• Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Cardiff University Featured Masters Courses
University of Kent Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Birmingham Featured Masters Courses
"medical" AND "sales"×
0 miles

Masters Degrees (Medical Sales)

  • "medical" AND "sales" ×
  • clear all
Showing 1 to 15 of 42
Order by 
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. Read more
The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. The course will expose you to the leading edge of modern medical and surgical technologies, as well as exploring the role of entrepreneurship, business development and intellectual property exploitation.

Why study Design for Medical Technologies at Dundee?

The unique environments of medicine and biotechnology offer exacting challenges in the design of high technology products for use in these fields. Engineers and product designers involved in the development of new biomedical instrumentation, surgical tools or biotechnology products must understand the constrictions placed on them by this environment. As a result, bioengineering has been established as the fusion of engineering and ergonomics with a deep understanding of medical science.

Benefits of the programme include:
Knowledge and understanding of medical and surgical engineering and technology
Skills in research methods, communications, teamwork and management
Appreciation of entrepreneurship and the global 'Medtech' industry
Participation in research activities of world renowned research groups
Preparation for careers in industry, academia and commerce

What's great about Design for Medical Technologies at Dundee?

The University of Dundee is one of the top UK universities, with a powerful research reputation, particularly in the medical and biomedical sciences. It has previously been named Scottish University of the Year and short-listed for the Sunday Times UK University of the year.

The Mechanical Engineering group has a high international research standing with expertise in medical instrumentation, signal processing, biomaterials, tissue engineering, advanced design in minimally invasive surgery and rehabilitation engineering.

Links and research partnerships:

We have extensive links and research partnerships with clinicians at Ninewells Hospital (largest teaching hospital in Europe) and with world renowned scientists from the University's College of Life Sciences.

The new Institute of Medical Science and Technology (IMSaT) at the University has been established as a multidisciplinary research 'hothouse' which seeks to commercialise and exploit advanced medical technologies leading to business opportunities.

The start date is September each year, and lasts for 12 months.

How you will be taught

The structure of the MSc course is divided into two parts. The taught modules expose students to the leading edge of modern medical and surgical technologies. The course gives concepts and understanding of the role of entrepreneurship, business development and intellectual property exploitation in the biomedical industry, with case examples.

The research project allows students to work in a research area of their own particular interest, learning skills in presentation, critical thinking and problem-solving. Project topics are offered to students during the first semester of the course.

What you will study

The three taught modules are:
Imaging and Instrumentation for Medicine and Surgery (30 Credits)
Biomechanics and Biomedical (30 Credits)
Advanced Medical and Surgical Instrumentation (30 Credits)

These modules are followed by the biomedical research project (90 credits).

How you will be assessed

The course is assessed by coursework and examination, plus research project.

Careers

The MSc Design for Medical Technologies is aimed at providing the key knowledge and experience to allow you to pursue a career in bioengineering, healthcare or biotechnology. This opens up a vast range of opportunities for employment in these industries as a design, development or product engineer, research scientist, sales and marketing manager or Director of a start-up company. The programme also provides the ideal academic grounding to undertake a PhD degree leading to a career in academic research.

Read less
Biotechnology is a rapidly expanding global industry. Read more

Why take this course?

Biotechnology is a rapidly expanding global industry. It's driven by the development of new tools for molecular biological research, the expansion of the ‘green economy’ seeking biotechnical solutions to energy and industrial needs, and remarkable advances in the application of biotechnology to medical diagnosis, therapeutics and to biomedical research.

The MSc in Medical Biotechnology will give you sought-after advanced skills in molecular biotechnology in the context of diagnostics, therapeutics and in biomedical research. You will also gain a vital understanding of how these are applied in molecular medicine.

What will I experience?

On this course you can:

Develop practical and theoretical understanding of the molecular techniques used in the biotechnology sector
Learn how these are applied in diagnostics, therapeutics and molecular medicine
Develop your practical skills on high tech research equipment
Conduct your own medical biotechnology research

What opportunities might it lead to?

This Master's degree in Medical Biotechnology will prepare you for a role within either research or industry in the biotechnology sector and, more generally, in the bioscience and pharmaceutics areas.

Here are some routes our graduates can pursue:

product development
research scientist
diagnostics and pathology lab work
PhD

Module Details

The Medical Biotechnology course is made up of core and optional units so that you can tailor your learning. The core units give you both practical and research skills as well as the knowledge that would be expected of an advanced course in molecular biotechnology. The optional units allow specialisation towards pathology, drug development, business or bioinformatics. Further options are included through a wide choice of subjects for your research project.

