• Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
University of Manchester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Cambridge Featured Masters Courses
"medical" AND "virology"×
0 miles

Masters Degrees (Medical Virology)

We have 19 Masters Degrees (Medical Virology)

  • "medical" AND "virology" ×
  • clear all
Showing 1 to 15 of 19
Order by 
In the era of AIDS, avian and swine Influenza, and other emerging viral infections, the importance of medical virology as a co-discipline with medical microbiology is increasingly recognised. Read more
In the era of AIDS, avian and swine Influenza, and other emerging viral infections, the importance of medical virology as a co-discipline with medical microbiology is increasingly recognised.

The MSc and Postgraduate Diploma in Medical Virology are intensive full-time or part-time postgraduate taught courses encompassing the medical and molecular aspects of virology, bacteriology and mycology, as well as immunity to infection and epidemiology.

You will explore the current issues and concepts in medical virology, and acquire the academic and practical skills necessary to make independent, informed judgements in relation to these issues.

A unique feature of this course is the focus on practical, laboratory-based teaching; you will spend time in the laboratory, learning how to be a virologist.

We aim to give you a theoretical and practical understanding of medical virology, which will be important if you want to follow a career in clinical sciences or academic or industrial research.

The programme runs in parallel with the MSc in Medical Microbiology and the MSc in Medical Mycology.

Aims

We aim to produce graduates with an understanding of and expertise in microbiology, with a particular focus on medical virology.
You will develop an understanding of the scientific basis of established and novel medical virology concepts, as well as the specialist knowledge, practical skills and critical awareness required to pursue a career in medical virology.

Special features

This course has a significant component of practical-based teaching, ensuring that you obtain maximum exposure to the practical and theoretical aspects of a wide range of clinically relevant pathogens.

This will result in practical skills that are valued by potential employers.

Teaching and learning

Teaching is delivered using lectures, seminars, tutorials and comprehensive practical classes. Other teaching includes the use of face-to-face sessions and blended learning methods, with some material delivered and assessed online.

Coursework and assessment

You will be assessed via continual assessment and formal theory and practical examinations.

The course is delivered by academics from the University and NHS specialists in infectious disease and medical microbiology.

Career opportunities

Our graduates typically find employment in the NHS and related organisations, or as medical microbiologists in industrial and pharmaceutical settings.

In addition, many graduates progress to PhD study and a research or academic career.

The course is also useful if you work or plan to work in developing countries that need expertise in and knowledge of the existing and emerging virological and microbiological challenges facing developing communities.

Accrediting organisations

The MSc is accredited by the Institute of Biomedical Scientists (IBMS).

Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
Programme description. This new three-year, part-time, online postgraduate programme leads to the degree of Masters of Science in Clinical Microbiology and Infectious Diseases (CMID). Read more

Programme description

This new three-year, part-time, online postgraduate programme leads to the degree of Masters of Science in Clinical Microbiology and Infectious Diseases (CMID).

Aimed at junior doctors currently undergoing, or about to undertake, specialty training in an infection discipline, this programme is open to trainees in the UK and worldwide.

This degree will also be attractive to those who have completed their training but wish to fulfill continuing medical education requirements or those who wish obtain a formal qualification in Clinical Microbiology and Infectious Diseases.

The programme is aligned with JRCPTB and RCPath training in infection disciplines: Combined Infection Training and Higher Specialty Training in Infectious Diseases, Medical Microbiology and Medical Virology.

This programme is designed to support trainees/specialists in preparation for FRCPath Part 1/Diploma in Infection, Infection Specialty end of training assessments and hospital-based practice.

Programme participants will have access to key texts and research bases and will have direct contact with leading clinicians and clinical scientists, providing a repository of information on infection disciplines that can be accessed at any time.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to the University of Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

This programme is taught entirely online. The structure of the degree is designed to meet the needs of trainees and specialist practitioners from all over the world.

Courses are offered as five week courses, each worth 10 credits. Courses in Year 1 are compulsory. Year 2 is a mix of compulsory and optional modules.

Year 1:

  • Introduction to Immunology
  • Science and biology of bacteria
  • Science and biology of viruses
  • Science and biology fungi, parasites and prions
  • Laboratory practise in microbiology, virology and serology
  • Anti-infective therapy and resistance

Year 2:

  • Immunopathology
  • Molecular diagnostics of infection
  • Community acquired infections and public health
  • Infection prevention & control
  • HIV infection and other immune-compromised patients
  • Clinical syndromes and infection
  • The returning traveller: Diagnosis, investigation and management of imported infection
  • Bioinformatics and study design in infectious diseases
  • Emerging Infectious Diseases

Year 3:

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Please contact the programme team for more information about available courses and course start dates.

