• Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Leeds Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"mems"×
0 miles

Masters Degrees (Mems)

  • "mems" ×
  • clear all
Showing 1 to 15 of 32
Order by 
Electronic technologies have evolved enabling many new device concepts, fabrication methods and characterisation techniques. This has led to the simultaneous fabrication of micro scale mechanical structures with integrated electronics to form MicroElectroMechanical Systems (MEMS). Read more

Course Summary

Electronic technologies have evolved enabling many new device concepts, fabrication methods and characterisation techniques. This has led to the simultaneous fabrication of micro scale mechanical structures with integrated electronics to form MicroElectroMechanical Systems (MEMS). MEMS technology is becoming ubiquitous; it is the key enabling technology that will underpin the internet of things and the proliferation of smart technology in the world around us. You will gain an understanding of the techniques developed by the microelectronics industry to produce micron-scale mechanical devices such as accelerometers and micropumps on silicon wafers. You will work in research laboratories and in the cleanroom.

Modules

Semester one: Microfabrication; Introduction to MEMS; Microfluidics and Lab-on-a-Chip; Nanoelectronic Devices; Advanced Memory and Storage; Bionanotechnology

Semester two: MEMS Sensors and Actuators; Practical Application of MEMS; Green Electronics; Nanofabrication and Microscopy; Quantum Devices and Technology; Biosensors; Medical Electrical and Electronic Technologies

Visit our website for further information...



Read less
Electronic technologies are now being applied to bio-molecular and biomedical research and the electronics industry is moving towards healthcare applications, e.g. Read more

Course Summary

Electronic technologies are now being applied to bio-molecular and biomedical research and the electronics industry is moving towards healthcare applications, e.g. Google Life Sciences and Panasonic Healthcare. Examples include microfluidic units mounted on mobile phones for point-of-care medical diagnostics. Learn how modern micro- and nanofabrication methods can be used to develop these biodevices and position yourself at this exciting new interface between electronic engineering and the life sciences.

Modules

Semester one: Microfabrication; Microfluidics and Lab-on-a-Chip; Bionanotechnology; Nanoelectronic Devices; Introduction to MEMS
Semester two: Nanofabrication and Microscopy; Biosensors; Biotechnology and Therapeutics; Molecular Recognition; Green Electronics; MEMS Sensors and Actuators; Practical Application of MEMS; Medical Electrical and Electronic Technologies; Photonics
Plus three-month independent research project culminating in a dissertation

Visit our website for further information...



Read less
Nanoelectronics and Nanotechnology includes scaling of commercially available logic and memory devices such as MOSFETs; SRAM; FLASH and hard disks drives… Read more

Course Summary

Nanoelectronics and Nanotechnology includes scaling of commercially available logic and memory devices such as MOSFETs; SRAM; FLASH and hard disks drives into the future in which these devices are only a few tens of nanometers long; the course includes the development of new materials and effects that exploit the inherent quantum mechanical nature of devices at that scale; students will learn about device operation, and also get a grounding in how to make and characterise these devices.

Modules

Semester one: Nanoelectronic Devices; Microfabrication; Advanced Memory and Storage; Introduction to MEMS; Microfluidics and Lab-on-a-Chip; Bionanotechnology

Semester two: Green Electronics; Nanofabrication and Microscopy; Quantum Devices and Technology; MEMS Sensors and Actuators; Practical Application of MEMS; Biosensors

Visit our website for further information...



Read less
The Institute for Integrated Micro and Nano Systems brings together researchers from integrated-circuit design, system-on-chip design, image-sensor design, bioelectronics, micro/nano-fabrication, microelectromechanical systems (MEMS), micromachining, neural computation and reconfigurable and adaptive computing. Read more

Research profile

The Institute for Integrated Micro and Nano Systems brings together researchers from integrated-circuit design, system-on-chip design, image-sensor design, bioelectronics, micro/nano-fabrication, microelectromechanical systems (MEMS), micromachining, neural computation and reconfigurable and adaptive computing.

