• Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Leeds Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Sussex Featured Masters Courses
Coventry University Featured Masters Courses
"medicinal" AND "chemistr…×
0 miles

Masters Degrees (Medicinal Chemistry)

  • "medicinal" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 75
Order by 
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

-The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
-You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
-All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
-You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry.
-The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses
-Inorganic, organic and physical chemistry
-Medicinal chemistry
-Frontiers of chemistry
-Chemistry problems.
-Special topics from inorganic, organic, and physical chemistry

Accreditation

MSc Chemistry with Medicinal Chemistry is accredited by the Royal Society of Chemistry (RSC).

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:
-Researcher at Piramal Healthcare UK Ltd
-Assistant Lecturer and Researcher at a university

Read less
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. Read more
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. You will study aspects of medicinal chemistry that explore the links between disease, mechanisms of action and the development of safe, effective commercial drugs – pursuing these topics across a number of major health areas such as cancer, heart disease, infectious diseases, neuropharmacology and inflammation.

Key features of the course

•Explores current research and advanced scholarship within medicinal chemistry
•Critically evaluates research methodologies
•Concludes with a substantial piece of independent research on a topic of your choice.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see Fees and funding.

Course details

Modules

We recommend that you take the modules in the order listed below. However if you would prefer to start in February 2017, you can do so with Molecules in medicine (S807) before studying Developing research skills in science (S825) from October 2017. You must have successfully completed S807 before studying the project module, which we expect you to as the final module for this qualification. You must have successfully completed the taught modules before you undertake the project module as the topic you choose for your research project must be linked to medicinal chemistry.

To gain this qualification, you need 180 credits as follows:

Compulsory modules

• Developing research skills in science (S825)
• Molecules in medicine (S807)
• Concept to clinic (S827)

MSc project module for MSc in Medicinal Chemistry (SXM810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. Please note that credit transfer is not available for the MSc project module (SXM810). You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The Master’s programme Organic Synthesis and Medicinal Chemistry aims to provide students with knowledge on the design, synthesis and evaluation of low-molecular weight biologically active organic substances. Read more
The Master’s programme Organic Synthesis and Medicinal Chemistry aims to provide students with knowledge on the design, synthesis and evaluation of low-molecular weight biologically active organic substances. This programme offers an advanced level of knowledge with regard to organic synthesis and pharmaceutically active compounds, as well as supplementary knowledge of medicinal chemistry.

Low-molecular weight biologically active substances are at the core of Life Science Research. Knowledge of molecular structures and their properties is crucial to our understanding of a vast cross section of science, ranging from pharmaceutically active compounds to organic electronics and their incorporation into diagnostic tools as biosensors.

The main focus of this programme is the comprehension of organic synthesis pertaining to biologically active compounds. The programme begins with courses in organic chemistry and organic synthesis, building from the basic concepts to the advanced level, followed by an introduction in medicinal chemistry. It also covers protein chemistry, which broadens the students’ knowledge in the field of bioorganic chemistry.

The programme culminates by bringing together the skills and knowledge acquired in a longer thesis project, in either a research group or industry. Our research facilities are well equipped with all the necessary analytical/diagnostic equipment you would normally find in many industrial research facilities.

Read less
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. Read more
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. This MSc in Medicinal Chemistry will allow you to specialise in this area and explore the wider context of drug discovery, business and healthcare.

On the course, you will develop the specific technical knowledge, understanding and laboratory skills needed to design drugs. You will also investigate the relationship between medicinal chemists and drug discovery companies with stakeholders such as patients, investors and governments.

Read less
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses. Read more
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses.

It gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
-Disease targets
-Design of selectively-acting prototype drugs
-Synthetic and mimetic strategies in producing drug prototypes
-The refinement of activity when a promising compound is identified
Case studies of well-known drugs are used to illustrate the principles

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

There is a six-week preliminary conversion course starting 1 August that covers basic and underpinning organic chemistry and organic spectroscopy. Successful completion and examination results in the conversion course will allow you to transfer to the MSc in Medicinal Chemistry.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
-Nuclear Magnetic Resonance (NMR)
-Ultra-Violet (UV)
-Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
-High Pressure Liquid Chromatography (HPLC)
-Gas Chromatography (GC)
-Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
-X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

Course content

-Conversion Course
-Advanced Organic Chemistry
-Chemical Biology
-Principles of Modern Medicinal Chemistry
-Advanced Biochemical Methods
-Project & Dissertation

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis.