Flexible study

The programme also offers the opportunity to take a Postgraduate Certificate (60 credits), either part-time over 9 months or on an intermittent basis over 2 years; or a Postgraduate Diploma (120 credits), either part-time over 21 months or on an intermittent basis over 4 years.

Please contact us before submitting an application if you are interested in applying to the Certificate or Diploma programme.

Career opportunities

This unique programme will offer the student the knowledge and skills required to enhance their career progression in clinical or academic medicine. The programme will offer an alternative to traditional classroom based research training for those candidates who do not wish to take time away from their professional commitments.



Read less
Our course is ideal if you are a graduate looking to develop your skills as a microbiologist. Read more
Our course is ideal if you are a graduate looking to develop your skills as a microbiologist.

The MSc and postgraduate diploma in Medical Microbiology are intensive full-time or part-time postgraduate taught courses encompassing the medical and molecular aspects of bacteriology, virology, mycology and immunity to infection.

Our microbiology course is unique because you will spend much of your time actually in the laboratory, learning how to be a microbiologist.

We aim to give you a significant level of theoretical and practical understanding of the subject, which will be important if you want to follow a career in clinical sciences or academic and industrial research.

The course runs in parallel with the MSc in Medical Virology and the MSc in Medical Mycology.

The MSc Medical Microbiology course has its roots in a prestigious qualification developed in the early 1920s by Professor WWC Topley.
As such, it can be considered to be the oldest taught postgraduate microbiology qualification in the country, and probably in the world.

Aims

We aim to provide you with an understanding of the scientific basis of traditional and modern microbiological concepts.
In addition, you will develop the knowledge, specialist practical skills and critical awareness needed to pursue a career in medical microbiology.

Special features

This course has a significant component of practical-based teaching, ensuring that you gain maximum exposure to the practical and theoretical aspects of a wide range of clinically relevant pathogens. You will gain practical skills that are valued by potential employers.

Teaching and learning

Teaching is delivered using lectures, seminars, tutorials and comprehensive practical classes.

Other teaching includes the use of face-to-face sessions and blended learning methods with some material delivered and assessed online.

Coursework and assessment

You will be assessed via continual assessment and formal theory and practical examinations. The course is delivered by academics from the University and NHS specialists in infectious disease and medical microbiology.

Career opportunities

Our graduates typically find employment in the NHS and related organisations, or as medical microbiologists in industrial and pharmaceutical settings.

In addition, many graduates progress to PhD study and a research or academic career.

Accrediting organisations

The MSc is accredited by the Institute of Biomedical Scientists (IBMS).

Read less
Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. You will also explore advanced medical microbiology, studying specific global health issues and the procedures involved in medical diagnostics. Read more
Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. You will also explore advanced medical microbiology, studying specific global health issues and the procedures involved in medical diagnostics.

Gain advanced laboratory skills and an in-depth knowledge of investigative methods being applied within the search for novel antimicrobial agents.

You will carry out extensive practical investigations, including quantifying the antimicrobial effects of compounds against specific microorganisms, or studying the mechanisms of microbial resistance to therapeutics. You'll have access to Class 2 microbiology facilities, along with cell culture, molecular virology and epigenetic research methods. With our new biomedical sciences research laboratory you will be able to conduct project work in a dedicated research environment and benefit from an enhanced range of equipment.

- Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008.

Visit the website http://courses.leedsbeckett.ac.uk/microbiology_biotechnology

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will be able to go into a range of careers, including those within pharmaceutical companies, food manufacturing, chemical facilities or developing further investigative and innovative research. A move into a more senior position will be available to you, such as senior researcher or laboratory analyst roles, where you would be involved in designing research projects and analysing the data generated.

- Medical Research Scientist
- Labratory Analyst
- Microbiologist

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will spend a considerable proportion of your time in a hands-on environment, spending over 200 hours within the biomedical science laboratories, completing practicals and working on a specific research project that interests you and aligns with our expertise.

