• University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Staffordshire University Featured Masters Courses
Durham University Featured Masters Courses
University of Dundee Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"medicinal"×
0 miles

Masters Degrees (Medicinal)

We have 98 Masters Degrees (Medicinal)

  • "medicinal" ×
  • clear all
Showing 1 to 15 of 98
Order by 
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. Read more
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. This MSc in Medicinal Chemistry will allow you to specialise in this area and explore the wider context of drug discovery, business and healthcare.

On the course, you will develop the specific technical knowledge, understanding and laboratory skills needed to design drugs. You will also investigate the relationship between medicinal chemists and drug discovery companies with stakeholders such as patients, investors and governments.

Distinctive features:

• Available on a one year full-time or three year part-time basis.
• Explore medicinal chemistry in a wider industrial context, including how businesses interact with patients and investors.
• Specialise in an area of interest to you with an end of course research project.
• Some industrial and academic placements are available in the UK or abroad for the research project.
• Network and build contacts with industry professionals who are frequently invited to present guest seminars.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the skills required by contemporary medicinal chemists, such as the techniques and trends in modern drug discovery. We will also look in more detail at the modelling of biological macromolecules and drug targets. We will then follow the process of drug development through from laboratory to clinic.

Upon successful completion of part one, you will progress to part two, the summer research project. We will make a range of project options available to you from the field of medicinal chemistry. For this project, depending on the subject you choose, you may work with a research group in the School of Chemistry or our partner, the School of Pharmacy and Pharmaceutical Studies. You may, if available, also be able to complete this project with one of our industrial partners or within another academic institution in the UK or abroad.

Core modules:

Colloquium
Key Skills for Postgraduate Chemists
Drug Discovery Chemistry
Techniques in Drug Discovery
Drug Targets
Drug Development from Laboratory to Clinic
Trends in Drug Discovery
Practical Medicinal Chemistry
Research Project

Optional modules:

Module title Module code Credits
Modelling of Biological Macromolecules
Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Biocatalysis II - Industrial Applications of Biocatalysis
Bioinorganic Chemistry
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Advanced Techniques in Organic and Biological Chemistry
Analytical and Structural Techniques in Chemical Biology
Bio-imaging Applications of Coordination Chemistry
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, case studies, computer-aided sessions, practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field. You may have the opportunity to complete your project during a placement in industry or with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We will also invite industry experts for seminars with our students within one of the core modules. Students will also benefit of the weekly seminars organized by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We will provide regular feedback on your workload, written and oral depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are happy to give advice and guidance on your progress. We aim to provide you with feedback within two weeks of you submitting an assessment.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use coursework, assessed workshops and presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Employment opportunities for successful graduates include the expanding worldwide pharmaceutical industry, where many choose to specialise in the research and development of new drugs. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Placements

For the end of course research project we may have some placements available with one of our industrial partners or at another UK or overseas academic institution that we have an agreement with. Please enquire for further details.

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. Read more

The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. This MSc has been designed in response to ever-increasing interest in the development and use of medicines derived from natural products.

About this degree

This programme aims to train students in the methods used to analyse and characterise medicinal natural products, to examine the safety and efficacy of currently used herbal medicines, analytical and bioassay methods, and the ethnopharmaceutical uses of plants from traditional systems of medicines.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (120 credits), and a research dissertation (60 credits).

Core modules

  • Analytical Techniques in Phytochemistry
  • Biodiversity and Medicines
  • Medicinal Natural Products
  • Natural Products Discovery
  • Formulation of Natural Products and Cosmeceuticals

Optional modules

  • There are no optional modules for this programme.

Dissertation/report

All students undertake a four-month research project in the third term which culminates in a dissertation. Topics range from natural product isolation and characterisation, synthesis, analysis, and a survey of medicinal products used in the community.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and laboratory-based practical classes. Assessment is through a combination of written examinations, coursework and practical assignments, and the research project and oral presentation.

Further information on modules and degree structure is available on the department website: Medicinal Natural Products and Phytochemistry MSc

Careers

Recent graduates of this programme have progressed to careers in herbal, phytopharmaceutical or health food sectors. Some are involved in drug discovery while others pursue a PhD in the UK or overseas.

