• Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Birmingham Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Birmingham Featured Masters Courses
Loughborough University Featured Masters Courses
"medicinal" AND "plants"×
0 miles

Masters Degrees (Medicinal Plants)

  • "medicinal" AND "plants" ×
  • clear all
Showing 1 to 6 of 6
Order by 
The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. Read more
The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. This MSc has been designed in response to ever-increasing interest in the development and use of medicines derived from natural products.

Degree information

This programme aims to train students in the methods used to analyse and characterise medicinal natural products, to examine the safety and efficacy of currently used herbal medicines, analytical and bioassay methods, and the ethnopharmaceutical uses of plants from traditional systems of medicines.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (120 credits), and a research dissertation (60 credits). There are no optional modules for this programme.

Core modules
-Analytical Techniques in Phytochemistry
-Biodiversity and Medicines
-Medicinal Natural Products
-Natural Products Discovery
-Formulation of Natural Products and Cosmeceuticals

Dissertation/report
All students undertake a four-month research project in the third term which culminates in a dissertation. Topics range from natural product isolation and characterisation, synthesis, analysis, and a survey of medicinal products used in the community.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and laboratory-based practical classes. Assessment is through a combination of written examinations, coursework and practical assignments, and the research project and oral presentation.

Careers

Recent graduates of this programme have progressed to careers in herbal, phytopharmaceutical or health food sectors. Some are involved in drug discovery while others pursue a PhD in the UK or overseas.

Why study this degree at UCL?

The programme provides a broad overview of natural product science, the impact of natural products as medicines, their analysis and their place in various societies.

Specifically the programme covers herbal medicines in healthcare and their safety and efficacy, with examples of natural products as medicines. There will also be lectures on the analysis of natural products and their place in the drug discovery process.

A visit to an industrial manufacturer of herbal medicinal products will take place.

Read less
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Read more
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Many drugs listed as conventional medications are derived from plants and were originally administered in plant form.

Over recent years, in their search for novel therapeutic agents, there has been a huge rise in interest from the global pharmaceutical industry centred on the isolation and evaluation of compounds from plants used in medical treatment derived from traditional medicine sources.

Based on the increasing importance of this emerging area of natural product science this programme of study will enable individuals with specific expertise in the regulation and development of plant-based medicines to pursue a career in the rapidly expanding phytopharmaceutical industry or a government regulatory body.

The MSc in Phytopharmaceuticals is a taught postgraduate programme which provides an in depth study of natural products, their analysis, value as medicines and regulatory issues controlling their production and sales.

As a MSc Phytopharmaceutical student, you will:

receive a high quality programme which will provide you with the expertise to work in the pharmaceutical industries emerging area of natural product science
be supported throughout your studies by our experienced, dedicated team of staff
study in excellent facilities, including new refurbished laboratories with the latest analytical equipment and Medicinal Herb Garden.

Programme structure

Phytopharmaceuticals is multi-disciplinary. You will study, plant chemistry, phytochemical analysis, analytical methods, quality control, toxicology, ethnobotany, herbal therapeutics, legislation and regulation of herbal products, and research methods.

In order to be eligible for the award of the Postgraduate Diploma, a student shall have passed the two specialist modules, the optional module and the core module; or one specialist module, the research project and the core module (120 M Level credits). Students obtaining 60 M level credits (by the core module and either specialist module or the research project) may be considered for the award of Postgraduate Certificate in Life Sciences.

In order to be eligible for the award of the Masters degree, a student shall have passed both specialist modules, the optional module, the research project and the core module (180 M level credits).

You will be assessed throughout the programme in practical work and theory. Coursework varies and includes laboratory work, data analysis, essays, presentations and examinations.

Career opportunities

Feedback from industry suggests that natural product science is an expanding area of interest resulting in new employment opportunities for qualified individuals with specific expertise in the regulation and development of plant based medicines. Opportunities also exist in teaching, writing and horticulture.

You may also be interested in UEL's MSc Pharmaceutical Science programme.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
The Division of Life Science offers rigorous postgraduate programs and research opportunities in a range of cutting-edge areas in the field, particularly in neuroscience, structural biology, cell and developmental biology, marine and environmental biology and biotechnology. Read more
The Division of Life Science offers rigorous postgraduate programs and research opportunities in a range of cutting-edge areas in the field, particularly in neuroscience, structural biology, cell and developmental biology, marine and environmental biology and biotechnology.

We strive to provide an inspirational environment for student learning and for tackling the challenges of modern life science.

Our mission is to sustain and promulgate a reputable academic program in life science by achieving excellence in research and education, and by making significant contributions to biotechnological innovations in regional and international arenas. Currently, the Division has a total of 180 postgraduate students, 120 of whom are PhD students.

The Division is home to the State Key Laboratory of Molecular Neuroscience; a recognition of the standard of work being carried out and of its important contribution to Mainland China’s development. In addition, the Division has a large collection of state-of-the-art equipment and is a major stakeholder in HKUST’s Biosciences Central Research Facility.

The MPhil program provides research training in major areas of life science. It enables students to acquire the knowledge, skills, and experience required for research. Submission and successful defense of a thesis based on original research are required.

Research Focus

Research and development within the Division of Life Science emphasizes the following areas:
-Cellular Regulation and Signaling
-Cancer Biology
-Developmental Biology
-Molecular and Cellular Neuroscience
-Macromolecular Structure and Function
-Marine and Environmental Science
-Biotechnology and Medicinal Biochemistry

Faculty members working in these areas form a coordinated research team. Such coordination takes full advantage of the faculty’s expertise in generating innovative development and productive research. At the same time, it creates a stimulating atmosphere in which students experience the challenge of modern research through direct participation.

Facilities

The Division is excellently equipped for research in a broad range of areas. The Animal Care and Plant Care Facility provides a centralized and modern facility for animals and plants. Centralized state-of-the-art facilities for biochemical and cellular studies are provided by the Biosciences Central Research Facility. The Division also has the following facilities:

Cell Culture
Facilities for the cultivation, maintenance, characterization and cold storage of animal and plant cells.

Molecular and Cellular Biology
Major equipment includes fluorescence-activated cell sorters, automatic DNA sequencers, real-time PCR machines, ultracentrifuges, spectrophotometers and spectrofluorimeters, MALDI-TOF / TOF and LC-MS mass spectrometers, HPLC and FPLC, gamma and liquid scintillation counters.

Modern Microscopy
The Division has an array of state-of-the-art imaging facilities including several fluorescence microscopes, confocal laser scanning microscopes, atomic force microscope, total internal reflection fluorescence microscope, STED and STORM superresolution microscopes.

Marine / Environmental Biology
The University is bordered by an extensive shoreline of various habitats and has a 19-foot outboard-motor boat for near-shore operations and a wet laboratory of circulating sea water. A high-quality marine laboratory has been built on the campus waterfront.

Biomolecular Nuclear Magnetic Resonance Spectrometers
Our state-of-the-art NMR facility consists of 500, 750 and 800 MHz NMR spectrometers equipped with cryoprobes for structure-function studies. NMR is used to study structure, dynamics and function of proteins, nucleic acids and other bio-molecules in solution. In addition, NMR can also facilitate drug screening and design.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X