Core units include:

Medical Biotechnology Diagnostics
Medical Biotechnology Therapeutics
Molecular Medicine
Medical Biotechnology Research Skills and Project
Options to choose from include:

Clinical Pathology
Business Skills for Biotechnology
Drug Design and Clinical Trials
Bioinformatics and Omics

Programme Assessment

The course is delivered to develop your practical and theoretical skills in Medical Biotechnology. Teaching is typically in small groups with a mixture of lectures, seminars, workshops and practical work that includes case and problem-based learning. The course is delivered by a team of expert scientists who publish regularly in international journals. In the research project that forms a third of the course you will work alongside other researchers in a laboratory setting.

Assessment will cover all aspects of what is required to be a professional scientist using a variety of methods:

written exams
practical work
problem solving
presentations
essay
project work

Student Destinations

This Master's degree in Medical Biotechnology will equip you to meet the needs of small and medium-sized enterprises and global business in the area of Biotechnology, as well as public and private health service providers. The course covers the practical as well as theoretical skills for your new career.

Roles our graduates might take include:

product development
research scientist
diagnostics and pathology lab work
PhD student
sales
teaching

Read less
Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma. Read more
Medical engineering combines the design and problem-solving skills of engineering with medical and biological sciences to contribute to medical device solutions and interventions for a range of diseases and trauma.

This exciting and challenging programme will give you a broad knowledge base in this rapidly expanding field, as well as allowing you to specialise through your choice of optional modules.

We emphasise the multidisciplinary nature of medical engineering and the current shift towards the interface between engineering and the life sciences. You could focus on tissue engineering, biomaterials or joint replacement technology among a host of other topics.

Whether you’re an engineer or surgeon, or you work in sales, marketing or regulation, you’ll gain the knowledge and skills to launch or develop your career in this demanding sector.

Read less
This Marketing - Corporate Account Management program prepares you for an exciting and financially rewarding career as a corporate account management professional in the business-to-business (B2B) marketplace. Read more
This Marketing - Corporate Account Management program prepares you for an exciting and financially rewarding career as a corporate account management professional in the business-to-business (B2B) marketplace.

In Centennial College's Corporate Account Management program, you learn that because today's customers are well informed and expect more customized solutions, corporate account management professionals must have a solid foundation in all areas of marketing, sales and service. This includes prospecting, networking, relationship building, closing and post-sales activities.

As such, in interactive and practical courses, you learn how to put the customer first with an entrepreneurial mind-set that adapts to diverse customer needs while you develop and practice skills specifically in:
-Conducting competitive and marketplace analysis
-Understanding customer behaviour
-Engaging in interpersonal communications that are trust based
-Analytics that prompt sales utilizing Customer Relationship Management (CRM) tools
-Business financial literacy to create compelling customer value propositions
-Educating and informing buyers through digital content and omni channel marketing practices
-Cross-cultural and team based problem solving
-Negotiations that are buyer value-based

Career Opportunities

Program Highlights
-Thanks to the Corporate Account Management program's hands-on training in Salesforce automation software, you will be able to make a smooth transition into the workplace.
-School of Business professors have extensive experience in sales and account management in the business-to-business settings
-Small class environments allow you to interact with faculty members and your fellow peers.
-Learn to thrive under pressure and develop excellent interpersonal, listening and oral communication skills.

Articulation Agreements
Start with a graduate certificate, and continue to a master of business administration through our degree completion partnership. Successful graduates of this program may choose to continue with courses leading to a graduate degree.

Career Outlook
-Key account manager
-Account executive
-Business development lead
-Commercial sales representative
-Sales and service specialist
-Technical sales representative
-Inside sales representative
-Territory sales representative

Areas of Employment
-Medical and dental technology firms
-Hardware and software sales
-Pharmaceutical companies
-Packaged goods companies
-Mid-to-large sized business-to-business (B2B) organizations with their own sales force

Read less
Located within a European Centre of Excellence for Tissue engineering, and based on Keele University’s local hospital campus, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. Read more

Overview

Located within a European Centre of Excellence for Tissue engineering, and based on Keele University’s local hospital campus, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. The multidisciplinary environment enables close interaction with leading academics and clinicians involved in cutting-edge, and clinically transformative research.

Course Director: Dr Paul Roach ()

Studying Cell and Tissue Engineering at Keele

Our MSc Cell and Tissue Engineering programme has tracked alongside the strongly emergent global Regenerative Medicine industry and will prepare you for an exciting future within a range of medical engineering areas, be that in academic or industrial research, medical materials, devices, or therapeutics sectors, or in the clinical arena. The modular structure to the course enables flexibility and personalisation to suit your career aspirations, build upon strengths and interests and develop new understanding in key topics. The selection of modules on offer is professionally accredited by the Institute for Physics and Engineering in Medicine.

Graduate destinations for our students could include: undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; providing technical consultancy for marketing and sales departments within industry; working within biomedical, biomaterials, therapeutic and regenerative medicine industries or working for a governmental regulatory agency for healthcare services and products.