Research interests include:

low-level analogue, low-power, adaptive and bio-inspired approaches
system-on-chip computing
applications from telecommunications to finance and astronomy
In addition we have a strong and growing interest in applications relating to life sciences and medicine, with particular focus on bioelectronics, biophotonics and bio-MEMS.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has laboratory facilities that are unique within the UK, including a comprehensive silicon and MEMS micro-fabrication capability coupled with substantial design and test resources.

The Institute has an excellent reputation for commercialising technology.

Research opportunities

We offer a comprehensive range of exciting research opportunities through a choice of postgraduate research degrees: MSc by Research, MPhil and PhD.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
This unique interdisciplinary programme provides the opportunity for intensive historical, literary and art-historical study. The MA provides a thorough grounding in the skills required for advanced study in the medieval and early modern periods. Read more
This unique interdisciplinary programme provides the opportunity for intensive historical, literary and art-historical study.

The MA provides a thorough grounding in the skills required for advanced study in the medieval and early modern periods. It challenges you to engage with the evidence and methods of different disciplines in order to equip you with the wide range of research techniques crucial for studying the period.

The Centre for Medieval and Early Modern Studies (MEMS)

We are an interdisciplinary centre for the study of Medieval and Early Modern periods. Our 28 teaching staff are drawn from English, History, Architecture, Classical & Archaeological Studies, History & Philosophy of Art, and the Canterbury Archaeological Trust.

MEMS offers a successful, interdisciplinary MA programme, which attracts students from across the world. A thriving community of enterprising, supportive graduate students study for research degrees and benefit from the Centre’s involvement in the prestigious EU-funded Erasmus Mundus doctoral programme, Text and Event in Early Modern Europe (TEEME). We have close relationships with Canterbury Cathedral and the Archaeological Trust, which allow our students access to a wide range of unique historical, literary and material evidence.

National ratings

School of English -

In the Research Excellence Framework (REF) 2014, research by the School of English was ranked 10th for research intensity and 15th for research power in the UK.

An impressive 100% of our research-active staff submitted to the REF and 95% of our research was judged to be of international quality. The School’s environment was judged to be conducive to supporting the development of world-leading research.

School of History -

In the Research Excellence Framework (REF) 2014, research by the School of History was ranked 8th for research intensity and in the top 20 in the UK for research power.

An impressive 100% of our research-active staff submitted to the REF and 99% of our research was judged to be of international quality. The School’s environment was judged to be conducive to supporting the development of world-leading research.

Course structure

As well as a compulsory module in disciplinary methods and an exciting and varied range of optional modules. In addition, you produce a final dissertation of 12-15,000 words, for which you receive one-to-one supervision.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

MT864 - Reading the Medieval Town: Canterbury, an International City (30 credits) - https://www.kent.ac.uk/courses/modules/module/MT864
HI874 - Religion and Society in Seventeenth-Century England (30 credits) - http://www.kent.ac.uk/courses/modules/module/HI874
MT859 - Word and Image in Tudor England (30 credits) - https://www.kent.ac.uk/courses/modules/module/MT859

Assessment

Assessment is by coursework and dissertation. The skills modules are assessed by a combination of coursework and examination.

Programme aims

This programme aims to:

- provide you with a thorough grounding in the techniques and approaches necessary for advanced research in the medieval and early modern periods
- introduce you to a wide range of literary and historical sources and to encourage you to identify and develop your own interests and expertise in the medieval and early modern periods
- enable you to undertake interdisciplinary work
- enable you to understand and use a variety of concepts, approaches and research methods to develop an understanding of the differing and contested aspects between and within the relevant disciplines
- develop your capacities to think critically and to argue a point of view with clarity and cogency, both orally and in written form
- develop your abilities to assimilate and organise a mass of diverse information
- offer you the experience of a variety of teaching, research and study skills
- develop your independent critical thinking and judgement
- promote a curriculum supported by scholarship, staff development and a research culture that provides breadth and depth of intellectual inquiry and debate
- assist you to develop cognitive and transferable skills relevant to your vocational and personal development
- offer you learning opportunities that are enjoyable, involve realistic workloads, are pedagogically based within a research-led framework and offer appropriate support for students from a diverse range of backgrounds.