We will give you access to Class 2 microbiology facilities, along with cell culture and micro-electric fabrication equipment. With our new dedicated biomedical sciences research laboratory (opened in 2013) you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

You'll benefit from working with a first class teaching team. One of our lecturers, Dr Margarita Gomez Escalada, developed internationally-recognised research data on treating acne using the ingredient thyme, with a student who performed all the practical tests for her project.

Core Modules

Contemporary Research In Biomedical Science
Discuss and evaluate current research in biomedical sciences and relate this both to the theoretical basis of the subject and to the methodologies used to generate the data.

Advanced Professional Practice and Research
Gain a grounding in the different approaches to research, including quantitatative and qualitative data collection methods. You will then be able to plan research, effectively search for and evaluate research literature and be able to apply and analyse data using appropriate statistical tests.

Bio-analytical Techniques
Combine theory and practice of many modern analytical techniques that are used in biological, medical and chemical analysis, and learn the important steps in the development and assessment of analytical measures.

Infection and Immunity
Develop an in-depth understanding of the infection process, taking into consideration the pathogenesis process both from the point of view of the pathogen as well as the host where the immune response will be investigated.

Advanced Medical Microbiology
Look at different aspects of current trends in microbiological research, and use laboratory sessions to undertake problem solving activities such as the planning of a class lab activity and mini projects.

Applied Biotechnology
Study up to date issues concerning current biotechnological products and processes, especially with regard to the use of microorganisms and recombinant DNA techniques.

Research Project
Undertake an independent research project within the remit of expertise of our course team. Design experimental methods to test your aims or hypotheses and report the findings in the form of both a thesis and an oral presentation.

Dr. Margarita Gomez Escalada

Senior Lecturer

"I find it really exciting to generate new data and ideas alongside my students and collaborators, which may one day lead to changes in the ways in which we tackle diseases caused by microorganisms. Teaching allows me to share and explore these latest findings with those who will go on to work in the field."

Margarita recently produced internationally-recognised research treating acne with herbal compounds. Working with a student, she discovered that an extract of thyme was more effective than traditional chemical-based creams.

Facilities

- Biomedical Research Laboratory
The latest scientific testing equipment lets you put your learning into practice and break new ground in biomedical research.

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Biomedical Sciences Laboratory
Housing state-of-the-art IT and AV facilities, our new Biomedical Sciences laboratory provides important, cutting edge facilities for our students including walk-in cold rooms.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):
All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/tmih_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mstmih.html

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:
All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*
Clinical Virology*
Epidemiology & Control of Malaria*
Advanced Immunology 1
Childhood Eye Disease and Ocular Infection
Designing Disease Control Programmes in Developing Countries
Drugs, Alcohol and Tobacco
Economic Evaluation
Generalised Liner Models
Health Care Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Molecular Biology & Recombinant DNA Techniques
Research Design & Analysis
Sociological Approaches to Health
Study Design: Writing a Proposal

- Slot 2:
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Advanced Diagnostic Parasitology
Advanced Immunology 2
Clinical Bacteriology 1
Family Planning Programmes
Health Systems; History & Health
Molecular Virology; Non Communicable Eye Disease
Population, Poverty and Environment
Qualitative Methodologies
Statistical Methods in Epidemiology

- Slot 3:
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*
Control of Sexually Transmitted Infections*
Advanced Training in Molecular Biology
Applied Communicable Disease Control
Clinical Immunology
Current Issues in Safe Motherhood & Perinatal Health
Epidemiology of Non-Communicable Diseases
Implementing Eye Care: Skills and Resources
Medical Anthropology and Public Health
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology
Spatial Epidemiology in Public Health
Tropical Environmental Health
Vector Sampling, Identification & Incrimination

- Slot 4:
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*
Epidemiology & Control of Communicable Diseases*
Ethics, Public Health & Human Rights*
Global Disability and Health*
Immunology of Parasitic Infection: Principles*
Analytical Models for Decision Making
Clinical Bacteriology 2
Design & Evaluation of Mental Health Programmes
Environmental Epidemiology
Evaluation of Public Health Interventions
Genetic Epidemiology
Globalisation & Health
Molecular Biology Research Progress & Applications
Nutrition Related Chronic Diseases
Population Dynamics & Projections
Reviewing the Literature
Sexual Health
Survival Analysis and Bayesian Statistics
Vector Biology & Vector Parasite Interactions

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Mycology*
Advanced Statistical Methods in Epidemiology
Analysing Survey & Population Data
Applying Public Health Principles in Developing Countries
Environmental Health Policy
Integrated Vector Management
Integrating Module: Health Promotion
Molecular Cell Biology & Infection
Nutrition Programme Planning
Pathogen Genomics
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/ttmi.html

Project Report:
During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth

Read less
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. Read more
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. You can choose to specialise in virology, microbiology (bacteriology) or parasitology.

