• University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Manchester Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Bath Featured Masters Courses
"metagenomics"×
0 miles

Masters Degrees (Metagenomics)

We have 9 Masters Degrees (Metagenomics)

  • "metagenomics" ×
  • clear all
Showing 1 to 9 of 9
Order by 
This MSc provides you with a timely and integrated perspective on environmental bioscience, environmental management, and environmental politics and regulations. Read more
This MSc provides you with a timely and integrated perspective on environmental bioscience, environmental management, and environmental politics and regulations. You’ll focus specifically on the context of land management for the sustainable production of food, energy and ecosystem services.

The course comprises taught core (Soil, Water & Plant Mineral Nutrition; Biosciences, Politics & Social Acceptability; Climate Change; Biological Invasions in Changing Environments; Environmental Accounting; Organic & Low Input Systems; Biodiversity, Conservation & Ecosystem Services; Microbiomics & Metagenomics; Challenges of Global Food Security; Environment Protection, Risk Assessment & Safety) and optional modules and a project, placement or dissertation. We’ll provide you with an up-to-date overview of issues relating to climate change and its implications for natural resources, biodiversity, and sustainability. You’ll also be able to explore an area of interest in greater detail through an individual research project, placement or dissertation. The elective modules will allow you to learn about the role of environmental law and regulations, or to gain knowledge related to marketing, finance or business as part of this degree.

You’ll emerge with the skills to evaluate the scientific causes and impacts of climate and environmental change, and to communicate these effectively. This means you’ll be suited to a variety of roles in areas such as climate policy, outreach and development, science editing, environmental marketing and corporate sustainability policy. If you’re planning a research career in fundamental or applied environmental bioscience, you’ll find this course equally beneficial.

Read less
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,. Read more
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,
Bioprocessing and Business Management opens the door to these opportunities.

The course is delivered in partnership with our industry partners and Warwick Business School. During your studies you’ll develop a new sense of business acumen and gain in-depth knowledge of the underlying science and processing technologies. You’ll have access to specialised language classes, as well as a personal mentor who will help to improve your academic writing.

When you graduate, you’ll be ready to enter managerial and academic roles in several sectors, including the pharmaceutical industry, whether in large multinational companies or small to medium-sized enterprises.

Course structure

The course is a full time, twelve month taught programme with modular content, based around three strands:-
-Business Management
-Biotechnology & Molecular Biology
-Bioprocessing

The course programme focuses on:
-Manufacture of biochemicals, pharmaceuticals, devices and materials
-Genetic engineering and the fundamentals of biotechnology
-Business management, economics and finance
-Marketing management
-Commercialisation of products, IP
-Food, biotechnology and microbiological processing
-Fuels and energy
-Industries based on renewable and sustainable resources
-Production technologies
-Plant design and economic analysis

Students will be required to complete nine core modules. They must also select a further three elective modules. Teaching will be by interactive lectures, short question & answer sessions and small group interactive workshops/tutorials. Individual and team learning will be used for case study analysis.

All students will be required to undertake a project dissertation. Students will be encouraged to propose their own project title (selection subject to availability of an appropriate supervisor) although a range of potential titles will be offered. Projects will be non-laboratory based and generally undertaken at the University of Warwick under the supervision of an approved tutor.

Core Modules

-The fundamentals of biotechnology
-Molecular biology and genetic engineering
-Biochemical engineering
-Bioproduct plant design and economic analysis
-Business strategy
-Accounting and financial management
-Marketing management
-Entrepreneurship & commercialisation
-Biopharmaceutical product & clinical development
-Project

Elective Modules

(Availability dependent on demand)
-Microbiomics & metagenomics
-Environmental protection, risk assessment and safety
-Impact of biotechnology on the use of natural resources
-Fundamental principles of drug discovery
-E-business: Technology and management
-Chemotherapy of infectious disease
-Vaccines and gene therapy
-Laboratory Skills

Assessment

One third of the final mark will be derived from the project dissertation.

Two thirds of the final mark will be derived from assessments of the 9 core and 3 elective modules. Modules will be assessed by means of a combination of written course work, individual/group seminar presentations and a multi-choice or short answer examination. These assessments will take place during or shortly after completion of each module.

Read less
We offer an opportunity to train in one of the newest areas of biology. the application of engineering principles to the understanding and design of biological networks. Read more

We offer an opportunity to train in one of the newest areas of biology: the application of engineering principles to the understanding and design of biological networks. This new approach promises solutions to some of today’s most pressing challenges in environmental protection, human health and energy production.