See the website https://www.keele.ac.uk/pgtcourses/cellandtissueengineering/

‌The course provides support from the basics of human anatomy and physiology, through to development of novel nanotechnologies for healthcare. Due to the teaching and research involvement of clinical academic staff within the department, there are exciting opportunities to be exposed to current clinical challenges and state-of-the-art developments. Clinical visits and specialist seminars are offered and students will be able to select dissertation projects that span fundamental research to clinical translation of technologies – a truly ‘bench to bedside’ approach.

Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers. Full-time study will see the course completed in 12 months; part-time study will allow you to complete it over two years.

About the department

Now delivered through the Keele Medical School and the Research Institute for Science and Technology in Medicine, the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Biomedical Engineering, and an EPSRC-MRC funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Content

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Cell and Tissue Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:
- provide postgraduate-level education leading to professional careers in Cell and Tissue Engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of Biomaterials, and Cell and Tissue Engineering;

- expose students to the clinically translational environment within an active medical research environment with hands-on practical ability and supporting knowledge of up-to-date technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine, nanotechnology and novel devices for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them. Read more
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them.

This has led to the development of this unique, pioneering joint Masters degree focusing on the molecular aspects of parasite infections and vector biology. It aims to give you a sound insight into the biology of parasites and their control. The course provides you with contemporary studies of research on immunological and molecular aspects of selected parasites and vector/parasite relationships. You will gain research experience in parasitology and/or entomology.

Key benefits:

• Innovative, collaborative course taught jointly by the University of Salford and Keele.
• Significant practical training in parasitology including intensive residential field trip to Malham Tarn.
• Excellent platform for a research career.

Suitable for

Graduates who wish to enter research, teaching, scientific laboratory management and careers in parasitology and vector biology including diagnostic centres and overseas fields centres.
Programme details

Course detail

Individual research projects can be based in any of the three institutions, choosing a topical aspect of parasitology, or vector biology.

This course has both full-time and part-time routes, comprising of three 14-week semesters or five 14-week semesters, which you can take within one or up to three years respectively.

Format

Teaching is delivered by research active staff from Salford and Keele Universities. Teaching sessions are primarily based at Salford, though the facilities at Keele are also utilised. Transport is provided for classes based at Keele.

Teaching sessions include lectures, laboratory practicals, field work, tutorials, guest lectures and guided reading.

The Dissertation can be based at Salford or Keele.

Part-time students study Fundamentals of Parasitology and Molecular Biology of Parasites in year 1, Vector Biology and Control, and Research Skills (Parasitology) in year 2. Students may wish to complete the Dissertation in year 2, or year 3 depending upon commitments.

Module titles

• Fundamentals of Parasitology
• Vector Biology and Control
• Molecular Biology of Parasites
• Research Skills (Parasitology)
• Dissertation

Assessment

The Research Skills (Parasitology) and Dissertation modules are assessed by coursework. The remaining modules are assessed by coursework and examination.

Career potential

Graduates from this course have entered employment as research assistants or research laboratory technicians in pharmaceuticals, drug design and pesticide research. Other careers have included pollution microbiologists with water authorities, and work in hospital laboratories investigating the haematology, molecular biology and immunology of infectious diseases.

The MSc equips students for PhD research and former students have gone onto PhD study at prestigious Universities, including Oxford, Glasgow, Liverpool and Manchester and Toledo (USA). The students at Toledo have now completed their PhD studies are have gained employment at US Ivy League Institutes (Harvard Medical School and Cornell). Other students have elected to work in hospital laboratories, or diversify their careers by taking medical sales or enter teacher training posts.

Former overseas students have returned to their home country to take academic, or government positions.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
WHAT YOU WILL GAIN. - Practical guidance from biomedical engineering experts in the field. - 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading. Read more
WHAT YOU WILL GAIN

- Practical guidance from biomedical engineering experts in the field
- 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading
- Credibility as a biomedical engineering expert in your firm
- Skills and know-how in the latest technologies in biomedical engineering
- Networking contacts in the industry
- Improved career prospects and income
- An EIT Advanced Diploma of Biomedical Engineering

Next intake is scheduled for June 06, 2017. Applications are now open; places are limited.

INTRODUCTION

Biomedical engineering is the synergy of many facets of applied science and engineering. The advanced diploma in biomedical engineering provides the knowledge and skills in electrical, electronic engineering required to service and maintain healthcare equipment. You will develop a wide range of skills that may be applied to develop software, instrumentation, image processing and mathematical models for simulation. Biomedical engineers are employed in hospitals, clinical laboratories, medical equipment manufacturing companies, medical equipment service and maintenance companies, pharmaceutical manufacturing companies, assistive technology and rehabilitation engineering manufacturing companies, research centres. Medical technology industry is one of the fast-growing sectors in engineering field. Join the next generation of biomedical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive and practical program. It provides a solid overview of the current state of biomedical engineering and is presented in a practical and useful manner - all theory covered is tied to a practical outcomes. Leading biomedical/electronic engineers with several years of experience in biomedical engineering present the program over the web using the latest distance learning techniques.