Why this programme

◾This degree in Infection Biology allows you to study in an Institute housing two UK National centres of excellence, in Virology and Parasitology, and active in the Scottish Infection Research Network (SIRN), a key clinical focus on healthcare-related
◾You will work in the laboratories of internationally recognized infection biology researchers, conducting high quality basic, translational and clinical science.
◾We have exciting scholarship opportunities.
◾This MSc in Infection Biology provides access to a combination of highly specialised equipment, unique in Scotland, including cutting edge in vitro and in vivo research facilities for biological imaging, high content screening microscopy , and a state of the art polyomics facility bringing together metabolomics, proteomics, genomics, transcriptomics, and integrations of data sets with bioinformatics.
◾You can attend guest lectures and workshops from scientists and clinicians working in the pharmaceutical, diagnostic and biotechnology fields.
◾You can carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.
◾This Infection Biology degree integrates infection biology with cutting edge molecular and cellular techniques.
◾The MSc in Infection Bilogy offers breadth, covering bacteria, viruses and parasites.
◾Students can opt to specialise in one of the three areas of infection biology, and will graduate with a named specialism e.g. MSc Infection Biology (Microbiology).
◾Optional courses allow students to develop their interests: ◾Technology transfer and commercialisation of bioscience research.
◾Drug discovery
◾Diagnostic technologies and devices
◾Current trends and challenges in biomedical research and health

◾We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.
◾Students have the opportunity to carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PGDip programme will consist of five taught courses, spread over 7-8 months, with three compulsary courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

Core Courses and Project
◾Host-pathogen interactions and immune responses to infection
◾Omic technologies for the biomedical sciences: from genomics to metabolomics
◾Designing a research project: biomedical research methodology
◾Infection Biology Research project (laboratory based or non-laboratory based, in Virology, Parasitology, or Microbiology)

Optional Courses
◾Drug discovery
◾Diagnostic technologies and devices
◾Current trends and challenges in biomedical research and health
◾Technology transfer and commercialisation of bioscience research

Teaching and Learning Methods

A variety of methods are used, including lectures, tutorials, workshops, laboratories and problem-based learning. These are supplemented by a wide range of course-specific electronic resources for additional learning and self assessment. As a result, you will develop a wide range of skills relevant to careers in infection biology research, diagnostics or drug development. These skills include team-working, data interpretation and experimental design. You will use the primary scientific literature as an information resource.


Electronic Resources

Our online resources were voted the best in the United Kingdom in the International Student Barometer in 2012, and include:
◾a continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment materials
◾over 35,000 online textbooks and e-journals available through the University library website, 24/7
◾academic databases of biological sciences and medicine
◾Henry Stewart Talks - animated audio visual presentations by world leading experts covering many topics in infection biology.

Career prospects

The University of Glasgow MSc in Infection Biology provides you with many career opportunities.

Research: About half of our MSc students enter a research career, mainly by undertaking further postgraduate research studies towards a PhD), or by working in research laboratories in clinical or academic settings, including national government laboratories.

Industry: Other students go on to work in the pharmaceutical, diagnostic or biotechnological industries.

Read less
The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. Read more

Overview

The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. It is a one-year full-time programme designed for both home and international students, with a background in life sciences, who wish to study at postgraduate level for the MSc in Biomedical Blood Science. The programme is open to science graduates who do not meet the academic criteria for a direct entry into the MSc. The MSc in Biomedical Blood Science is accredited by the Institute of Biomedical Science (IBMS). The IBMS is the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver the best possible service for patient care and safety.

See the website https://www.keele.ac.uk/pgtcourses/biomedicalsciencegraduatediploma/

Course Aims

The overall aim is to provide the students with the academic background necessary for the masters programme and to enable them to develop and practise the subject specific academic skills required for the intensive pace of study at masters level. The course also aims to allow international students to benefit from English language support that will help them to develop their academic English language skills.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request; but, to summarise, the overarching course aims are as follows:

- To provide students with core knowledge, understanding and skills relevant to Biomedical Science

- To produce skilled and motivated graduates who are suitably prepared for the MSc in Biomedical Science and for further study.

