• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Durham University Featured Masters Courses
University College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of Sheffield Featured Masters Courses
"metabolomics"×
0 miles

Masters Degrees (Metabolomics)

We have 28 Masters Degrees (Metabolomics)

  • "metabolomics" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more

Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit. The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

With advances in technology, graduates are faced with heightened expectations to conduct effective bioscience research. Employers demand skillsets with biological, medical, physical and computational characteristics, and our course is designed to provide this breadth of training.

You will learn omics skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics. Our training in metabolomic techniques is novel for a UK course, while our teaching on the integration of different omic platforms and data in a systems medicine strategy is also unique.

The MRes course consists of four taught units - which together make up the PGCert - plus an extended 35-week project that can be undertaken at the University, the Manchester Cancer Research Centre or a teaching hospital in Greater Manchester.

You can choose from a range of projects covering areas such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

Completing our course will open up a route into PhD research. You may also pursue a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

Special features

Extensive research experience

The 35-week research project for the MRes award offers the chance to conduct ambitious projects in areas such as cancer, cardiovascular disease, inflammation, mental health, infectious diseases, stroke or diabetes, using methods such as stem cell research, proteomics, metabolomics, tissue culture or pharmacogenetics.

Integrated focus on key topics

Our course has a strong and integrated focus on genetics, genomics, proteomics and metabolomics biotechnology and data interpretation, which are strengths within Manchester and are identified as core areas of bioscience growth.

Teaching and learning

Teaching comprises four taught units delivered using a variety of face-to-face, workshop and e-learning approaches and an extended 35-week research project for the MRes award.

Examples of research projects include the following.

  • Statins in translational cerebral ischemia: systematic review and meta-analysis of pre-clinical studies.
  • Parallel gene expression profiling and histological analysis of tumour tissue microarrays.
  • Development of a New Drug For Alzheimer's Disease by Drug Repositioning.
  • Identification of genetic variants predisposing to autoimmune idiopathic inflammatory myopathies.
  • Effects of differentiating agents on breast cancer stem cells and their sensitivity to DNA-damaging therapies.
  • Molecular characterisation of prostate cancer.
  • Inhibitors of IAPP Aggregation and Toxicity. 
  • New Therapies for Type II Diabetes.
  • Identifying novel monotherapy and combination therapies for the treatment of Glioma.
  • Translation of in vitro to in vivo: investigating the utility of in vitro drug transporter assays to predict inductive effects in the clinic.
  • In vivo mechanistic analysis of cancer drug combination therapies.
  • Using silk as a biomaterial for nerve regeneration.
  • The role of the local tissue environment in immune activation following myocardial damage.
  • Identifying genes that drive Breast Cancer to Bone Metastasis
  • High throughput genetic testing in rare disease: applications of personalised medicine.
  • Drug resistance and heterogeneity in CML following treatment with imatinib and following perturbation caused by nanoparticle delivery of miRNAs.
  • Investigation of a panel of drugs to inhibit the pro-tumourgenic actions of macrophages in breast cancer.
  • 3D anatomical reconstruction and molecular mapping of the atrioventricular ring tissues in human embryonic heart and adult rat heart.
  • Identification of the genetic basis of disorders associated with the presence of intracranial calcification.
  • Species variability in metabolism as a translational factor influencing susceptibility to adverse drug reactions in man.

Find out more by visiting the postgraduate teaching and learning page.

Career opportunities

More than 50% of our graduates progress into PhD research at Manchester or other universities such as Cambridge, Imperial College London, Newcastle, Glasgow, Liverpool and Bristol.

Around 15% pursue a career in the pharmaceutical or biotechnology industry in the UK or abroad.

Approximately 25% are intercalating medics who complete their medical education. An estimated 10% pursue an undergraduate medical degree.



Read less
This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Read more

This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Bioinformatics is a discipline at the interface between biology, computing and statistics and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and graphical presentation - all of which form a core part of modern biology.