This MSc will provide you with a thorough knowledge of the primary design principles and biotechnology tools being developed in systems and synthetic biology, ranging from understanding genome-wide data to designing and synthesising BioBricks.

You will learn quantitative methods of modelling and data analysis to inform and design new hypotheses based on experimental data. The University’s new centre, SynthSys, is a hub for world-leading research in both systems and synthetic biology.

Programme structure

The programme consists of two semesters of taught courses followed by a research project and dissertation, which can be either modelling-based or laboratory-based.

Compulsory courses:

  • Information Processing in Biological Cells
  • Social Dimensions of Systems and Synthetic Biology
  • Dissertation project
  • Practical Systems Biology
  • Applications of Synthetic Biology
  • Tools for Synthetic Biology

Option courses:

  • Neural Computation
  • Probabilistic Modelling and Reasoning
  • Functional Genomic Technologies
  • Bioinformatics Programming & System Management
  • Stem Cells & Regenerative Medicine
  • Statistics and Data Analysis
  • Biobusiness
  • Gene Expression & Microbial Regulation
  • Bioinformatics Algorithms
  • Biological Physics
  • Computational Cognitive Neuroscience
  • Molecular Phylogenetics
  • Next Generation Genomics
  • Drug Discovery
  • Biochemistry A & B
  • Environmental Gene Mining & Metagenomics
  • Economics & Innovation in the Biotechnology Industry
  • Industry & Entrepreneurship in Biotechnology
  • Introduction to Scientific Programming
  • Practical Skills in Biochemistry A & B
  • Mathematical Biology

Career opportunities

The programme is designed to give you a good basis for managerial or technical roles in the pharmaceutical and biotech industries. It will also prepare you for entry into a PhD programme.



Read less
Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today. Read more

Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today.

In this MSc you will learn research and development skills to enable the creation of new products and services. You will investigate the economic basis for current biotechnology structures and areas of future demand, including the global pharmaceutical industry and carbon sequestration.

You will learn how technology can be applied to solve pressing real-world biological problems and gain the skills and expertise needed for future developments in biotechnology.

Programme structure

This programme consists of two semesters of taught courses followed by a research project or industrial placement, leading to a dissertation.

Compulsory courses:

  • Economics and Innovation in the Biotechnology Industry
  • Intelligent Agriculture
  • Principles of Industrial Biotechnology
  • Research Project Proposal
  • MSc Dissertation (Biotechnology).

Option courses:

  • Biobusiness
  • Biochemistry A & B
  • Bioinformatics
  • Bioinformatics Programming & System Management
  • Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Environmental Gene-Mining and Metagenomics
  • Enzymology and Biological Production
  • Gene Expression and Microbial Regulation
  • Industry & Entrepreneurship in Biotechnology
  • Molecular Modelling and Database Mining
  • Practical Skills in Biochemistry A & B
  • Programming for the Life Sciences
  • Social Dimensions of Systems and Synthetic Biology
  • Stem Cells and Regenerative Medicine
  • Vaccines and Molecular Therapies

Research and laboratory work

There will be a considerable practical element to the programme. You will work in a biotechnology laboratory and learn how experimental technology is designed and operated.

Industrial placement

Your dissertation can be based on a laboratory-based project or an industrial placement. You can work with employers in the thriving Scottish biotechnology sector in areas such as multiple sclerosis research (Aquila BioMedical), vaccines research (BigDNA) or biorecovery and bioregeneration (Recyclatec).

Career opportunities

The programme will open up a wide variety of career opportunities, ranging from sales and marketing, to research and development, to manufacturing and quality control and assurance.



Read less
This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries. Read more

This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries.

You will employ elements of the developing field of synthetic biology to bring about significant changes and major innovations that address the challenges of rapidly changing human demographics, resource shortages, energy economy transition and the concomitant growth in demand for more and healthier food, sustainable fuel cycles, and a cleaner environment.

Programme structure

You will learn through a variety of activities, including:

  • lectures
  • workshops
  • presentations
  • laboratory work
  • field work
  • tutorials
  • seminars
  • discussion groups and project groups
  • problem-based learning activities

You will attend problem-based tutorial sessions and one-to-one meetings with your personal tutor or programme director.