- To cultivate interest in the biosciences, particularly at the cellular and molecular level, within a caring and intellectually stimulating environment.

- To get an accurate insight into the role of Biomedical Scientists in the diagnosis, treatment and monitoring of disease.

- To develop an understanding of the analytical, clinical and diagnostic aspects of Cellular Pathology, Clinical Biochemistry, Medical Microbiology, Blood Transfusion, Clinical Immunology and Haematology pathology laboratories.

- To promote the development of a range of key skills, for use in all areas where numeracy and an objective, scientific approach to problem-solving are valued.

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment.

- To promote the development of critical thinking, autonomous learning, independent research and communication skills to help prepare the students for the MSc in Biomedical Blood Science and for a lifetime of continued professional development.

Course Content

All the modules in this one year programme are compulsory. The programme consists of a total of 90 credits made up of one 30 credit module and four 15 credit modules. An additional English module (English for Academic Purposes) will be offered for non-native English speakers if required. This module will not form part of the overall award, but successful completion is required for progression to the Masters programme.

Modules:
- Biomedical Science and Pathology (30 credits):
The module provides the student with the knowledge and understanding of the pathobiology of human disease associated with Cellular Pathology, Clinical Immunology, Haematology, Clinical Biochemistry, Medical Microbiology and Clinical Virology. It also examines the analytical and clinical functions of three more of the major departments of a modern hospital pathology laboratory, including Haematology, Clinical Pathology, Clinical Immunology, Blood Transfusion, Clinical Biochemistry and Medical Microbiology. In addition, the module will give an accurate insight into the role of Biomedical Scientists and how they assist clinicians in the diagnosis, treatment and monitoring of disease.

- Biochemistry Research Project (non-experimental) (15 credits):
This module aims to introduce students to some of the key non-experimental research skills that are routinely used by biochemists and biomedical scientists, such as in depth literature searching, analysis of experimental data and the use of a computer as tool for both research (bioinformatics) and dissemination of information (web page construction). The student will research the literature on a specific topic, using library and web based resources and will produce a written review. In addition, the student will either process and interpret some raw experimental data provided to them.

- Advances in Medicine (15 credits):
This module will describe and promote the understanding of advances in medicine that have impacted on diagnosis, treatment, prevention of a range of diseases. It will highlight fast emerging areas of research which are striving to improve diagnosis including nanotechnology and new biochemical tests in the fields of heart disease, cancer and fertility investigations which will potentially improve patient care.

- Clinical Pathology (15 credits):
The majority of staff that contribute to the module are employees of the University Hospital of North Staffordshire (UHNS). Students will benefit from lectures and expertise in Clinical Diagnostic Pathology, Pharmacology, Biochemistry, Genetics and Inflammatory Diseases. Students will gain an insight into how patients are managed, from their very first presentation at the UHNS, from the perspective of diagnosis and treatment. The course will cover both standardised testing options and the development of new diagnostic procedures with a particular emphasis on genetic and epigenetic aspects of disease. Students will also gain an appreciation of the cost benefit of particular routes for diagnosis and treatment and the importance of identifying false positive and false negative results. Finally, the students will have the opportunity to perform their own extensive literature review of a disease-related topic that is not covered by the lectures on the course.

- Case Studies in Biomedical Science (15 credits):
This module aims to give you an understanding of the UK health trends and the factors that affect these trends. Through clinical case studies and small group tutorials, you will explore why the UK has some of the highest incidences of certain diseases and conditions in Europe and consider what factors contribute to making them some of the most common and/or rising health problems faced by this country. This will include understanding the relevant socioeconomic factors as well as understanding the bioscience of the disease process and its diagnosis and management. You will also focus on what is being done by Government and the NHS to tackle these major health problems.

- English for Academic Purposes (EAP ):
For non-native English speakers if required

Teaching & Assessment

In addition to the lecture courses and tutorials, problem based learning (PBL) using clinical scenarios is used for at least one module. Students will also be given the opportunity to undertake an independent non-experimental research project, supervised and supported by a member of staff. Web-based learning using the University’s virtual learning environment (KLE) is also used to give students easy access to a wide range of resources and research tools, and as a platform for online discussions and quizzes. Students will be given many opportunities to become familiar with word processing, spreadsheets and graphics software as well as computer-based routes to access scientific literature.