Why this programme

  • Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical elective courses in semester 2 and in a summer research project.
  • You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
  • Bioinformatics and the 'omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
  • Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
  • The semester 2 courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organising and implementing appropriate analysis pipelines.
  • You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics. Our College has carried out internationally-leading research in functional genomics and systems biology.
  • Some of the teaching and research scenarios you’ll be exposed to reflect the activities of 'Glasgow Polyomics', a world-class omics facility set up within the university in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its' scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
  • In addition, we have several world-renowned research centres at the University, such as the Wellcome Centre for Molecular Parasitology, the MRC-University of Glasgow Centre for Virus Research and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
  • You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area, systems biology.

‘Polyomics’ is an intrinsically systems-level approach involving the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure

  • core material of 60 credits in semester 1, made up of 10, 15 and 20 credit courses.
  • optional material of 60 credits in semester 2: students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
  • Project of 60 credits over 14 weeks embedded in a research group over the summer.

Additional information about the programme can be found in the Bioinformatics MSc Programme Structure 2017-18.

Please note: students undertaking the three month PgCert will also be required to take two exams in March/April.

Career prospects

Most of our graduates embark on a University or Institute-based research career path, here in the UK or abroad, using the skills they've acquired on our programme. These skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science.

A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - eg computing biology jobs in biotechnology, biosciences, neuroinformatics and the pharma industries.

Some of our graduates have entered science-related careers in scientific publishing or education. Others have gone into computing-related jobs in non-bioscience industry or the public sector.



Read less
Admission Notice now available. - check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Read more

Admission Notice now available

- check at

http://www.unipd.it/en/biotecnologie-alimentazione

http://www.unipd.it/en/how-apply

Instructions in English:

http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362

.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.

The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.

The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.

Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.

Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.

Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

First year

During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year

In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.

link to the Campus descriptions:

http://youtu.be/gR4qcWUXvGg

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
The aim of this programme is to provide individuals with a platform to explore, analyse and interpret contemporary biological data. Read more
The aim of this programme is to provide individuals with a platform to explore, analyse and interpret contemporary biological data. This course offers Masters level instruction in Bioinformatics with a focus on genomic bioinformatics. You will develop key skills for the analyses of omics data including genomics data from next generation sequencing technologies. Additional skills around emerging omics including metabolomics and proteomics will also be developed.

This programme has been designed with the needs of academic research, biotechnology and the pharmaceutical and health care industries in mind. We will provide instruction in computational and statistical biosciences and students will foster these additional complementary skills required to enable individuals to work effectively within a multidisciplinary bioinformatics arena.

Distinctive features

• This course was first established over a decade ago in response to the emerging informatics needs of the genetics and genomics communities following the completion of the first drafts of the human genome project. Subsequent advances in research technologies and analytic approaches have dictated the continuing evolution of this programme to provide contemporary instruction in these new essential skills.

• Providing a strong platform for students entering from the biological, mathematical or computational sciences, this course provides modules in core complementary areas such as in computation/scripting, statistics and molecular biology; the fundamental building blocks necessary to succeed in bioinformatic analysis and interpretation.

• As an introduction – you will be taught essential organisational and coding skills required for effective bioinformatics and biostatistical analysis.

• One of the unique components of this course is the extended instruction in statistics provided by the Statistics for Bioinformatics and Genetic Epidemiology module.

• You will also be introduced to the molecular and cellular biology behind the data. This is invaluable if you are entering from a non-life sciences background to make informed decisions around data interpretation.

• You will extend your bioinformatics studies by focusing on next generation sequencing technologies and other developing omics platforms such as proteomics and metabolomics.

We are committed to developing transferable skills and to improving graduate employability. We want highly capable graduate informaticians who can fulfil the growing bioinformatics needs of local, national and international employers.

Structure

The course can be completed in one year with full-time study or in three years by part-time study.

Both full-time and part-time students register initially for the MSc Bioinformatics and Genetic Epidemiology

A Postgraduate Certificate exit point is available for students successfully completing 60 credits of the taught element (module restrictions apply).

A Postgraduate Diploma exit point is available for students successfully completing 120 credits of the taught element (module restrictions apply).