There is a great shortage of biomedical engineers and technicians in every part of the world due to retirement, restructuring and rapid growth in new industries and technologies. Many companies employ electrical, electronic engineers to fill the vacancy and provide on the job training to learn about biomedical engineering. The aim of this 18-month eLearning program is to provide you with core biomedical engineering skills to enhance your career prospects and to benefit your company/institution. Often universities and colleges do a brilliant job of teaching the theoretical topics, but fail to actively engage in the 'real world' application of the theory with biomedical engineering. This advanced diploma is presented by lecturers who are highly experienced engineers, having worked in the biomedical engineering industry. When doing any program today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This practical program avoids weighty theory. This is rarely needed in the real world of industry where time is short and immediate results, based on hard-hitting and useful know-how, is a minimum requirement. The topics that will be covered are derived from the acclaimed IDC Technologies' programs attended by over 500,000 engineers and technicians throughout the world during the past 20 years. And, due to the global nature of biomedical engineering today, you will be exposed to international standards.

This program is not intended as a substitute for a 4 or 5 year engineering degree, nor is it aimed at an accomplished and experienced professional biomedical engineer who is working at the leading edge of technology in these varied fields. It is, however, intended to be the distillation of the key skills and know how in practical, state-of-the-art biomedical engineering. It should also be noted that learning is not only about attending programs, but also involves practical hands-on work with your peers, mentors, suppliers and clients.

WHO WOULD BENEFIT

- Electrical and Electronic Engineers
- Electrical and Electronic Technicians
- Biomedical Equipment/Engineering Technician
- Field Technicians
- Healthcare equipment service technicians
- Project Engineers and Managers
- Design Engineers
- Instrumentation Engineers
- Control Engineers
- Maintenance Engineers and Supervisors
- Consulting Engineers
- Production Managers
- Mechanical Engineers
- Medical Sales Engineers

In fact, anyone who wants to gain solid knowledge of the key elements of biomedical engineering in order to improve work skills and to create further job prospects. Even individuals who are working in the healthcare industry may find it useful to attend to gain key, up to date perspectives.

COURSE STRUCTURE

The program is composed of 18 modules. These cover the basics of electrical, electronic and software knowledge and skills to provide you with maximum practical coverage in the biomedical engineering field.

The 18 modules will be completed in the following order:

- Basic Electrical Engineering
- Technical and Specification Writing
- Fundamentals of Professional Engineering
- Engineering Drawings
- Printed Circuit Board Design
- Anatomy and Physiology for Engineering
- Power Electronics and Power Supplies
- Shielding, EMC/EMI, Noise Reduction and Grounding/Earthing
- Troubleshooting Electronic Components and Circuits
- Biomedical Instrumentation
- Biomedical Signal Processing
- C++ Programming
- Embedded Microcontrollers
- Biomedical Modelling and Simulation
- Biomedical Equipment and Engineering Practices
- Biomedical Image Processing
- Biomechanics and Assistive Technology
- Medical Informatics and Telemedicine

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
This course, accredited by the Institute of Biomedical Science, provides an in-depth understanding of disease processes. It links academic knowledge to the practical applications of biomedical science, particularly in relation to modern diagnostic methods. Read more
This course, accredited by the Institute of Biomedical Science, provides an in-depth understanding of disease processes. It links academic knowledge to the practical applications of biomedical science, particularly in relation to modern diagnostic methods. You can choose to study one of two pathways – haematology or medical microbiology. Taught by researchers and expert practitioners, the course content is kept up to date through extensive links with leading healthcare and research laboratories such as GlaxoSmithKline, the Institute of Cancer Research and local hospitals.

-Employability is embedded within the curriculum to maximise job opportunities in a wide variety of biomedical-science-related careers including hospital and commercial laboratories, research, teaching and sales.
-Research-led and research-informed teaching with increased opportunities for postgraduate research and 'capstone' projects.
-Research projects possible within one of our research groups or as part of an industrial placement.
-Single modules may be taken as part of a continuing professional development (CPD) programme.

What will you study?

Core modules will familiarise you with the theoretical and practical aspects of molecular medicine used in research and hospital laboratories; the molecular basis of immunological mechanisms; and cellular mechanisms of disease, the physiological manifestations and implications to public health. You will learn about the principles and practice of laboratory management in biomedical science, and you will acquire the skills required for researching and communicating in biomedical science. You will also study modules in your elected specialist route. In addition to subject-specific knowledge, the course aims to develop your communication and other skills.