All modules are assessed within the semester in which they are taught. Most contain elements of both ‘in-course’ assessment (in the form of laboratory reports, essays, posters) and formal examination, although some are examined by ‘in-course’ assessment alone.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
This course is designed for biology, medicine, biomedical and life sciences graduates, keen to develop their knowledge in a city renowned for its medical landmarks. Read more
This course is designed for biology, medicine, biomedical and life sciences graduates, keen to develop their knowledge in a city renowned for its medical landmarks.

More about this course

You will carry out studies of biomedical science, develop a high level of scientific knowledge and understanding of disease processes and enhance intellectual development throughout research projects.

The team delivering the course have an exceptional research profile, particularly in oncology, molecular medicine, immunology and virology. Specialist guest lecturers will add their own enlightenment and passion to a fascinating schedule.

The course aims to:
-Provide you with advanced study of biomedical science, which underpins professional progression and development
-Provide a high level of scientific knowledge and understanding of disease processes
-Develop an informed and critical appreciation of recent scientific developments in relation to diagnostic laboratory pathology
-Enable you, where options are available, to gain additional specialist knowledge in areas such as ageing, epidemiology and medical genetics
-Enhance your intellectual development throughout the research project and dissertation

Students undertake a variety of assessment methods including case studies, literature evaluations, self diagnostic testing, debates, group work, presentations, coursework, essays, and cumulative exams.

Practical skills are summatively assessed through the coursework assignments, including those in the final Project module.

Data handling skills are assessed by, practical reports, problem solving exercises, information abstracting and reviewing exercises, poster presentations, exams and seminar presentations.

Professional accreditation

Accredited by the Institute of Biomedical Science (IBMS), the professional body of Biomedical Scientists.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Biomedical Diagnostics (core, 20 credits)
-Integrated Pathology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Biomedical Informatics (option, 20 credits)
-Clinical Biochemistry (option, 20 credits)
-Epidemiology of Emerging Infectious Disease (option, 20 credits)
-Ethical Issues in Biomedical Science (option, 20 credits)
-Haematology (option, 20 credits)
-Medical Genetics (option, 20 credits)
-Transfusion Science (option, 20 credits)

After the course

Career opportunities include employment in NHS hospital laboratories and other health-related areas. Graduates will also be well placed to apply for research studentships.

This course allows students to be considered for promotion at work. It also allows them to be eligible to sit the Institute of Biomedical Science (IBMS) higher specialist diploma leading to fellowship of the IBMS (FIBMS).

Scholarships

A number of partial scholarships are available for international students from outside the EU: http://www.londonmet.ac.uk/applying/funding-your-studies/postgraduate-international-students/

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within… Read more
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within the Medical Science Building, the Best Institute, the Donnelly Centre for Cellular and Biomolecular Research, the FitzGerald Building, the Hospital for Sick Children, Mount Sinai Hospital, the Ontario Institute for Cancer Research, and Princess Margaret Hospital.

The Master of Science and Doctor of Philosophy programs in Molecular Genetics offer research training in a broad range of genetic systems from bacteria and viruses to humans. Research projects include DNA repair, recombination and segregation, transcription, RNA splicing and catalysis, regulation of gene expression, signal transduction, interactions of host cells with bacteria and viruses, developmental genetics of simple organisms (worms and fruit flies) as well as complex organisms (mice), molecular neurobiology, molecular immunology, cancer biology and virology, structural biology, and human genetics and gene therapy.

Read less
The Master of Science by Research degree in Biomedical Sciences is a 12-month, research only degree, in which the candidate will undertake a supervised research project in the broad area of Biomedical Sciences, in the School of Biology, University of St Andrews. Read more
The Master of Science by Research degree in Biomedical Sciences is a 12-month, research only degree, in which the candidate will undertake a supervised research project in the broad area of Biomedical Sciences, in the School of Biology, University of St Andrews.
The candidate will be based in the interdisciplinary Biomedical Sciences Research Complex (BSRC), based at the North Haugh Science Campus, St Andrews. The BSRC comprises research groups undertaking highly innovative, multi-disciplinary research in eleven broad areas of biomedical research, employing state-of-the-art techniques to address key questions at the leading edge of the biomedical and biological sciences.