Core modules:

Computing for Bioinformatics and Genetic Epidemiology
Statistics for Bioinformatics and Genetic Epidemiology
Introduction to Bioinformatics
Case Studies in Bioinformatics and Biostatistics
Next Generation Sequencing
Protein Biology and Omics
Dissertation in Bioinformatics

Teaching

The programme is delivered as face-2-face learning. You will find course materials, links to related materials and assessments via Cardiff University’s Virtual Learning Environment (VLE) ‘Learning Central'

Career Prospects

This programme has been designed with the needs of academic research, the biotechnology, pharmaceutical and health care industries in mind. Instruction in computational and statistical biosciences will enable individuals to work effectively within a multidisciplinary bioinformatics arena.

Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
STUDY CELL-TO-CELL SIGNALLING IN DEVELOPMENT AND DISEASE. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Join our programme and combine research in oncology, molecular developmental biology and genetics. Read more

STUDY CELL-TO-CELL SIGNALLING IN DEVELOPMENT AND DISEASE

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Join our programme and combine research in oncology, molecular developmental biology and genetics. Discover the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

CONTRIBUTE TO A BETTER UNDERSTANDING OF DISEASE TREATMENT AND PREVENTION

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions.

Become an expert on molecular and cellular aspects of development and disease and create a better understanding of processes underlying cancer and developmental biology. Use techniques and applications of post-genomic research, including single cell and next generation sequencing, proteomics, metabolomics and advanced microscopy techniques.

WHY YOU SHOULD STUDY CANCER, STEM CELLS AND DEVELOPMENTAL BIOLOGY AT UTRECHT UNIVERSITY

  • Study with a unique emphasis on developmental biology, a process with many connections to cancer
  • Carry out two extensive research projects at renowned research groups
  • Collaborate with national and international research institutes, and gain valuable experience at partner institutions all around the world
  • Take courses, seminars and masterclasses led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills
  • Focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine


Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Read more

This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Our programme takes a 'bench to bedside' approach, enabling graduates to work within a multidisciplinary environment of world-leading scientists and cancer-specialists to address the latest challenges in cancer research.

Why this programme

  • University of Glasgow is rated in the UK top five and best in Scotland for cancer studies. You will be taught by a multidisciplinary team of world leading cancer scientists and clinicians within the Cancer Research UK Glasgow Centre.
  • This MSc in Cancer Sciences programme is unique in the UK as it delivers integrated teaching in molecular biology, pathology and clinical service.
  • The Cancer Research UK Glasgow Centre brings together scientists and clinicians from research centres, universities and hospitals around Glasgow to deliver the very best in cancer research, drug discovery and patient care. The centre’s world leading teams have made major advances in the understanding and treatment of many cancers. For more information, please visit: http://www.wecancentre.org/
  • In the first semester, each week is focused around one of the new Hallmarks of Cancer, with the focus on the molecular/cellular biology of this hallmark. A tutorial session will enable you to discuss and integrate your learning from the week. This will enable you to understand how research into the fundamental principles of cancer cell biology can translate to advances in cancer treatment.
  • The aim of this MSc in Cancer Sciences is to train cancer researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside. By understanding the science, methodology and terminology used by scientists and clinicians from different disciplines, you will learn to communicate effectively in a multidisciplinary environment, to critically evaluate a wide range of scientific data and to research strategies and learn how to make a significant contribution to cancer research.

Programme structure

Semester 1: Hallmarks of Cancer

This 13 week core course aims to:

  • provide you with a critical understanding of the molecular and cellular events that drive cancer development and progression
  • demonstrate how an understanding of these events underpins current and future approaches to cancer diagnosis and treatment
  • integrate the teaching of molecular biology, cell biology, diagnosis and treatment of cancer
  • describe how all these disciplines communicate and work together in the fight against cancer
  • provide you with theoretical training in fundamental molecular and cell biology techniques used in cancer research

One week of practical training is provided at the start of the course. This course is assessed through a lab notebook, group assessment, critical essay and an exam that focuses on data analysis and interpretation.

