions, mathematical modelling of metallurgical processes, process metallurgy, and hydrometallurgy.

Typical physical metallurgy and materials science subjects deal with the structure, properties, and application of advanced materials in such fields as nanomaterials, surface chemistry, energy, sustainability, optoelectronics, biomaterials, nuclear materials, metalmatrix composites (MMCs), metallic glasses, corrosion, fatigue, phase transformations, and solidification. These studies are all related to the general problem of understanding structure-property-processing-performance relationships in materials.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning
Communication Skills for Research Engineers
Aerospace Materials Engineering
Materials Recycling Techniques
Environmental Analysis and Legislation
Physical Metallurgy of Steel
MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials
Polymer Processing
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Simulation Based Product Design
Aerospace Materials Engineering
Structural Integrity of Aerospace Metals
Ceramics
Environmental Analysis and Legislation
Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X