There are eleven research themes running through the BSRC: Biophysics; Chemical Biology; Chemistry; Enzymology; Microbiology; Molecular Biology; Molecular Medicine; Parasitology; Structural Biology; Translational Biology; Virology. These interdisciplinary approaches bring together molecular biologists, chemists, computer scientists, geneticists, bioinformaticians and clinicians to challenge and further our understanding of disease, in terms of basic biological function through to medical intervention. Further details about the BSRC can be found here: http://www.st-andrews.ac.uk/bsrc/.

Candidates may approach potential supervisors in the BSRC directly (https://synergy.st-andrews.ac.uk/research/phd-study/phd-study-supervisors/phd-study-bsrc-supervisors/) or via advertised projects listed here (https://synergy.st-andrews.ac.uk/research/mscres/). We strongly recommend that potential candidates make contact with a potential supervisor before applying.
The School of Biology provides a unique and supportive environment for scholarship, amid a beautiful setting for university life. We are a highly research active School, with a diverse and vigorous post-graduate community. The School comprises a large number of research groups organised into three interdisciplinary Research Centres: the Scottish Oceans Institute (SOI), the Biomedical Sciences Research Complex (BSRC) and the Centre for Biological Diversity (CBD). Together these centres encompass the full spectrum of research in biological sciences, spanning investigations on the properties and behaviour of individual molecules through to planetary environmental dynamics. Our postgraduate students enjoy a supportive and welcoming environment, including the student-led ‘Bionet’ society that provides a wide range of networking and social opportunities.

Progression and Assessment

Students in the MSc(Res) program will be assigned an Internal Examiner (IE) and Post-Graduate Tutor by the School. There will be a progress review meeting at three months to monitor and evaluate student progression, convened by the IE, with the student and Tutor in attendance.

In addition to the project-specific training that you will receive during your degree, Msc(Res) students will also have access to a wide range of training in transferable skills through the award-winning University of St Andrews GradSkills program, run by our Professional Development Unit CAPOD. Specific post-graduate programs run within the School of Biology may also offer additional training, for instance in statistical, bioinformatics or molecular techniques.
The degree requires submission and examination of a dissertation at the end of the one-year program. This thesis will consist of up to 30,000 words. The thesis will be evaluated by the IE and an External Examiner appointed at time of submission. Evaluation will be based on the written submission and there is no requirement for a viva voce examination.

Fees

For details of post-graduate tuition fees relevant to our research degrees including the MSc(Res), please visit:
http://www.st-andrews.ac.uk/study/pg/fees-and-funding/research-fees/

Application

Please apply via the University’s Post-Graduate Application portal: https://www.st-andrews.ac.uk/pgr/home.htm

Read less
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. Read more
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. The course will train students in all aspects of the control of infectious diseases and prepare them for a career in a range of organisations.

This course will equip students with specialised skills that will facilitate a career in the control of infectious diseases as staff of health ministries, health departments, national or international disease control agencies, aid organisations or universities.

The majority of the research projects are performed overseas, with collaborating public health or research organisations and NGOs. Students are encouraged to take advantage of this overseas opportunity, which is crucial to the nature of the course.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/cid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/masters/intercalating/index.html)

Visit the website http://www.lshtm.ac.uk/study/masters/mscid.html

Objectives

By the end of this course students should be able to:

- investigate the transmission of endemic and epidemic infections

- select appropriate methods of control

- design, implement and evaluate co-ordinated control methods

- assess constraints of local public health delivery systems

- manage available resources in the context of the control of infectious diseases

- focus their efforts on particular geographical regions or specific diseases

Structure

Term 1:

After orientation, students take two compulsory modules: Basic Statistics and Introduction to Disease Agents & Their Control, which focus on the life cycle and characteristics of infectious disease agents according to their principal transmission routes; the principal intervention strategies used to combat infectious diseases; and examples of successes, partial successes and failures in intervention programmes against infectious diseases.

In addition, students take one of the following module combinations:

- Basic Epidemiology; Health Economics; and Health Policy, Process and Power
- Extended Epidemiology and Health Economics or Health Policy, Process and Power

An interdisciplinary approach is emphasised which takes account of the social, political and economic context in which health systems operate.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Designing Disease Control Programmes in Developing Countries*
Epidemiology & Control of Malaria*
Health Care Evaluation*
Childhood Eye Disease and Ocular Infections
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries
Clinical Virology
Economic Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Research Design & Analysis
Study Design: Writing a Study Proposal.