Semester 2

In the second semester, you can choose from a range of 3 week optional courses, before taking the core course “Designing a Research Project”.

  • Drug Discovery
  • Drug Development and Clinical trials
  • Viruses and Cancer
  • Diagnostic technologies and devices
  • Technology transfer and commercialisation of bioscience research
  • Current trends and challenges in biomedical research and health

or

  • Frontiers in Cancer Sciences – 5 week optional course
  • Omic technologies for the biomedical sciences: from genomics to metabolomics - – 5 week optional course

or

  • Designing a research project: biomedical research methodology - 6 week optional course

Semester 3

Bioscience Research Project

In this 14 week core course you will:

  • have an opportunity to perform a piece of original research to investigate a hypothesis or research questions within the area of cancer research. The project may be “wet” or “dry”, depending what projects are available
  • develop practical and/or technical skills, analyse data critically and draw conclusions, and suggest avenues for future research to expand your research findings

Note: students must have a minimum of grade C in semesters 1 and 2 in order to proceed to the research project.

Career prospects

The knowledge and transferable skills developed in this programme will be suitable for those contemplating a PhD or further medical studies, those wishing to work in the health services sector, and those interested in working in the life sciences, biotechnology or pharmaceutical industries, including contract research organisations (CROs). This programme is designed for students with undergraduate degrees in the life sciences, scientists working in the pharmaceutical and biotechnology industries, and clinicians and other healthcare professionals. 



Read less
One of the most rapidly developing areas of toxicology. . This programme provides students with a research-orientated training in the application of molecular and cell biology to develop an understanding of chemical toxicity at the cellular and molecular level. Read more

One of the most rapidly developing areas of toxicology. 

This programme provides students with a research-orientated training in the application of molecular and cell biology to develop an understanding of chemical toxicity at the cellular and molecular level. You will study within a lively, highly interactive teaching and research environment.

Course details

One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. This is not only of fundamental interest (i.e., understanding the mechanism of action) but it also relates to an increased need for a mechanistic component in chemical risk assessment and development of high throughput screens for chemical toxicity.

The MRes in Molecular Mechanistic Toxicology is a one-year full-time programme that provides students with a research-orientated training in a lively, highly interactive teaching and research environment.

Programme content

The programme is coordinated by the School of Biosciences, which is recognised internationally as a major centre for both teaching and research in Toxicology. Molecular Toxicology is a major component of the School of Biosciences research activities along with interactions with other departments including Chemistry and the Medical School.

Specific areas of active research include:

  • Mechanisms of cell toxicity
  • Development of novel DNA binding chemicals
  • Cellular proliferation and differentiation
  • Environmental genomics and metabolomics
  • Molecular biomarkers of genotoxicity, oxidative stress and cellular responses
  • Role of environmental and genetic factors in disease

Learning and teaching

Two five-week taught modules are held in Semester 1 in conjunction with the taught MSc in Toxicology programme. Training in generic and laboratory research skills is also an important element of the programme. The programme also includes a six-month research project, which provides students with an opportunity for further advanced research training and hands-on experience of molecular and cellular biology techniques embedded in a research laboratory. Research projects can take place either in academic or industrial institutions.

Semester 1

  • Module 1 Metabolism and Mechanisms of Toxicity (20 credits)
  • Module 2 Forensic, Clinical and Occupational Toxicology (20 credits)
  • Skills Module (10 credits)

Semester 2:

  • Laboratory research project (130 credits)

Assessment

You will be taught through a combination of lectures, tutorials, coursework, practical classes, student seminars and placement in a research laboratory. The taught component is assessed by a combination of examinations and coursework. The dissertation component is assessed by preparation of a research thesis. 

Skills gained

After completing the course you will have gained a detailed knowledge of the molecular mechanisms of chemical toxicity (e.g. polymorphisms and metabolism, genotoxic and non-genotoxic carcinogens, mechanisms of apoptosis, cDNA microarray and other high throughput screening strategies). You will also be able to critically evaluate and interpret available scientific literature, and effectively present the results of your research to peers using both written reports and oral communications. The programme will help you to develop laboratory skills and enable you to effectively interact in a research laboratory setting.