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Read less
This course gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body. Read more

Why this course?

This course gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
- disease targets
- design of selectively-acting prototype drugs
- synthetic and mimetic strategies in producing drug prototypes
- the refinement of activity when a promising compound is identified

Case studies of well-known drugs are used to illustrate the principles.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/medicinalchemistry/

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
- Nuclear Magnetic Resonance (NMR)
- Ultra-Violet (UV)
- Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
- High Pressure Liquid Chromatography (HPLC)
- Gas Chromatography (GC)
- Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
- X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

English language requirements

English language minimum IELTS 6.5.
We offer a range of English Language course for students who wish to improve their English. Module 3 is free of charge to all applicants and we strongly recommend all international students to take advantage of this free course. This is an excellent way to not only improve your English but to get to know Glasgow and the University and make new friends.
We also offer comprehensive English Language pre-sessional and Foundation courses for students whose IELTS scores are below 6.5.
For students with IELTS of 6.0, an offer can be made conditional on completing Modules 2 and 3 of Pre-sessional English.
For students with IELTS of 5.5, an offer can be made conditional on completing Modules 1, 2 and 3 of Pre-sessional English.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis (MSc students only).

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

The aims of the programme are:

- To acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences

- To enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry

- To develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations

- To gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems

- To enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www2.gre.ac.uk/study/courses/pg/pharmsci/mps

Science - Pharmaceutical

The aim of our programmes is to produce graduates with a sound knowledge of chemistry, biology and design of dosage forms, a combination that was lacking in the pharmaceutical industry. Graduates are expected to gain excellent foundational knowledge that will open up many varied employment opportunities.

We have recruited excellent staff pulling in experience from the pharmaceutical industry, analysts working in the area of pharmaceutical analysis and world-class experts in the design and action of drug dosage forms.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Drug Discovery and Medicinal Chemistry (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
MSc Pharmaceutical Sciences Research Project (60 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Drug Discovery and Medicinal Chemistry (30 credits)
MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643707

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more

Course Overview

This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/drug-chemistry-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/drug-chemistry-msc/#howtoapply

Read less
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments. Read more
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments.

PROGRAMME OVERVIEW

With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career.

Our MRes qualification is also a convenient entry point into the UK academic system for overseas students, and many of our MRes graduates go on to successfully complete a PhD.

Our academics are at the forefront of their field, having recently discovered a method for the rapid detection of drugs from a fingerprint; and a naturally sourced, environmentally safe chemical for the treatment of an important agricultural pathogen.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. It consists of three taught modules and a research project, which contributes 75 per cent of the final credits to the degree and includes the laboratory based research, library work, COSHH, record keeping and writing the dissertation.

We would normally expect the laboratory based part of the project to be, on average, two to three full days per week during the teaching semesters and five days per week during non-teaching times (for example, over the Christmas, Easter and summer breaks).

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Management, Communication and IT Skills
-Advanced Spectroscopy
-Biomolecules and Medicinal Chemistry
-Advanced Topics in Organic Chemistry
-Advanced Topics in Inorganic Chemistry
-Advanced Topics in Physical Chemistry
-Advanced Polymer Materials and Nanotechnology
-Advanced Medicinal Chemistry
-Advanced Methods in Forensics
-MRes Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

-The aim of the MRes is training in the more laboratory-based aspects of chemical research
-The objectives and learning outcomes/skills are that the student will be able to: assess, plan, carry out, analyse, interpret and disseminate (all with appropriate training and supervision) a significant piece of chemistry research to an extent that results in a satisfactory assessment of a dissertation and viva
-In addition, competence in related (non-laboratory based) aspects of research training will be assessed via examination (formal exam and/or coursework) of lecture/workshop-based modules
-A knowledge of discipline-related aspects of professional training including data analysis, literature searching and reporting and presentation techniques