Why study this degree at UCL?

The programme provides a broad overview of natural product science, the impact of natural products as medicines, their analysis and their place in various societies.

Specifically the programme covers herbal medicines in healthcare and their safety and efficacy, with examples of natural products as medicines. There will also be lectures on the analysis of natural products and their place in the drug discovery process.

A visit to an industrial manufacturer of herbal medicinal products will take place.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more

The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

  • The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
  • You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
  • All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
  • You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
  • You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
  • Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
  • The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
  • With 92% overall student satisfaction in the National Student Survey 2017, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

  • Inorganic, organic and physical chemistry
  • Medicinal chemistry
  • Frontiers of chemistry
  • Chemistry problems.
  • Special topics from inorganic, organic, and physical chemistry.

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:

  • Researcher at Piramal Healthcare UK Ltd
  • University Researchers and Lecturers


Read less
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. Read more
How are drugs designed? This qualification focuses on the latest developments in this critical area of contemporary medical therapy, while developing a wide range of skills associated with postgraduate study. You will study aspects of medicinal chemistry that explore the links between disease, mechanisms of action and the development of safe, effective commercial drugs – pursuing these topics across a number of major health areas such as cancer, heart disease, infectious diseases, neuropharmacology and inflammation.

Key features of the course

•Explores current research and advanced scholarship within medicinal chemistry
•Critically evaluates research methodologies
•Concludes with a substantial piece of independent research on a topic of your choice.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see Fees and funding.

Course details

Modules

We recommend that you take the modules in the order listed below. However if you would prefer to start in February 2017, you can do so with Molecules in medicine (S807) before studying Developing research skills in science (S825) from October 2017. You must have successfully completed S807 before studying the project module, which we expect you to as the final module for this qualification. You must have successfully completed the taught modules before you undertake the project module as the topic you choose for your research project must be linked to medicinal chemistry.

To gain this qualification, you need 180 credits as follows:

Compulsory modules

• Developing research skills in science (S825)
• Molecules in medicine (S807)
• Concept to clinic (S827)

MSc project module for MSc in Medicinal Chemistry (SXM810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. Please note that credit transfer is not available for the MSc project module (SXM810). You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings. Read more

Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings.

The knowledge and skills acquired in the course will leave graduates well equipped to compete for positions related to 'drug discovery' in chemical, pharmaceutical or biotechnological companies.

The degree consists of advanced lecture courses in:

  • Synthetic Organic Chemistry
  • Chemical Biology
  • Medicinal Chemistry
  • Biophysical Chemistry

These are studied concurrently with a predominantly practical based course offering an introduction to research methods.

Students then proceed to a period of full-time research project work, leading to the submission of their Masters dissertation.

Programme structure

Lectures are given by leading researchers in the area of medicinal and biological chemistry.

The lecture courses are supported by tutorial sessions and assessed by examination in May.

The Introduction to Research Methods course includes an exciting problem solving exercise where you learn important skills such as Communicating Science, Innovation, Dealing with Intellectual Property and Grant Application Writing, together with a literature survey and written report, defining the scope of the subsequent individual research project work.

Learning outcomes

On completion of the course, students should have developed a depth of comprehension and critique in the core elements of their subject area, including:

  • critical analysis and management of data;
  • judging the relationship between theory and methodology;
  • assessment of the appropriate methods of data collection/analysis to address the research question;
  • assessment of relevance of previous studies;
  • critical thinking.

Additionally they will have enhanced their professional/practical skills through:

  • experience of research design and management;
  • advanced instrumentation or techniques;
  • production of scientific reports.

Students will also have the opportunity to develop transferable skills such as:

  • written, visual and oral delivery and dissemination of research findings;
  • interpersonal and communication skills;
  • computing proficiency;
  • organisation skills.

Career opportunities

Graduates are well suited to take up roles in the chemical and pharmaceutical industries, either in research and development or sales and marketing. You will gain valuable work experience in a real-life research environment.

Alternatively, a Masters degree is a precursor to a PhD degree.