Careers

There is a demand for Toxicologists with molecular biology training in industry and other research organisations. The skills you gain from this course will stand you in good stead to enter research-based careers in the pharmaceutical industry and the medical sciences. You will also have enhanced your opportunities to further your research training by studying for the degree of PhD.



Read less
The importance of good nutrition in ensuring a healthy, disease-free human life is currently very high in the public and scientific agendas.Throughout the Nutritional Science Masters degree, we aim to guide you to an in-depth understanding of the broad discipline of Nutritional Science through the study of its different aspects both at theoretical and practical levels. Read more
The importance of good nutrition in ensuring a healthy, disease-free human life is currently very high in the public and scientific agendas.Throughout the Nutritional Science Masters degree, we aim to guide you to an in-depth understanding of the broad discipline of Nutritional Science through the study of its different aspects both at theoretical and practical levels. In particular our MSc curriculum covers foundation and advanced human nutrition, nutrient analysis, food policy, statistics and general research skills as well as applied and professional nutritional skills.

We place great emphasis on using diverse teaching media and approaches to develop both your technical skills and abilities for effective teamwork and communication.

The programme is specifically designed to allow you to apply the scientific knowledge from your first degree to develop your understanding of the science underpinning nutritional principles in relation to human health.

MSc graduates can become members of the Nutrition Society and associate nutritionists in the Association for Nutrition. The programme will enhance your career opportunities in the nutrition, food and health industries, or prepare you for further academic research.

This course can also be taken part time - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/nutritional-science-dtpnls6/

Learn From The Best

Expert academic members of staff who work in close collaboration with health, nutrition, and policy organisations via research programmes and consultancies will mentor you.

Our teaching staff is made up of industry specialists and registered nutritionists from a broad range of backgrounds. Each academic brings with them vast experience, from working within various areas of the health sector, to conducting research on behalf of government departments and within leading hospitals.

They are all actively engaged in contemporary research and consultancy – leading the agenda in areas such as metabolomics, complex public health interventions as well as public engagement.

Teaching And Assessment

Modules are assessed via combinations of examinations, coursework, and seminar presentations.

You will be provided with the best possible learning experience through wet lab and IT based classes, which will include data collection and the use of specialist software such as Microdiet© for dietary assessment.

The department has a range of technical staff with backgrounds in biology, chemistry, nutrition, sport and exercise. An academic member of staff as well as a highly experienced technician supervises all practical work.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)
AP0709 - Foundations of Human Nutrition (Core, 40 Credits)
AP0710 - Advanced Human Nutrition (Core, 20 Credits)
AP0711 - Contemporary Issues in Food and Nutrition (Core, 20 Credits)
AP0712 - Professional Nutrition Skills (Core, 20 Credits)

Learning Environment

You will benefit from modern laboratory facilities including designated methodology for nutritional and food sciences, laboratories for Food Technology, Sensory Evaluation, Food Analysis, Microbiology, Biochemistry and Molecular Biology. There is also specialised computer software for dietary evaluation and statistical analysis.

Technology enabled learning is embedded in the Nutritional Science MSc.

All academic materials are available on your online learning platform (eLP), allowing you to learn at your own pace and stay up to date, wherever you are.

Digital reading lists provide instant access to key texts and you’ll be able to submit and receive feedback on assessments electronically. Electronic discussion boards such as wikis and blogs are used for networking, support and review.

You’ll always be given a full understanding of the scope, method and application of your studies, helping you to progress and readying you for your next job or further research.

Research-Rich Learning

Research rich learning is a core component of the teaching strategy at Northumbria, and we are highly focused on building sustainable partnerships with industry and commerce.

You will learn from academics that have a research background relevant to the module content. You will take part in discussions during lectures, seminars and tutorials about current nutrition research and will undertake a research project from April-September.

Departmental research topics include: early years and preschool nutrition, nutrition in the elderly, and in deprived families, and the evaluation of a number of school nutrition/physical activity interventions funded by Public Health England and Newcastle United Foundation.