- Slot 2:

Clinical Bacteriology 1*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Population, Poverty and Environment*
Statistical Methods in Epidemiology*
Advanced Diagnostic Parasitology
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine
Health Systems
Qualitative Methodologies

- Slot 3:

Applied Communicable Disease Control*
Control of Sexually Transmitted Infections*
Current Issues in Safe Motherhood & Perinatal Health*
Economic Analysis for Health Policy*
Medical Anthropology & Public Health*
Spatial Epidemiology in Public Health*
Tropical Environmental Health*
Vector Sampling, Identification & Incrimination*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology

- Slot 4:

Clinical Bacteriology 2*
Epidemiology & Control of Communicable Diseases*
Analytical Models for Decision Making
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Ethics, Public Health & Human Rights
Globalisation & Health; Sexual Health
Vector Biology & Parasite Infections

- Slot 5:

AIDS*
Applying Public Health Principles in Developing Countries*
Integrated Vector Management*
Advanced Statistical Methods in Epidemiology
Antimicrobial Chemotherapy
Integrating Module: Health Promotion
Integrating Module: Health Services Management
Mycology
Nutrition Programme Planning
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tcid.html

Project Report:
During the summer months (July - August), students complete a research project studying aspects of an intervention programme, for submission by early September. If appropriate, this may take the form of an optional period in a relevant overseas location. Most students on this course undertake projects overseas. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mscid.html#sixth

Read less
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors. Read more
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors.

This course is designed to enable you pursue a career as a professional biomedical scientist in a variety of research, development and leadership roles.

You'll be supported by an internationally recognised and highly active biomedicine science group with varied research interests and links with healthcare industries, research institutes and the NHS.

See the website http://www.napier.ac.uk/en/Courses/MSc-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in immunology, toxicology, pharmacology and disease biology and how these disciplines are applied in biomedical science.

You’ll gain critical understanding of specialist research areas and unique insights into the challenges currently facing biomedical science. You’ll also acquire an in-depth appreciation of research and development practices in the healthcare industries through guest lectures and site visits to specialised laboratories. These experiences will allow you to explore and critique issues of relevance to professional working practice, enhancing your skills in evidence based decision making.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course over one year and is split up into three trimesters. You can choose to start in either January or September There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Advanced immunology
• Biology of disease and therapeutics
• Molecular pharmacology and toxicology
• Research skills
• Molecular pathogenesis of microbial Infection
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You’ll be prepared for employment in the rapidly developing bioscience and healthcare sectors. This may be in hospitals, NHS, local government or health and safety divisions in various roles including research, R&D support management and consultancy.

Opportunities also exist for qualified biomedical scientists in a range of industrial settings from smaller medical biotechnology enterprises to global pharmaceutical companies.

If you currently work in the biomedical sector, this programme will enhance your prospects for career progression. Graduates will also be qualified to continue their studies at PhD level and follow an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Programme description. One year full-time, two years part-time. This programmes develop your skills and understanding in clinical microbiology, and gives you a thorough knowledge of associated subjects such as molecular biology. Read more
Programme description
One year full-time, two years part-time

This programmes develop your skills and understanding in clinical microbiology, and gives you a thorough knowledge of associated subjects such as molecular biology. Your formal teaching will include lectures, practicals and workshops. The lecturers are specialists in their fields and are invited from many institutions in the UK. The practicals are extensive and give you the maximum hands-on experience in all aspects of clinical microbiology. The practicals are taught in a large purpose-built teaching laboratory.

Many students use the MSc as preparation for their FRCPath examinations and the degree is accredited by the Association of Clinical Microbiologists as part of the training for clinical scientists.

Programme outline
Your studies will be broad-based, with extensive coverage of the following topics:

Bacteriology
Virology
Mycology
Parasitology
Bacterial pathogenicity
Immunology
Molecular biology
Microbial disease � diagnosis, treatment and prevention
Antimicrobials and chemotherapy
Epidemiology and public health
Hospital infection.
Module 1: Clinical Microbiology: Pathogens and Commensals

Module 2: Diagnostic Microbiology and Laboratory Methods

Module 3: Molecular Biology, Microbial Pathogenesis and the Host Immune Response

Module 4: Antimicrobials

Module 5: Public Health and Communicable Disease Control

Module 6: Clinical Microbiology: Diagnosis and Management of Human Disease and Control of Hospital Infection

Module 7: Clinical Microbiology Research and Presentation Skills

Module 8: Advanced Clinical Microbiology and Laboratory Management

Module 9: Research Dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X