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-Knowledge and understanding of the scientific method
-Knowledge and understanding of research ethos and strategy
-Knowledge and understanding of advanced communication skills
-Knowledge and understanding of reporting of technical concepts
-Knowledge and understanding of critical analysis
-Knowledge and understanding of advanced aspects of chemistry including subjects at the frontiers of the discipline
-Knowledge and understanding of advanced principles in a research led area of chemistry
-Knowledge and understanding of Health and Safety legislation
-Knowledge and understanding of statistics for data analysis
-Knowledge and understanding of the principles of experimental design

Intellectual / cognitive skills
-The ability to plan and carry out an advance research project
-The ability to analyse and solve problems of technical nature under consideration of various constraints
-The ability to make effective and efficient decisions in an environment of conflicting interests
-The ability to think strategically
-The ability to synthesise and critically evaluate the work of others
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to self-reflect to improve behaviour

Professional practical skills
-Assessment of the research literature
-Risk assess experiments / procedures
-Design and set up experiments using the most appropriate methods
-Carry out laboratory work safely
-Deal safely with unexpected events / results
-Apply prior knowledge to new situations

Key / transferable skills
-Planning
-Organisation
-Independent working
-Apply prior knowledge to unfamiliar problem
-Using initiative
-Time-management
-Personal development planning
-Use of word processor, spreadsheet, presentation, graphical software packages
-Management of data
-Effective literature / patent searching

RESEARCH

The Chemistry programme is run within the Faculty of Engineering and Physical Sciences and the cross-faculty Surrey Materials Institute (SMI). Staff in the Department of Chemistry have expertise which includes all aspects of chemistry:
-Inorganic
-Medicinal
-Physical
-Physical organic
-Materials
-Polymers
-Nanotechnology
-Analytical

You will receive a thorough education in advanced aspects of chemistry, but also undertake independent research via a project, guided by a dedicated and experienced supervisor.

Projects are available across a range of topics in chemistry, and may extend into areas of biology, forensics or materials science. Past MRes students have continued to further (PhD) education and to posts in research in industry.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Train as a pharmaceutical scientist at Liverpool John Moores University on this new, Masters-level Drug Discovery and Design course. Read more
Train as a pharmaceutical scientist at Liverpool John Moores University on this new, Masters-level Drug Discovery and Design course. Gain hands-on laboratory experience, carry out novel research and enjoy excellent employment prospects.

•Complete this masters degree in one year (full time)
•Explore molecular chemistry and the drug creation aspect of the pharmaceutical industry as you train to become a qualified pharmaceutical scientist
•Gain hands-on experience in relevant laboratory techniques with a 12 week research project
•Benefit from LJMU's £12 million investment in state-of-the-art laboratory facilities
•Enjoy excellent graduate employment prospects

Enhance your subject knowledge and gain hands-on experience with this new Masters course, taught by tutors with personal industry experience and strong manufacturing connections.

Completing a PG Cert by the end of the first semester on this course, you will devote the next semester to Diploma level study and then undertake a 12 week laboratory project for the final part of your MSc.
There are opportunities for topic specialisation and the chance to undertake cutting edge research.

You will learn in a supportive, flexible academic environment, studying at the Byrom Street site, right in the heart of Liverpool city centre.

The School's laboratories are currently undergoing a £12 million upgrade. Here you’ll find chromatographic equipment and spectrometers, tableting and particle sizing equipment, computing laboratory and state-of-the-art molecular modelling software, electron spin resonance spectrometers and thermal analysis equipment, including dynamic differential scanning calorimetry plus chromatography, LC-MS and NMR instruments.

In terms of independent study support, the Avril Robarts Library, open 24/7 during semesters, is located just minutes away on Tithebarn Street.

Please see guidance below on core and option modules for further information on what you will study.