During the Nutritional Science MSc you will gain the experience of carrying out research and gaining valuable skills within an academic and professional environment.

Give Your Career An Edge

At all stages of study you will be encouraged to embrace your creativity, to approach problems innovatively and to develop entrepreneurship skills through assessment tasks.

Our projects are of particular value in consolidating and putting into action the discipline knowledge. Projects are given in nutritionally relevant topics and you will be mentored by expert academic members of staff who work in close collaboration with health, nutrition, policy organisations via current research programmes and consultancies.

Your Future

Nutritional Science is a discipline of high importance in both the public and scientific agendas for a number of reasons. Nutritional scientists endeavour to understand and reduce the impact of a broad number of diet related diseases including obesity, type 2 diabetes, and cardiovascular diseases. The chief goals of the nutritional science sector are to secure a healthy ageing population and avoid malnutrition.

This Nutritional Science MSc will equip you with the knowledge and transferable skills for you to gain professional employment to start your own business venture or go on to further postgraduate study and research.

The course will allow you to engage with employers directly through work related learning experience, STEM ambassador activities or other volunteering opportunities.

The skills learnt and assessed through the course will develop your employability, and the research project will enhance your enterprise and entrepreneurship and will be recognised and valued by future employers.

Read less
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Read more
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Biotech applications are enhancing food production, treating medical conditions, and having a significant impact on the global future.

Given the common expectation for job candidates to have some form of postgraduate qualification, this Masters course offers a route to careers in biotechnology as well as the broader life sciences industry. If your first degree included the study of genetics and molecular biology, and a research module, you’re well-placed to join us.

This course can also be started in January (full time 21 months) - for more information please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/biotechnology-dtfbty6/

Learn From The Best

The quality of teaching in life sciences at Northumbria has been recognised by strong performance in student-led awards, Further evidence of academic excellence is the number of invitations to members of our team to join the editorial boards of scientific journals.

Our teaching team maintains close links with biotech companies and research labs, including via on-going roles as consultants, which helps ensure an up-to-date understanding of the latest technical and commercial developments. Several academics are involved in biotech ventures that make use of the University’s facilities: Nzomics Biocatalysis develops enzyme alternatives to chemical processes, and Nu-omics offers DNA sequencing services.

Teaching And Assessment

We aim for interactive teaching sessions and you will engage in discussions, problem-solving exercises and other activities. Teaching can start in the lab or classroom and then you make the material your own by exploring and applying it. Technology Enhanced Learning makes this easier; each module has an electronic blackboard site with relevant information including electronic reading lists and access to websites, videos and other study materials that are available anytime, anywhere.

You will undertake assignments within small groups and we provide training in communication skills relevant for scientific communication. The course aims to foster your ability to work at a professional standard both individually and as part of a team.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0704 - Industrial Biotechnology (Core, 20 Credits)
AP0705 - Current Topics in Biotechnology (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

The technical facilities at Northumbria University are excellent. We are fully equipped for molecular biology manipulations and imaging – techniques include RT-PCR to show whether or not a specific gene is being expressed in a given sample. We also have pilot scale bioreactors so that we can scale up experiments and processes.

For cell biology and immunology, we have two multi-user laboratories. Technologies include assays for measuring immune responses at the single-cell level, and for monitoring the functioning of cells in real time. Further capabilities include biomarker analysis, flow cytometry, chemical imaging and fluorescence microscopy. For genomics, proteomics and metabolomics, our capabilities include genomic sequencing, mass spectrometry, 2D protein electrophoresis and nanoflow liquid chromatography.

All our equipment is supported up by highly skilled technical staff who will help you make the best use of all the facilities that are available.

Research-Rich Learning

In fast-moving fields like biotechnology, it’s particularly important for teaching to take account of the latest research. Many of our staff are conducting research in areas such as molecular biology, bio-informatics, gene expression and micro-biology of extreme environments. They bring all this experience and expertise into their teaching.