Assessment

Essays, practical reports, critical analysis, poster presentations, written exam, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Research Techniques and Scientific Communication
-Immunology and the Biology of Disease
-Research Project

Haematology modules
-Anaemia, Haemostasis and Blood Transfusion
-Haematological Malignancy

Medical Microbiology modules
-Taxonomy of Microorganisms and Diagnosis of Infectious Disease
-Microbial Pathogenesis and Control of Infectious Disease

Read less
The Pharmacology and Drug Discovery MSc course has been designed to react to the increasing demand for suitably trained professional pharmacologists. Read more
The Pharmacology and Drug Discovery MSc course has been designed to react to the increasing demand for suitably trained professional pharmacologists. This is essential to speed up the critical task of translating basic laboratory medical research into commercially-ready medical biotechnology and drugs that can be used to diagnose and treat patients.

The Pharmacology and Drug Discovery course also encompasses an emerging area of science that is known as ‘Translational Medicine’ and needs a new breed of Pharmacologist who can apply basic science knowledge and skills to experimental study design, management and data analysis, and who understands the legislation and other regulatory procedures surrounding disease treatment.

The course will also cover relevant biotechnical innovations associated with pharmacology and drug discovery, as well as both classical clinical trial design and health-outcomes research.

Our course is designed to provide such specialists by applying basic and clinical science to topics including diagnosis, understanding and treatment of disease, supported by our excellent staff, research expertise and laboratory facilities.

The MSc Pharmacology and Drug Discovery with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

Internships are subject to a competitive application and selection process and the host organisation may include the University. Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

-Strong links with the pharmaceutical industry
-Emphasis on vocational skills development
-Excellent preparation for a wide range of careers in extensive and varied health industry
-Hands-on experience of a wide range of research methods in well-equipped laboratories
-Innovative curriculum combining basic and clinical sciences
-High levels of employability on graduation

WHAT WILL I LEARN?

The pharmacology and drug discovery postgraduate programme is composed of a combination of modules depending on whether you undertake the PgDip or Masters programme of study and includes the following:
-Research methods and project
-Pharmaceutical discoveries
-Advanced pharmacology and drug discovery and development
-Genomes and DNA technology
-Biotechnology in the diagnosis of disease
-Current topics in biotechnology and drug discovery

The course is designed for a national and international audience.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST088), or the professional experience modules, giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The PgDip/MSc Pharmacology and Drug Discovery programme is specifically designed to equip you with the skills and knowledge required for a career within the Pharmacology and drug development arena and there are many opportunities, both the UK and internationally.

A large number of Pharmacologists are employed by companies in the pharmaceutical industry, where they are involved in discovering and developing drugs and carrying out clinical trials. Pharmacologists may also work for contract research organisations (CROs) or academic departments within universities on research projects.

There are also opportunities within government laboratories (including environmental agencies), charity-funded research organisations, such as the Medical Research Council (MRC), and with other research institutes. The scientific knowledge and skills students will acquire during the course can also be a useful basis for a career in teaching; technical and scientific writing (such as medical writing or writing for the media); clinical trials; drug registration, patenting or monitoring; medical publishing or other information services, regulatory affairs or sales and marketing.

A wide range of job opportunities exist, including:
-Clinical research manager
-Clinical scientist
-Human resources manager
-Patent attorney
-Pharmacologist
-Project manager/director
-Public relations officer
-Regulatory affairs associate
-Research scientist
-Sales representative
-Medical writer

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc in Biomedical Science (via Distance Learning) is ideal for those interested in earning a Master’s degree while continuing to work. Read more

About the Programme

The MSc in Biomedical Science (via Distance Learning) is ideal for those interested in earning a Master’s degree while continuing to work. Developed for working graduates of engineering, technology or science who wish to upskill or change career direction, the 14 module course will introduce students to interdisciplinary research using technologies and skills from scientific, engineering and clinical disciplines. Modules include: Molecular & Cellular Biology, Anatomy (gross and histology), Innovation & Technology Transfer, Biomaterials, Molecular & Regenerative Medicine, Pharmacology & Toxicology, Tissue Engineering, Stereology, Biomechanics, Project Management, Experimental Design and Data Analysis, Monitoring for Health Hazards at Work, Lasers & Applications, Product Development, Validation and Regulation. Course contributors include senior academics, industry experts and scientists who are actively engaged in research in all areas of biomedical science.
The NUI Galway programme is based within the National Centre for Biomedical Engineering Science (NCBES), an interdisciplinary centre of research excellence with a primary focus on five research themes that include; Biomedical Engineering, Cancer, Infectious Disease, Neuroscience and Regenerative Medicine (see http://www.ncbes.ie for more details).

Career Opportunities

Current participants work in medical device and pharmaceutical companies including Boston Scientific, Abbott, Medtronic, Elan, Stryker, Allergan, Advanced Surgical Concepts, Pfizer, and Tyco Healthcare. Whether industry- or healthcare-based, precise job descriptions vary from sales, to R&D engineers. Completion of this new distance-learning biomedical science programme will broaden career prospects of new graduates and those who have already joined the work force.
As a current participant has said, “I feel the course has enhanced my position in my company, as well as opening up other career opportunities. It is a course well-worth pursuing,” Dermot, Senior Process Development Engineer.

