• Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Swansea University Featured Masters Courses
"medical" AND "informatio…×
0 miles

Masters Degrees (Medical Information Systems)

We have 262 Masters Degrees (Medical Information Systems)

  • "medical" AND "information" AND "systems" ×
  • clear all
Showing 1 to 15 of 262
Order by 
The MSc in Information Science is an ideal career development programme for librarians, archivists and other information professionals who wish to update their management skills and experience in the use of information technology, the internet and digital media, or for those from a computer-oriented background who wish to specialise in information fields. Read more
The MSc in Information Science is an ideal career development programme for librarians, archivists and other information professionals who wish to update their management skills and experience in the use of information technology, the internet and digital media, or for those from a computer-oriented background who wish to specialise in information fields.

Degree information

The programme includes both practical and theoretical work through which students develop a deeper understanding of not just the technologies themselves but also the implications of applying and managing these technologies in varied information environments. The wide range of optional modules allows students to tailor the programme to fit their individual career specialisms and needs.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits). A Postgraduate Diploma, five core modules (75 credits), three optional modules (45 credits), full-time nine months or flexible study over 2-5 years, is offered. A Postgraduate Certificate, any four of the modules available (60 credits), full-time 15 weeks or flexible study over a period of up to two years is offered but does not carry CILIP accreditation.

Core modules
-Systems Management
-Internet Technologies
-Database Systems Analysis and Design
-Introduction to Programming and Scripting
-Fundamentals of Information Science

Optional modules (indicative list):
-Server Programming and Structured Data
-XML
-Digital Resources in the Humanities
-Legal and Social Aspects
-Management
-Electronic Publishing
-Encoded Archival Description and Digitisation of Archives
-Individual Approved Study
-Advanced Topics in the Digital Humanities
-Introduction to Digitisation
-Knowledge Representation and Semantic Technologies
-Introduction to Digital Curation

Dissertation/report
All MSc students undertake an independent research project on a specific aspect of information technology and its application, which culminates in a dissertation of c. 12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, computer laboratory practicals and classroom practicals, with a strong emphasis on informal teaching, discussion, and the acquisition of practical skills. Assessment is through a mixture of essays, reports, examination, and practical projects such as website design and data modelling.

Careers

The MSc in Information Science prepares students for management roles in the information industries with an emphasis on technology, for example: information systems manager, systems librarian, web manager, information architect, knowledge manager, data manager, or indeed any information management role. Our graduates find work all over the world with electronic systems for managing, retrieving, distributing and archiving vast quantities of information. The programme is recognised and accredited by CILIP, the Chartered Institute of Library and Information Professionals, for professional qualifications purposes.

Top career destinations for this degree:
-Salesperson, ICBC (Industrial and Commercial Bank of China)
-Database Manager, Royal Free London NHS Foundation Trust
-Product Manager, Nokia
-Operations Manager, MHRA (Medical and Healthcare Products Regulatory Agency)

Employability
This programme challenges students to think more deeply about the implications of using information technology of all kinds in the workplace, and to consider better ways of designing, specifying, implementing and managing systems in order to promote organisational success. Understanding these issues and having the skills to develop and manage practical solutions equips our students to succeed individually and to help their organisations succeed. Our students achieve a high employability rate on graduating, and rise in organisations as their skills are recognised. Many past students now occupy senior positions in the information world in government, commerce, industry and academia.

Why study this degree at UCL?

UCL Information Studies combines the best of traditional library and archive studies with the latest developments in internet technologies and electronic communication and publishing.

It brings together an outstanding team of researchers, teachers, students, practitioners and information industry leaders to help you understand, develop and shape the emerging information environment while elucidating and building on the historical developments that have created this environment.

Students benefit from UCL's central London location, close to many major libraries and repositories and information centres, including the British Library and many specialist collections, giving ready access to an unsurpassed range of materials.

Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. Read more

From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of topics in computer science.

Core modules will give you a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like bio-inspired computing or text analytics, or broaden your approach with topics like mobile app development.

You’ll gain a broad perspective on intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding and bio-computation as well as essential principles and practices in the design, implementation and usability of intelligent systems.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

Core modules in Semester 1 will lay the foundations of the programme by giving you an understanding of the key topics of algorithms and systems programming, as well as the basic principles of automated reasoning, machine learning and how computers can be made to represent knowledge.