As a student, you will be heavily engaged in analysing recent insights from the scientific literature. You will undertake a major individual project in molecular and cellular science that will encompass all aspects of a scientific study. These include evaluation of relevant literature, design and set-up of experiments, collection and processing of data, analysis of results, preparation of a report and presentation of findings in a seminar.

Give Your Career An Edge

Many recruiters in the biotech industry expect candidates to have studied at postgraduate level so our Masters qualification will help you get through the door of the interview room. Once there, your major project and other assignments will help ensure there is plenty to catch their attention. Employers are looking for the ability to solve problems, think critically, work with others and function independently – which are exactly the attributes that our course develops to a higher level.

During your time at Northumbria, we encourage you to participate in the activities organised by the Career Development Service. We also encourage you to apply for associate membership of the Royal Society of Biology, with full membership becoming possible once you have at least three years’ postgraduate experience in study or work.

Your Future

The biotech industry has made huge progress in the last few decades and the years ahead promise to be even more transformational. With an MSc Biotechnology, you will be ready to contribute to the changes ahead through a rigorous scientific approach and your grasp of the fundamental knowledge, insights and skills that underlie modern biotechnology.

Scientific research is at the heart of the course and you will strengthen pivotal skills that will enhance your employability in any research-rich environment. By developing the practices, standards and principles relevant to becoming a bioscience professional, you will also prepare yourself for success in other sectors of the life sciences industry and beyond.

Read less
Summary. Human Nutrition is the scientific study of the foods we eat, the nutrients in foods, the fate of the nutrients when they are eaten and the effects of diet on health and well being. Read more

Summary

Human Nutrition is the scientific study of the foods we eat, the nutrients in foods, the fate of the nutrients when they are eaten and the effects of diet on health and well being. As a graduate nutritionist you will have the skills to elicit, disseminate, and apply knowledge drawn from the relevant sciences to promote an understanding of the effects of diet on human health and well-being.

This master's course is an intensive programme accredited by Association for Nutrition. This programme will provide students with a broad knowledge and understanding of human nutrition developing scientific skills to master's level. Taught semesters provide study in core modules in human nutrition. The human nutrition research project is an integral part of this programme where students undertake an independent research project under close supervision.

Attendance

Full-time: Semesters 1 & 2 are taught modules where attendance is required most days each week. Semester 3 is an independent research module which students carry out under close supervision. Attendance will vary depending on the nature of the research project.

Part-time: In years 1 & 2 both semesters consist of core taught modules requiring attendance at least one day each week during semester. Attendance is required on campus for most modules, however there are a few optional modules which can be taken distance learning. The independent research project is carried out under close supervision requiring attendance which is dependant on the individual project.

Professional recognition

Association for Nutrition (AfN) 

Accredited by the Association for Nutrition (AfN) for the purpose of eligibility for Direct Entry Registration at Associate Level with the UK Voluntary Register of Nutritionists (UKVRN).

Career options

The academic content of the programme, together with the experience gained from Masters research project, leads to excellent employment opportunities within industry, nutrition research, health promotion, public health, personalised nutrition ie in the areas of metabolomics, nutrigenomics or in nutrition overseas. Many of our graduates choose to pursue higher research degrees (PhD) or to pursue further taught study in the area of human nutrition, dietetics, sports nutrition or to complete a PGCE and become teachers of science, home economics or biology at both this University or at other institutions of higher education and research.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought after. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence. The MSc in Applied Analytical Science (LCMS) includes fundamentals of MS and chromatography with key industrial topics covering ‘-omics’, pharmaceutical, environmental and forensic analysis, data handling, professional management and good laboratory practice (GLP). The unique combination of industry participation and content on the Applied Analytical Science (LCMS) programme provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Professional Accreditation

We are pleased to announce that the Royal Society of Chemistry (RSC) has accredited the “MSc in Applied Analytical Science (LCMS)” for satisfying the academic requirements of the award of CHARTERED CHEMIST (CChem) from 2015 and awarded to qualifying students. Accreditation of Postgraduate schemes have only recently been undertaken by the RSC and our scheme is one of the first to achieve accreditation.