A Prime Location

The NUI Galway campus offers students the vibrancy and activity of a bustling community with over 40,000 students. Offering an extensive range of academically-challenging undergraduate and postgraduate degrees and diplomas of international quality, NUIG’s programmes provide students with opportunities for personal and academic development, as well as equipping them with the skills and knowledge necessary to embark on successful careers. The University's long-standing policy of innovative programme development ensures that the teaching programmes respond to the ever-changing needs of employers and of the economy.
Being a University City, Galway is a lively energetic place throughout the year. The University, situated close to the heart of Galway, enjoys an intimate relationship with the city and during the academic year, 15% of the population of the city are students. A compact, thriving city, Galway caters to youth like few other places can. The University's graduates have played a pivotal role in all areas of the development of Galway, including the arts, industry and commerce.

Programme Delivery

The course is delivered over two years, based on a blended learning format; a mixture of face-to-face contact (approximately 9 hours per module) in addition to 12-18 hours per week of self-directed study combined with e-tutorial on-line support. Students attend on-campus lectures/tutorials on a Friday afternoon and/or Saturday, approximately once every 5 weeks. The final module of year one consists of practical experimentation, when students obtain hands-on experience of a range of biomedical and engineering techniques. Students are required to attend 3-4 practical sessions during this module. Completion of a research project (preferably at place of work) is also required. Semester 1 exams are held in January and Semester 2 exams are held in June. Students will also be required to produce a thesis based on a research project preferably carried out at their place of work.

Minimum entry requirements

Second Class Honours in any science, engineering, medical or technology discipline. Candidates with a general (ie non-honours), or third class honours, B.Sc./B.E. can still apply provided they have at least three years relevant work experience.

Apply

Apply online at http://www.pac.ie (look for college of science postgraduate course code GYS19). Selection is based on the candidate’s academic record at an undergraduate level and their relevant work experience.

First-hand Testimonials

“The masters in distance learning is ideal for anyone who wants to continue with their education without having the full time commitment of other courses that are 9-5, 5 days a week. The modules undertaken during the courses are varied and regardless of a physics or biology background the work is challenging without being too involved. The lab work is excellent-getting to work with new and exciting technologies the module notes are excellent and the tutors and lectures are brilliant.” Sinead, Physicist, self-employed
"A great course. Hard work, but fun. Well designed to meet the needs of the biomedical/medical device industry. It has added hugely to my understanding of the body, its function and the requirements of medical devices and the materials which go into them. I feel that it has expanded my horizons hugely." Martin, Senior Quality Engineer, Boston Scientific

Read less
Molecular Biology with Biotechnology (MSc). This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. Read more
Molecular Biology with Biotechnology (MSc)

This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. The course has a strong practical emphasis and will provide the advanced theoretical and practical background necessary for employment in the Biotechnology industry, as well as equipping students with the knowledge required to pursue advanced studies in this area.
Course structure

The course consists of a taught component and a Research project. During the taught phase of the degree, you will take modules in Marine Biotechnology, Molecular and Medical Laboratory Techniques, Techniques of Molecular Biology and Biotechnology; Systems Biology; Plant Biotechnology, Environmental Biotechnology and Medical Biotechnology.

Topics covered in these modules will include Agrobacterium Ti plasmid based plant transformation vectors and the development of transgenic crops; the use and interpretation of microarrays and proteome systems; the development of transgenic fish and the diagnosis of fish diseases using molecular markers; bioremediation, biomining and the use of bacteria to degrade novel organic pollutants; stem cell technologies and the diagnosis of genetic disease using single nucleotide polymorphisms. image of students in the labDuring this part of the course, you will also take part in intensive laboratory exercises designed to introduce you to essential techniques in molecular biology and biotechnology including nucleic acid and protein extraction, PCR and QTL analysis, northern, southern and western blotting etc. In addition, most of the taught theory modules will have an associated practical component. The Research project will take place during the summer and will be conducted under the direct supervision of one of the staff involved in teaching the course. Students will be able to choose their Research project from a wide range of topics which will be related to the taught material.

Career options

The 21st century post genomics era offers a wide range of job opportunities in the agricultural, medical, pharmaceutical, aquaculture, forensics and environmental science areas. The rapidly developing economies of China and India in particular have recognised the enormous opportunities offered by Biotechnology. Job openings in sales and marketing with companies who have a science base are also common. Some graduates will also choose to extend their knowledge base by undertaking PhD programmes in relevant areas.

Read less
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

Degree information

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits. The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) is also offered. A Postgraduate Certificate (60 credits) is also offered. There are no optional modules for this programme.