Careers

The transferable skills gained from this postgraduate programme are enhanced by the University of Kent’s employability initiative and careers advice service. Many of our recent graduates have gone on to careers in heritage, museum or archivist work. Some go on to pursue research in the area, many continuing with PhDs at Kent or other higher education institutions.

Learn more about Kent

Visit us - https://www.kent.ac.uk/courses/visit/openday/pgevents.htmlhttps://www.kent.ac.uk/courses/visit/openday/pgevents.html

International Students - https://www.kent.ac.uk/internationalstudent/

Why study at Kent? - https://www.kent.ac.uk/courses/postgraduate/why/

Read less
We are interested in hearing from students with research proposals covering all aspects of medieval and early modern history, life and culture. Read more
We are interested in hearing from students with research proposals covering all aspects of medieval and early modern history, life and culture.

Academic staff interests include: early modern material culture; late medieval art history; medieval and early modern religious history; Anglo-Saxon archaeology and liturgy; early modern politics; medieval and early modern drama; and textual editing.

At present, research topics include: the Reformation; visual and manuscript culture; community; the plays of John Lyly; medieval ecclesiastical architecture; female sexuality and transexuality; priory management; deviant and vernacular language; and kingship. You will be part of a vibrant and varied community of researchers from different disciplines.

Visit the website https://www.kent.ac.uk/courses/postgraduate/152/medieval-and-early-modern-studies

The Centre for Medieval and Early Modern Studies (MEMS)

We are an interdisciplinary centre for the study of Medieval and Early Modern periods. Our 28 teaching staff are drawn from English, History, Architecture, Classical & Archaeological Studies, History & Philosophy of Art, and the Canterbury Archaeological Trust.

MEMS offers a successful, interdisciplinary MA programme, which attracts students from across the world. A thriving community of enterprising, supportive graduate students study for research degrees and benefit from the Centre’s involvement in the prestigious EU-funded Erasmus Mundus doctoral programme, Text and Event in Early Modern Europe (TEEME). We have close relationships with Canterbury Cathedral and the Archaeological Trust, which allow our students access to a wide range of unique historical, literary and material evidence.

Study support

- Postgraduate resources

Canterbury Cathedral Archives and Library have unparalleled holdings of manuscripts and early printed books. Kent’s Templeman Library holds a good stock of facsimiles, scholarly editions, monographs and journals, and we are within easy reach of the British Library, The National Archives, and other London research libraries. There are good online computing facilities across campus and, in addition, our students have special access to postgraduate computer terminals and the postgraduate student room provided by the School of History.

The Centre runs a weekly research seminar, and special termly, public lectures to which we welcome distinguished speakers. These events are at the heart of the Centre’s activities. We also run a full programme of conferences and colloquia.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Historical Research; English Historical Review; Renaissance Studies; Medium Aevum; Transactions of the Royal Historical Society; and Studies in the Age of Chaucer.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Research areas

The research interests of our staff cover areas as broad as: religion, ideas, material culture, theatre and performance culture, gender, economy, food and drink, legal history, war, visual culture, politics, architecture, history of books and manuscripts, environment and travel, art history, and literature.

Careers

The transferable skills gained from this postgraduate programme are enhanced by the University of Kent’s employability initiative and careers advice service. Many of our recent graduates have gone on to careers in heritage, museum or archivist work. Some go on to pursue research in the area, many continuing with PhDs at Kent or other higher education institutions.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Master’s Programme in Micro- & Nanotechnology Enterprise is an exciting opportunity in which world-leading scientists and successful entrepreneurs are… Read more
The Master’s Programme in Micro- & Nanotechnology Enterprise is an exciting opportunity in which world-leading scientists and successful entrepreneurs are brought together to deliver a one-year Master’s degree combining an in-depth multidisciplinary scientific programme with a global perspective on the commercial opportunities and business practice necessary for the successful exploitation in the rapidly developing fields of nanotechnology and micro-electromechanical systems (MEMS).