Our courses teach students the valuable skills they need to also move into other areas outside chemistry. Careers in IT, management or finance are possibilities after completing your degree.



Read less
This MRes Pharmaceutical and Medicinal Science accredited course covers a diverse range of materials, pharmaceutical and medicinal research and includes a substantial research led project. Read more

This MRes Pharmaceutical and Medicinal Science accredited course covers a diverse range of materials, pharmaceutical and medicinal research and includes a substantial research led project.

You can expand your interests further by selecting a pharmaceutical led research project within one of our diverse range of internationally recognised pharmaceutical and medicinal science research groups (alongside PhD students and post doctoral research fellows).

Accreditation is from the Royal Society of Chemistry.

Modules

  • Organic synthesis and characterisation of biologically active compounds
  • Chemotherapeutics
  • Research methods and independent study
  • Research project

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. Read more

The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. It also covers protein chemistry and biomolecular design, preparing you for a career in the pharmaceutical industry.

Biologically active substances with low molecular weight represent the core of life-science research. Knowledge of molecular structures and their properties are crucial to our understanding of vast scientific areas, from pharmaceutically active compounds in designer drugs to organic electronics and their incorporation into diagnostic tools such as biosensors. Our research facilities are well equipped with all the necessary analytical and diagnostic tools found in industrial research facilities, which will advance your practical capabilities.

Organic and medicinal chemistry

This master’s programme aims to provide students with knowledge on the design, synthesis and evaluation of low molecular weight biologically active organic substances. The programme begins with courses in organic chemistry and organic synthesis, building from the basic concepts to the advanced level, followed by an introduction in medicinal chemistry and pharmaceutical technology. It also covers protein chemistry and biomolecular design, which broadens your knowledge in the field of bio-organic chemistry. A key part of the programme is a one-year degree project, undertaken either in a research group at LiU or in industry.



Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Delivery

The course is delivered through the School of Chemistry in collaboration with the Northern Institute of Cancer Research and the Faculty of Medical Sciences. The School will provide personal study support throughout your course.

Your work is in chemistry and biology laboratories using modern analytical equipment with access to computer clusters, specialist computer software, online resources, an extensive library and dedicated study areas. All teaching takes place at the university's campus in the centre of Newcastle upon Tyne.

Facilities

The School of Chemistry has modern teaching and research facilities along with major research strengths in drug and medicinal chemistry. Our new teaching laboratories, costing £1.9 million, have recently opened.

Read less
The MSc Pharmaceutical Science programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Science programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical science from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical science to support current and future developments of pharmaceutical and related science
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Full time

Year 1

Students are required to study the following compulsory courses.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Assessment

Students are assessed through examinations, coursework and a dissertation.

Careers

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.



Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology. Read more
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology.

Research in the School of Chemistry is organised into the following groups:

Medicinal Chemistry and Chemical Biology

Our strength in medicinal chemistry is evident through our track record of successful research. This has included the discovery of drugs that have progressed to clinic. We have core capacity in:
-Anti-cancer drug discovery
-Biomolecular imaging
-Computational chemistry
-Chemical biology

Nanoscience and Materials

Our research develops new methods to synthesise, characterise and improve our understanding of materials. We focus on materials with useful nanoscale properties.

Photonic Materials

Photonic materials refer to systems that respond to stimulation by light. These can range from single molecules to intricate architectures and molecular devices. Many systems focus on:
-Converting sunlight into chemical potential
-The concentration of excitonic energy.

We focus on understanding fundamental principles by using spectroscopic examination.

Structure and Dynamics

Structure underpins the majority of research in chemistry, biology and materials science. The trouble is, the world is dynamic and not static. This means that understanding how structures evolve during a chemical reaction is critical. Our research relates to fundamental and applied research fields over broad time ranges.

Synthesis, Reactivity and Catalysis

This research group combines the expertise of organic and inorganic chemists. Our research aims to advance fundamental knowledge and capabilities in synthesis and reactivity. We focus on the elements s, p, d and f blocks across the periodic table. Through this study we can develop new and improved materials and catalytic processes.

Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less

Show 10 15 30 per page



Cookie Policy    X