Core modules
-Bioinformatics and Structural Biology
-Target Identification and High Throughput Screening
-Cheminformatics and Computer Drug Design
-Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
-Biophysical Screening Methods, Protein NMR and Phenotypic Screening
-Fragment Based Drug Design (FBDD)
-Target Selection - Scientific Grounds
-Target Selection - Commercial and Intellectual Property

Dissertation/report
All MSc students undertake an independent research project which can take the form of a literature project, wet lab/computer modelling based project or an external project with an industrial sponsor.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Top career destinations for this degree:
-Industrial Chemistry, University of Oxford
-PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)
-Cancer Research, Imperial College London
-PhD Drug Design, University College London (UCL)
-PhD Oncology, Tianjin University

Employability
Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Why study this degree at UCL?

UCL is listed among the top five universities in the TImes Higher Education QS World University Rankings 2015/16 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Read less
This MA prepares you for a career in the challenging world of publishing. Taught by experts and practitioners and with masterclasses from industry leaders, the programme of study includes all the knowledge, skills and understanding you need to become a successful publisher. Read more
This MA prepares you for a career in the challenging world of publishing. Taught by experts and practitioners and with masterclasses from industry leaders, the programme of study includes all the knowledge, skills and understanding you need to become a successful publisher.

Degree information

The programme equips students with both a practical insight into how this complex industry functions and a range of transferable skills. These include training in editorial, sales and marketing skills, publishing business plans and their successful delivery, contract negotiation and copyright management, production processes, digital contexts, innovation and entrepreneurship.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (120 credits), three optional modules (30 credits), and a dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months or flexible study 2-5 years) is offered. A Postgraduate Certificate (60 credits, full-time 15 weeks or flexible study over a period of up to two years) is offered.

Core modules
-Author Management
-Publishing Contexts
-Publishing Entrepreneurship
-Publishing Skills
-Sales and Marketing

Optional modules
-Academic and Journals Publishing
-Illustrated Publishing
-Book Production
-Children's Publishing
-Theories of the Book
-Book Selling

Dissertation/report
All MA students undertake an independent research project which culminates in a dissertation of 12,000 words.

Teaching and learning
The programme is delivered through lectures and seminars, with an emphasis on practical skills and exercises based on real-world and team working. An essential component of the programme is the five-week placement in a publishing house. Assessment is through essays, presentations, reports, one unseen examination, and the dissertation.

Careers

At the end of the programme you will be a professional publisher ready to launch your career with a qualification from a university that the industry recognises and values.

Top career destinations for this degree:
-Copyright Assistant, The Orion Publishing Group
-Digital Content Editor, Bloomsbury Publishing
-Marketing Assistant, The Random House Group
-Publishing Assistant, BMJ (British Medical Journal)
-Rights Assistant, Laurence King Publishing

Employability
UCL's MA in Publishing aims to help train leaders in the industry. We employ a rigorous applications process to ensure we recruit the very best potential publishers, and professional behaviour is at the heart of everything we do. This is an intensive programme, which provides access to the publishing industry throughout its duration, and we work with each student to give them the best support for their individual professional development. As a result, our graduates are sought-after recruits. Recent job successes have been in Bloomsbury Digital, Sage, and Penguin.

Why study this degree at UCL?

The Publishing MA aims to cover the entire spread of publishing disciplines, from fiction and trade to professional, academic, scholarly and educational.

Teaching staff possess a wide range of book trade experience and networks of contacts across all fields in the UK and internationally. Their research has helped shape how publishers have developed practices, and made an impact on the discipline as a field of academic study.

In addition, leading publishers, literary agents, authors, legal experts, booksellers and electronic authorities visit to give lectures and presentations. Students benefit from masterclasses from industry leaders on current and controversial issues and field visits to retailers, publishers and libraries.

Read less
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health. Read more
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health.

Based in our state-of-the-art Science Centre, you will explore the biochemical and cellular make-up of the human body, investigate what happens when things go wrong through, for example disease or illness, and how these may be prevented or cured by the action of drugs.

Alongside this, you will build a clear understanding of drugs and medicines, their structures, discovery and development, their biological delivery and activity, and their testing, regulation, production and quality assurance by analytical methods.

The MSci course combines Bachelors-level and Masters-level study in one integrated programme, giving you the opportunity to undertake professional work experience or an extended research project. However, whichever degree you choose to complete, you’ll develop wide ranging specialist skills and an in-depth knowledge of pharmaceutical science and its industry.

If you would like to study this degree but your current qualifications do not meet our entry requirements for degree level study, our Pharmaceutical Science with a Foundation Year is available.

Course content

In Year 1, you’ll be introduced to the theoretical principles and practical techniques of pharmaceutical science and pharmacology. You’ll study the underpinning biology and chemistry and learn about the activity of drugs on the human body.

During Year 2, you’ll look more thoroughly at the analysis and quality assurance of drugs using a range of laboratory techniques and QA methodologies. Your understanding of the human body will extend to the molecular and cellular levels, giving you the depth of knowledge to understand the functions of a healthy body and when disease and illness strike.