The programme is intended for those with a good first degree in the physical sciences and engineering who wish to develop research skills and a commercial awareness in micro- and nanotechnology. It combines cutting-edge science with business practice skills, giving students knowledge and experience of a range of disciplines. This should enable students graduating from the course to evaluate the scientific importance and technological potential of new developments in the field of the field of Micro and Nanotechnology and provides an unparalleled educational experience for entrepreneurs in these fields.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmne

Course detail

Students will:

- be able to develop a discipline-specific terminology to describe and discuss relevant aspects of Micro and Nanotechnology, as well as Business;
- be able to develop their scientific writing skills through lab reports, literature survey, project dissertation, and scientific communication skills through oral presentations;
- be able to develop independence and critical thinking, as well as project management skills;
- have the opportunity develop team project skills.

Format

The programme is modular in structure and lasts ten months. It is envisaged that students attend all modules, which consist of no more than 16 hours of lectures per module with additional discussion groups and personal study time. The students will be examined on all core modules and may select which elective modules they are examined on. The modules are taught in the first two terms and will be followed by formal examinations. The modules are drawn from Science and Technology, Business Management and Innovation strands and so cover the many complexities involved in the processes of discovery and exploitation.

Written or oral feedback is provided after completion of assessed course work. In addition students must sit a mock exam at the beginning of the Lent Term; detailed individual feedback is provided by the Course Directors, who are also available for consultation throughout the academic year.

Assessment

A dissertation of not more than 15,000 words in length (including tables, figure legends and appendices, but excluding bibliography) on a major project, involving (i) in-depth scientific research (following a literature survey in the same scientific field), or (ii) an in-depth case study concerned with a topic in science, business, ethics, law or policy (related to the topic covered during the literature survey). The assessment will include a viva voce examination.

No more than eight essays, each of not more than 3,000 words in length, covering the fields of science, ethics, law, and policy, and the interface of micro- and nanoscience and business.

A literature survey report of not more than 5000 words in length on a scientific topic, to be followed by either a major research project in the same field, or a business, ethics, law, or policy-related case study, concerning the scientific topic.

Course work, which may include written work, group work, and class participation.

Two unseen written examination papers, which may cover all core and elective scientific subjects prescribed in the syllabus.

Five practical assessments.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The Mechanical and Systems Engineering MPhil and PhD allow you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Read more

Course Overview

The Mechanical and Systems Engineering MPhil and PhD allow you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Research degrees are offered through four research groups: Bioengineering, MEMS and Sensors, Fluid Dynamics and Thermal Systems, and Design, Manufacture and Materials.

The School of Mechanical Engineering is one of the top 10 Mechanical Engineering research schools in the UK (RAE 2008). As a postgraduate researcher you will be welcomed as a junior academic colleague rather than a student. In this role we ask you to play a full and professional role in contributing to the School’s objective of international academic excellence.

The School, the Faculty of Science, Agriculture and Engineering, and your supervisory team will support you to develop your research capabilities. We will help you progress with your higher degree and attain a unique skill set, through international conference attendance and research paper submissions.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/mechanical-systems-engineering-mphil-phd/#profile

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/mechanical-systems-engineering-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/mechanical-systems-engineering-mphil-phd/#howtoapply

Read less
Nanoscale Science and Technology research students in nanoLAB cross the traditional disciplinary boundaries of medicine, engineering and the physical sciences. Read more

Course Overview

Nanoscale Science and Technology research students in nanoLAB cross the traditional disciplinary boundaries of medicine, engineering and the physical sciences. This gives you the chance to thrive on interdisciplinary challenges, collaborate with industrial partners and even create your own spin-off company to commercialise the results of your research.

Research Areas

MPhil supervision is available in: micro and nanoscale design, fabrication, manufacturing and manipulation; top-down and bottom-up fabrication; nanoscale materials and electronics; applications of nano and microelectronics in medical science, including cell biology, neuroscience, human genetics and ageing; polymers; self-assembly; chemistry of nanoscale systems; biomolecular engineering - microfluids, bioprobes and biosensor systems, MEMS/NEMS-based sensors and devices.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/nanoscale-science-technology-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/nanoscale-science-technology-mphil-phd/#howtoapply

Read less
This programme is designed as a specialised extension to the study of electronics at undergraduate level. The programme provides students with specialist expertise across a wide range of electronic subjects including microelectronics, hardware design, communications, computer design and digital hardware. Read more

Aim

This programme is designed as a specialised extension to the study of electronics at undergraduate level. The programme provides students with specialist expertise across a wide range of electronic subjects including microelectronics, hardware design, communications, computer design and digital hardware. The programme is normally full-time, starts at the end of September and lasts for 12 months. Electronics with Professional Internship students have the opportunity to complete an industrial placement of up to six months as part of their studies.