You will carry out research at the frontier of knowledge and can make a genuine contribution to the progress of original research. This involves carrying out project work in a research laboratory, reviewing relevant papers, analysing data, writing reports and giving presentations.

Compulsory courses:

  • Applications of Synthetic Biology
  • Tools for Synthetic Biology
  • Social Dimensions of Systems & Synthetic Biology
  • Environmental Gene Mining & Metagenomics
  • Research Project Proposal
  • MSc Project and Dissertation

Option courses:

  • Biochemistry A & B
  • Introduction to Scientific Programming
  • Commercial Aspects of Drug Discovery
  • Stem Cells & Regenerative Medicine
  • Biological Physics
  • Enzymology & Biological Production
  • Next Generation Genomics
  • Machine Learning & Pattern Recognition
  • Drug Discovery
  • Biophysical Chemistry
  • Bioinformatics Programming & System Management
  • Economics & Innovation in the Biotechnology Industry
  • BioBusiness
  • Molecular Modelling & Database Mining
  • Industry & Entrepreneurship in Biotechnology
  • Practical Skills in Biochemistry A & B
  • Functional Genomic Technologies
  • Information Processing in Biological Cells
  • Data Mining & Exploration
  • Gene Expression & Microbial Regulation
  • Bioinformatics
  • Principles of Industrial Biotechnology

Learning outcomes

By the end of the programme you will have gained:

  • a strong background knowledge in the fields underlying synthetic biology and biotechnology
  • an understanding of the limitations and public concerns regarding the nascent field of synthetic biology including a thorough examination of the philosophical, legal, ethical and social issues surrounding the area
  • the ability to approach the technology transfer problem equipped with the skills to analyse the problem in scientific and practical terms
  • an understanding of how biotechnology relates to real-world biological problems
  • the ability to conduct practical experimentation in synthetic biology and biotechnology
  • the ability to think about the future development of research, technology, its implementation and its implications
  • a broad understanding of research responsibility including the requirement for rigorous and robust testing of theories and the need for honesty and integrity in experimental reporting and reviewing

Career opportunities

You will enhance your career prospects by acquiring current, marketable knowledge and developing advanced analytical and presentational skills, within the social and intellectual sphere of a leading European university.

The School of Biological Sciences offers a research-rich environment in which you can develop as a scientist and entrepreneur.



Read less
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. Read more

Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. It focuses on molecular, medical and environmental microbiology to improve our health and environment and provides in-depth insight into present-day microbial research in general and clinical microbiology.

The major topics of the Microbiology specialisation are:

Environmental microbiology and Biotechnology

Microorganisms can be used to break down environmental pollutants and toxic chemicals. Therefore microbiology has the potential to replace common energy-intensive chemical processes with more sustainable solutions. Radboud University collaborates closely with environmental scientists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

Immunology

Unfortunately some microorganisms make us ill. A better understanding of battle between our immune system and these microorganisms will lead to the development of improved vaccines.

Molecular Microbiology

The genome of a microorganism is a key factor in research, because it determines how the organisms interact with the host cell and how they cause diseases. Molecular Microbiology acts on the interface between microbiology, molecular biology and genetics and is fundamental for the development of novel antibiotics and improvement of vaccines against microorganisms.

Top research

The department of Microbiology at Radboud University has been bestowed with the most prestigious science prizes, including two ERC Advanced Grants, a Spinoza Prize, and two Gravitation Grants. Additionally, many of out students have been awarded prizes for best thesis, poster and paper. The department works at the forefront of environmental microbiology and is specialised in the discovery of ‘impossible’, new anaerobic micro-organisms. The laboratory is equipped with state-of-the-art bioreactors, electron microscopy, GC-MS, metagenomics, and metaproteomics facilities to grow and study micro-organisms that contribute to a better environment by consuming greenhouse gasses and nitrogenous pollutants.

Our approach to this field

- Research themes

The Master's specialisation Microbiology is mainly focused on research. You can choose one of the following themes as the subject of your research internship:

- Environmental Microbiology & Biotechnology

For students who are intrigued by questions like: How does life without oxygen work? How do global biogeochemical (nutrient) cycles govern the functioning of the Earth? Can we use microorganisms to create a more sustainable wastewater industry? How do microorganisms break down environmental pollutants and toxic chemicals?