Key Features

Course content for the Applied Analytical Science (LCMS) programme is designed for the needs of industry: Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development plus industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment: MSc students can experience more in-depth and ‘hands-on’ learning than most current analytical MSc programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible dissertation.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies, presentations, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

Modules on the Applied Analytical Science (LCMS) programme typically include:

• Mass spectrometry – basics and fundamentals

• Separation science and sample handling

• Data analysis and method development

• Professional management and laboratory practice

• Proteomics

• Pharmaceutical

• Environmental and forensic analysis

• Medical and life sciences

• Metabolomics, lipidomics and bioactive lipids

• Data analysis and method development

• Dissertation: MS experimental project



Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. Read more

The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. You can choose to specialise in virology, microbiology (bacteriology) or parasitology.

Why this programme

  • This postgraduate degree in Infection Biology allows you to study in an institute housing two UK national centres of excellence in Virology and Parasitology, and active in the Scottish Infection Research Network (SlRN), a key clinical focus on healthcare-related research.
  • You will work in the laboratories of internationally recognised infection biology researchers, conducting high quality basic, translational and clinical science.
  • This MSc in Infection Biology provides access to a combination of highly specialised equipment, unique in Scotland, including cutting edge in vitro and invivo research facilities for biological imaging, high content screening microscopy, and a state of the art polyomics facility bringing together metabolomics, proteomics, genomics, transcriptomics, and the integration of data sets with bioinformatics.
  • You can attend guest lectures and workshops from scientists and clinicians working in the pharmaceutical, diagnostic and biotechnology fields.
  • You can carry out a research project in an internationally recognised centre of excellence, working with world-leading researchers in infection biology.
  • This MSc Infection Biology integrates infection biology with cutting edge molecular and cellular techniques, and offers breadth in covering bacteria, viruses and parasites.
  • Students can opt to specialise in one of the three areas of infection biology, and will graduate with a named specialism, i.e. MSc Infection Biology (Microbiology), MSc Infection Biology (Parasitology) or MSc Infection Biology (Virology).
  • Optional courses allow students to develop their interests. These are
  • Diagnostic Technologies and Devices
  • Drug Discovery
  • Animal Models of Disease
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Bioscience Research
  • Emerging Viruses
  • Omics Technologies for Biomedical Sciences
  • Bioimaging.
  • We have excellent opportunities to engage with industrial and clinical scientists, and with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.
  • Students have the opportunity to carry out a research project in an internationally recognised centre of excellence, working with world-leading researchers in the field of infection biology.

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PgDip programme will consist of five taught courses, spread over 7-8 months, with three compulsory courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

Core courses and project

  • Host-pathogen Interactions and Immune Responses to Infection
  • Molecular Research Skills
  • Designing a Research Project: Biomedical Research Methodology
  • Infection Biology Research Project (laboratory based in Virology, Parasitology, or Microbiology)

Optional courses

  • Drug Discovery
  • Diagnostic Technologies and Devices
  • Animal Models of Disease
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Bioscience Research
  • Emerging Viruses
  • Omics Technologies for Biomedical Sciences
  • Bioimaging

Teaching and learning methods

A variety of methods are used, including lectures, tutorials, workshops, laboratories and problem-based learning. These are supplemented by a wide range of course specific electronic resources for additional learning and self assessment. As a result, you will develop a wide range of skills relevant to careers in infection biology research, diagnostics or drug development. These skills include team-working, data interpretation and experimental design. You will use primary scientific literature as an information resource.

Electronic resources

Our online resources were voted the best in the United Kingdom in the International Student Barometer in 2012, and include

  • a continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment material.
  • over 35,000 online textbooks and e-journals available through the University library website.
  • academic databases of biological sciences and medicine.
  • animated audio visual presentations (Henry Stewart talks) by world leading experts covering many topics in infection biology.

Career prospects

About half of our MSc students enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in clinical or academic settings, including national government laboratories.

Other students go on to work in the pharmaceutical, diagnostic or biotechnological industries.



Read less

Show 10 15 30 per page



Cookie Policy    X