Between years 2 and 3 you will take the sandwich placement year. By doing this, you’ll complete a one-year placement with a company within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production that will further develop your employability skills. You will be supported by an onsite placement supervisor and receive regular visits and support from your academic supervisor too.

In Year 3, your final year, you’ll follow the complete process – from the stages involved in identifying potential new drugs, synthesising them for laboratory and then clinical trials, and subsequently, how their approval and production for commercial markets. You will also undertake independent research in an area of your choice, designing your research to probe a current issue in pharmaceutical science.

As an MSci student, your fourth year will provide the opportunity to gain an even greater breadth and depth of specialist knowledge. You’ll also hone your professional skills by completing a work placement or research assistantship, where there may be the opportunity to work closely with a leading employer.

Year 1 (Core)
-Introduction to Pharmaceutical Science and Pharmacology
-Introduction to Scientific Practice
-Molecules to Cells
-Basic Chemical Principles
-Molecular Structure and Synthesis

Year 2 (Core)
-Drug Analysis and Quality Assurance
-Genetics and Cell Biology
-Human Biochemistry and Physiology
-Professional Practice and Placement

Year 3 (Core)
-Drug Testing, Trials and Legislation
-Pharmaceuticals Industry and Drug Production
-Independent Project
-Drug Design, Synthesis and Characterisation

Year 3 (Options)
-Neuropharmacology
-Clinical Immunology
-Toxicology
-Medical Genetics

Year 4 (Core)
-Placement or Research Assistantship
-Advanced Research Methods
-Advanced Pharmaceutical Science

Year 4 (Options)
-Choice of one Year 3 option

Employment opportunities

Graduates can progress into a wide range of roles either within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production. Graduates with an in-depth scientific knowledge are also highly sought after to work in marketing, sales and business management in this and other scientific industries.

Our courses aim to provide you with the relevant knowledge, approach and skill set demanded of a practicing scientist. You will develop skills and knowledge to study a variety of topics relevant to your degree, and the acquisition of Graduate skills and attributes developed in core modules will allow you to find employment in a variety of laboratory based environments such as the biopharmaceutical industry, food processing and quality assurance, veterinary and agricultural laboratories.

Some graduates apply for Graduate Entry Programmes in various healthcare professions such as Medicine, Dentistry, Physiotherapy and Nursing. A significant number of our graduates apply for postgraduate study. Those who aspire to a career in teaching progress to a PGCE, whereas graduates with an interest in a research choose to continue onto Masters and PhD programmes.

Graduates from science courses are increasingly sought after due to their skills in numeracy, IT, problem solving and abilities to analyse and evaluate. Consequently, many of the non-laboratory based industries such as regulatory affairs, scientific editing, technical sales and marketing, insurance and management preferentially employ graduate scientists. All students carry out a work placement in year 2. These are flexible so you can angle your experience towards your career aspirations. Your final year research project in a topic of your choice enables you to undertake a major piece of investigative work culminating in a professional style paper, suitable to present to prospective employers.

Read less
This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed. Read more
This one year MSc programme in Statistics and Computational Finance aims to train students to work as professional statisticians, not only at the interface between statistics and finance, but to provide skills applicable in sociology, health science, medical science, biology, and other scientific areas where data analysis is needed.

The emphasis of the programme is on data analysis. It equips students with contemporary statistical ideas and methodologies as well as advanced knowledge, which will make students very competitive to industry, academic and governmental institutions. There are excellent career prospects for employment in industry and the public sector for our graduates. An MSc degree in Statistics and Computational Finance provides attractive employment opportunities in financial industries, government, consultancy companies, research centres, and other industries where data analysis is needed. Students with an interest in academic work may also decide to continue on a PhD programme in Statistics or a related field, for which the MSc in Statistics and Computational Finance provides a sound foundation.

Career opportunities

There are excellent career prospects for students with a background in statistics and data analysis. The programme is designed to equip students with contemporary statistical ideas and methodologies which makes our students very competitive when seeking employment in industry and governmental institutions, as well as in academic careers. The skills taught are applicable in sociology, health science, medical science, biology and other related disciplines where data analysis is needed.

Recent destinations of graduates from the MSc in Statistics and Computational Finance have included:
-PhD in the Department of Mathematics at the University of York (Non-parametric modelling in high dimensional data analysis)
-PhD at Florida State University
-Modelling Analyst (automotive data provider)
-Graduate Technical Analyst (HSBC)
-Research and Development in a Property and Casualty Insurance company, specialising in catastrophe insurance
-Mainframe Software Solution Sales in a major IT brand
-Data Analyst in a health data company
-Trainee Chartered Accountant

Programme structure

To achieve an MSc degree students must complete modules to the value of 180 credits, including 100 credits of core taught modules, 20 credits chosen among the optional taught modules, and a 60-credit dissertation.

Students who successfully complete 60 credits of taught modules may be eligible for the award of a Postgraduate Certificate.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X