You will do research at the interface between Microbiology, environmental sciences and biochemistry. The research questions cover several levels, from gaining fundamental understanding of energy metabolism of bacteria to their applications in wastewater treatment.

Societal relevance: Microbiology has the potential to replace common energy-intensive chemical processes by more sustainable solutions. Radboud University collaborates closely with environmental scientists, animal ecologists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

- Immunology

For students who are intrigued by questions like: Why do some bacteria make us ill whereas others do not? How do bacteria outsmart our immune system? What are the mechanisms of human defence against microorganisms?

You will do research at the interface between Microbiology, Immunology and Cell Biology, and can, for example, work on how microorganisms are recognised by the host defence system

Societal relevance: A better understanding of host defence will lead to the development of improved vaccines against microorganisms.

- Molecular Microbiology

For students who are intrigued by questions like: How are microorganisms able to persist inside the human body and how do they cause diseases? What does gene regulation tell us about their pathogenic capabilities? Can microbial genomes help us determine how microorganisms interact with human host cells?

You will do research at the interface between Microbiology, molecular biology and genetics, and can, for example, work on functional gene analyses by mutagenesis studies and on the interaction between epithelial cells and pathogenic bacteria.

Societal relevance: Understanding host-pathogen interactions is fundamental for the development of novel antibiotics and improvement of vaccines. Radboudumc collaborates with public health institutes – such as the RIVM (National Institute of Public Health) – and with industrial partners.

- Personal tutor

Our top scientists are looking forward to guiding you during a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the excellent supervision of a personal tutor. This allows you to specialise in a field of personal interest.

- The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, with direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personalised Master's in Biology.

See the website http://www.ru.nl/masters/microbiology



Read less
Application period/deadline. March 14 - 28, 2018. A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues. Read more

Application period/deadline: March 14 - 28, 2018

• A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues

• The study programme is a combination of field work in the arctic and subarctic and in old-growth boreal forests and mires as well as molecular lab work

• Prepares the students for future leadership positions in conservation biology and environmental ecology

International master’s degree programme in Ecology and Population Genetics (ECOGEN) is a two-year programme concentrating on conservation issues and population genetics of endangered animals and plants. The programme will give you relevant skills and core knowledge of the latest methods and tools in:

• Molecular ecology

• Microbial ecology

• Metagenomics and microbiomes of organisms

• Conservation genomics of large mammals

• Distribution history of plants and their phylogeography

• Bioinformatics

The two-year programme has two specialisation options:

• Ecology

• Genetics

Optional courses make it possible to widen your expertise into:

• Aquatic ecology

• Microbial ecology

• Conservation ecology

• Restoration ecology

• Plant evolutionary genomics

The master’s programme is based on high quality and productive research in the fields of evolutionary ecology and genetics. Field research stations in natural reserves as well as Biodiversity Unit offer great opportunities for courses and research. Study environment is multicultural. ECOGEN provides positions as a trainee or a master’s thesis student, and an excellent background for PhD studies.

The skills gained in the master’s programme offer you a solid academic training and essential knowledge on wildlife conservation ecology and genetics, as well as their management. After graduation you are capable of evaluating risks, conducting management on small populations of endangered species, and doing research in the field and in lab. You are able to use molecular and bioinformatic tools.

Possible titles include:

• Project manager

• Researcher

• Planning coordinator of conservation issues

• Conservation biologist

Students applying for the programme must have a B.Sc. degree in biology or in closely related fields.

Email Now



Read less
Unique in New Zealand. The breadth and depth of Massey University’s postgraduate microbiology programme is unique in New Zealand. Read more

Unique in New Zealand

The breadth and depth of Massey University’s postgraduate microbiology programme is unique in New Zealand.

Find out more about the Master of Science parent structure.

The Massey University Master of Science (Microbiology) is a multi-disciplinary postgraduate qualification that will give you the research skills to move up the hierarchy of your career, or move onto more in-depth research.

Let our expertise become yours

You will learn from world-leading specialists in microbiology and related areas like biochemistry, genetics, biotechnology, food science, plant pathology, immunology and epidemiology.

At Massey we use a diverse range of molecular, cellular, plant and animal model tools to investigate the molecular biology of diseases. We also use metagenomics and other advanced genomic technologies to study microbial communities in the environment, including those that may be health threat if found in food or medical environments.

Our biomedical interests are diverse. We research the mechanisms of neurological, skeletal and muscular disorders, infectious microbial diseases and cancer.