Research Methods
Gain the necessary core skills to effectively design, plan, perform and report scientific research.
Analytical Techniques, Structure and Function in Organic Molecules
Understand the application of analytical chemistry to pharmaceutical materials and the effect of functional group chemistry on both the structure and consequent properties of relevant molecules.
Physicochemical Properties of Therapeutic Agents
Understand the physical and chemical properties of both small molecules and macromolecules and how these influence their in vitro and in vivo behaviour as active pharmaceutical ingredients.
Medicinal Chemistry
Understand the application of medicinal chemistry to the drug discovery process and the requirement for a modern synthetic approach to the supply of relevant molecules.
Natural Products
Understand various aspects of chromatographic, spectroscopic and assay techniques and approaches pertinent to natural products drug discovery, and the chemistry of natural products.
Research Project
Complete an independent, in-depth, 12 week scientific study related to the pharmaceutical sciences.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
Our Pharmacy PhD/MSc by Research in the School of Pharmacy aims to equip graduates with the skills necessary to contribute to a research portfolio encompassing pharmacy practice, pharmaceutics and medicinal chemistry and drug discovery. Read more
Our Pharmacy PhD/MSc by Research in the School of Pharmacy aims to equip graduates with the skills necessary to contribute to a research portfolio encompassing pharmacy practice, pharmaceutics and medicinal chemistry and drug discovery.

As part of the School of Pharmacy, students will work amongst the very best researchers to produce original and distinctive globally leading research demanded by the expanding role of the pharmacist and pharmaceutical researcher.

Our PhD/MSc by Research program is intended for students who wish to obtain high quality research training that will enable them to conduct independent investigative research.

You can choose from a range of research areas within Pharmacy covering:

- Pharmacy Practice
- Pharmaceutics
- Medicinal Chemistry and Drug Discovery
- Find out more about each research theme.

You will work closely with your supervisory team who will help you clarify your project and support your development. Your thesis will represent an original contribution to knowledge and demonstrate independent judgement.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This program provides a direct pathway to a professional postgraduate qualification in Pharmacy for registration as a pharmacist in Australia. Read more

Introduction

This program provides a direct pathway to a professional postgraduate qualification in Pharmacy for registration as a pharmacist in Australia.

Course description, features and facilities

This master's degree course provides advanced study in the areas of pharmacy practice, clinical pharmacy, pharmaceutics, medicinal chemistry, pharmacotherapy and health systems, and includes practical training in community and hospital pharmacy.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Take all units (120 points):

S1 PHCY5601 Introduction to Pharmacy Practice
S2 PHCY5602 Pharmacy Practice and Pharmacotherapy 1
S2 PHCY5603 Applied Pharmacotherapy
S2 PHCY5605 Clinical Science for Pharmacy I
S1 PHCY5606 Foundations of Clinical Science
S1 PHCY5609 Current Developments in Nutrition, Health and Biotechnology
S1 PHCY5610 Physical Pharmacy and Biopharmaceutics
S2 PHCY5611 Medicinal Product Formulation
S1 PHCY5612 Pharmacy Practice and Pharmacotherapy 2
S2 PHCY5613 Pharmacy Management and Pharmacoeconomics
S2 PHCY5614 Pharmacy Research Project (12 points)
NS PHCY5615 Pharmacy Placement I (12 points)
NS PHCY5616 Pharmacy Placement II (12 points)
S1 PHCY5617 Clinical Science for Pharmacy II
S1 PHCY5618 Pharmaceutical Chemistry and Analysis
S2 PHCY5619 Medicinal Chemistry for Pharmacy
S1 PUBH5763 Leadership and Management of Health Services

Professional recognition

The Master of Pharmacy is fully accredited by the Australian Pharmacy Council. Graduates are eligible to register to practise as a pharmacist in Australia and New Zealand after completion of an internship in a community or hospital pharmacy.

Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Read more
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

Degree information

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Optional modules - students will select three from the following Drug Design MSc modules:
-Bioinformatics and Structural Biology as applied to Drug Design
-Biological Molecules as Therapeutics
-Biophysical Screening Methods, X-ray Crystallography, Protein NMR and Phenotypic Screening
-Cheminformatics and Modelling for Drug Design
-Fragment-based Drug Design
-Target Selection – Commercial and Intellectual Property Aspects
-Target Selection – Scientific Grounds

Core modules - plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching):
-Investigating Research
-Researcher Professional Development

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD level research. The first cohort of students on the Drug Design MRes graduating in 2015 have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities.

Employability
The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X