Programme Content

The MSc programme consists of a practical project of a research nature (60 CATS points) plus six modules (120 CATS points)
The Postgraduate Diploma programme consists of six modules (120 CATS points).

Modules for both programmes are selected from the list below:

Digital Signal Processing
Intelligent Systems and Control
High Frequency Technology and Design
Microelectronic Devices & Technology
MEMS Devices & Technology
Wireless Communications Systems
Wireless Sensor Systems

In any given year further specialist topics may be available for selection or listed topics may not be offered.

Assessment

Assessment for MSc in Electronics: Coursework and written examination in six modules, dissertation on project.
Postgraduate Diploma: Coursework and written examination in six modules.

Career Opportunities

Our graduates have found that holding a prestigious MSc qualification from one of the UK's top engineering schools has significantly enhanced their job opportunities and employment prospects.

Graduates typically find employment in a wide range of fields including with semiconductor companies, electronic equipment manufacturers, design and service providers, software houses and in other electronic engineering-based industries.

Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
If you have a general engineering and/or science background, this course will provide you with the additional knowledge and skills required to become a power engineer. Read more
If you have a general engineering and/or science background, this course will provide you with the additional knowledge and skills required to become a power engineer.

If you already have an electrical engineering or electronics background, the course enables you to update your knowledge to include the latest developments in renewable energy (including energy from the environment) and smart grids, making use of modern sensing, communication and signal- processing technologies.

The programme consists of five core taught modules, covering the fundamental aspects of the modern power systems and energy conversion technologies that are core in renewable generation and energy storage. You’ll also select three modules (from a choice of six options) to study ‘non-electrical’ technologies that are crucial to the safe and reliable operation of power and energy systems. Alongside the taught modules, you’ll carry out a supervised research/development project that is relevant to real-world industrial needs.

Course Structure

The MSc degree (totalling 180 credits) comprises:
-Eight taught modules (15 credits each), five core modules and three optional modules (see below)
-A research project worth 60 credits (see below)

Core modules

-Electrical Machines and Drives
-Fuel Cells and Energy Storage
-Operation and Control of Power Systems
-Power Electronic Converters and Devices
-Renewable Energy from the Environment

Optional modules (choose 3)

-ASICs, MEMS and Smart Devices
-Heat Transfer Theory and Design
-Optical Communication Systems
-Signal & Image Processing
-Systems Modelling and Simulation
-Antenna, Propagation and Wireless Communication Theory

Individual project

The individual research project is an in-depth experimental, theoretical or computational investigation of a topic chosen by you in conjunction with an academic supervisor.

Read less
This course aims to give suitable graduates an in-depth understanding of the technology, and the drivers for the technology, in the area of Broadband and mobile communications. Read more
This course aims to give suitable graduates an in-depth understanding of the technology, and the drivers for the technology, in the area of Broadband and mobile communications. The course will also provide exposure to current research activity in the field.

Upon completing of the course, students will have a detailed understanding of the current practices and directions in this topic, and will be able to apply them to the task of continuing the roll-out of advanced communication services across the globe.

Course Topics
Data networks and communications, project foundations and management tools, broadband communication systems, technologies for Internet systems, introduction to distributed systems mobile systems, project and dissertation.

Taught Modules:

Data Networks and Communications: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide an end-to-end connection.

Modelling and Design: focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

Broadband Communication Systems: This module aims to provide students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focused on the following aspects: 1) Fundamental concepts, 2) Operating principles and practice of widely implemented communications systems; 3) Hot research and development topics, and 4) Opportunities and challenges for future deployment of broadband communications systems.

Mobile Communication Systems: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

RF and Optical MEMS: This module aims to introduce the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Advanced Sensor Systems: This course aims to provide students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X