World-leading facilities

Facilities available to you include our microscopy and imaging centre, genomics and dna sequencing facility, protein analysis suite (mass spectroscopy, x-ray crystallography, nmr), bioreactors and fermentation facilities.

An essential science

Microbiology is an essential science that helps us understand the microbes in the environment, including those that dwell in the soil, air and water, in our food and inside people, animals and plants.

Understanding microbiology can:

  • improve safety and success of food and beverage production and fermentation
  • help prevent infectious diseases through development of novel antibiotics and vaccines
  • use of “good” microbes in prebiotics or probiotics, or microbial community [A1] transplantation between patients. 
  • Help treat diseases such as inflammation, allergy, neurological disorders, diabetes and even cancer. Through comparing diversity and composition of gut microbial communities between people, we may better understand and treat these diseases, that are not typically considered related to microbes,
  • Have an environmental impact through creating alternative ways to produce fuel, or by increased ability to mitigate the greenhouse gas emission by working with the microbes in the cattle rumen.

Multi-disciplinary

You will gain the advantage of learning in a multi-disciplinary environment. Massey has world-leading expertise in many areas of science, especially veterinary, animal, health and environmental science. You can take advantage of this for your learning and research to look at microbiological sub-disciplines, such as environment/ecology, food and biotechnology.

Relevant learning

During your study you will gain a contemporary, relevant view of microbiology which is in line with topical research and developments in the area. You will be exposed to the latest discoveries and research.

Friendly environment - passionate scientists

There is a well-established community of fundamental scientists and students involved in a broad range of microbiological and microbiology-inspired research at Massey. We work together to share discoveries and research and provide peer support.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The workload of the Master of Science (Microbiology) replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ as undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.



Read less
Bioinformatics is a branch of the life sciences that focus on analysing and integrating big data acquired in biomedical experimentation. Read more

Bioinformatics is a branch of the life sciences that focus on analysing and integrating big data acquired in biomedical experimentation.

Over the last couple of years '-omics' technologies have transformed healthcare practice, biomedical research and industry, and there is a shortage of biomedical graduates with bioinformatics training in the advanced healthcare sector.

Our programme will provide you with essential skills in both molecular and computational techniques. You will learn how to design and perform experiments, and efficiently analyse next-generation sequencing data. You will acquired research data mining skills for Biological Sciences, Transcriptomics, Genomics, Proteomics and Metagenomics. 

It will equip you for careers in the private (e.g. pharmaceutical, biotechnology or food industry, forensic/veterinary laboratories) or public (e.g. academia, NHS) sectors.

What you will study

Core Modules

Facilities

Our facilities are cutting-edge, and include the unique Centre for Skin Sciences and the Institute of Cancer Therapeutics, as well as the Analytical Centre.

These centres feature specialised equipment and are in the forefront of research and development of the understanding and treatment of health related challenges in the modern world.

Career prospects

Employability is a key focus of the programmes here at Bradford. We collaborate with industry partners through our Industry Advisory Board and their input shapes the curriculum, ensuring you gain the skills employers in the sector value and that are currently in short supply. You’ll have the opportunity to work on and contribute to real life research projects whilst you’re studying.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

Our comprehensive support services will help you to achieve your full potential – both academically and personally. 

We provide all you need to make the very best of your time with us, and successfully progress through your studies and on into the world of graduate employment. 

Our support services include: 

  • Personal tutors 
  • Disability services 
  • Counselling services 
  • MyBradford student support centres 
  • The Students’ Union 
  • Chaplaincy and faith advisers 
  • An on-campus nursery 
  • Halls wardens 

We have well-stocked libraries and excellent IT facilities across campus. These facilities are open 24 hours a day during term time, meaning you’ll always find a place to get things done on campus. 

Our Academic Skills Advice Service will work with you to develop your academic, interpersonal and transferable skills. 

Research

The programme encourages cutting-edge cross-disciplinary research. It offers an opportunity for students to become global leaders in the biomedical industry.

There is a rapid and exponential rise in the amount of genomics sequence data (in all its forms), and UK research councils have identified the bioinformatics sector as a key driver for growth in the industrial and medical biotechnology, pharmaceutical and health markets, and have made it a key priority area for investment.

Our staff are research active and embed outcomes of their world leading research into the design of our courses, ensuring that you are equipped not just for the job market today, but are well prepared for the future.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X