From there you’ll have the chance to tailor your studies to suit your own preferences. You’ll choose from a wide range of optional modules on diverse topics such as image analysis, cloud computing, graph theory and developing mobile apps.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Advanced Computer Science (Intelligent Systems) module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Bio-Inspired Computing 15 credits
  • Knowledge Representation and Reasoning 15 credits
  • Image Analysis 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Machine Learning 10 credits
  • Intelligent Systems and Robotics 20 credits
  • User Adaptive Intelligent Systems 10 credits
  • Data Mining and Text Analytics 10 credits
  • Combinatorial Optimisation 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Big Data Systems 15 credits
  • Data Science 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Semantic Technologies and Applications 15 credits
  • Scheduling 15 credits
  • Scientific Computation 15 credits
  • Graph Theory: Structure and Algorithms 15 credits

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Advanced Computer Science (Intelligent Systems) students have included:

  • Object-based attention in a biologically inspired network for artificial vision
  • Advanced GIS functionality for animal habitat analysis
  • Codebook construction for feature selection
  • Learning to imitate human actions

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Computing is an essential component of nearly every daily activity, from the collection, transformation, analysis and dissemination of information in business, through to smart systems embedded in commodity devices, the image processing used in medical diagnosis and the middleware that underpins distributed technologies like cloud computing and the semantic web.

This programme will give you the practical skills to gain entry into many areas of applied computing, working as application developers, system designers and evaluators; but further, links between the taught modules and our research provide our students with added strengths in artificial intelligence, intelligent systems, distributed systems, and the analysis of complex data. As a result, you’ll be well prepared for a range of careers, as well as further research at PhD level.

Graduates have found success in a wide range of careers working as business analysts, software engineers, wed designers and developers, systems engineers, information analysts and app developers. Others have pursued roles in consultancy, finance, marketing and education, or set up their own businesses.



Read less
Business information – and using it to increase profitability - is becoming an ever more essential part of running any organisation. Read more
Business information – and using it to increase profitability - is becoming an ever more essential part of running any organisation. This course will train you to design and develop information management systems and make the best use of them in the workplace – a highly sought-after skill in today’s competitive market.


Why study MSc Business Information Systems Management at Middlesex?

From revenue reports and customer data to figures used to forecast sales and analyse trends, the useful knowledge which organisations can gain from information systems is virtually limitless. Experts who can use the technology intelligently and creatively to add value to a business, combining technical ability with an understanding of an organisation’s needs, are in high demand. Our course is designed to meet that demand.

Our close links with industry have allowed us to develop a highly practical course, focusing on the skills employers tell us they want. We work with companies such as Microsoft and Siemens, and we are a Cisco local academy and a Xilinx university partner – meaning our students have access to the latest equipment, and our staff can make use of specialist teaching materials and workshops. Our award-winning technology centre has specialist network, software, digital and wireless laboratories equipped with industry-standard software and hardware.

Course highlights

- Our strong research culture helps our courses to stay innovative. Our research teams work on projects with leading companies in the UK and overseas, and the university is home to research centres including the Human Interactive Systems Laboratory, which explores the design of interactive technologies for education, training and medical use. We encourage our students to publish the research they carry out and many have gone on to present their work at conferences.
- Our course is accredited by the British Computer Society for Chartered IT Professional (CITP) status. This means that on graduation, you’ll have fulfilled the academic requirement for achieving chartered status, though you’ll need to complete further professional development. Our students are very much involved with the BCS and often attend seminars and other events - some have even sat on the society’s Quality Specialist Group committee.
- Guest lectures from software engineers and managers give students an insight into how information systems are used in industry. In the past we’ve had speakers from Microsoft, Virgin Atlantic and General Electric.
- Our Information Systems Quality Management module gives our course a unique slant – no other institution offers a similar module.
- You can start your studies in either September or January.

Read less
The Information Security and Biometrics MSc offers an advanced level of learning and provides you with a detailed understanding of the theories, concepts and techniques in the design, development and effective use of secure information systems. Read more
The Information Security and Biometrics MSc offers an advanced level of learning and provides you with a detailed understanding of the theories, concepts and techniques in the design, development and effective use of secure information systems.

Secure information systems are critically important to modern day businesses and societies. From banking systems and medical systems to power infrastructures or a simple home PC, security is vitally important as they are usually all interconnected directly or indirectly via the Internet or telephony system.

This Master’s programme combines modern engineering and technology with digital media and equips students with the skill set to develop modern security systems with an emphasis on biometric identity management. Graduates of this programme are then capable of adapting to changes in the field and of leading it in innovation.

Visit the website https://www.kent.ac.uk/courses/postgraduate/256/information-security-biometrics

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting new field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

This programme is taught jointly with the School of Computing. Both schools are at the forefront of research in their areas.

The School of Engineering and Digital Arts has an excellent reputation for research in various aspects of biometrics, including individual biometric modalities, the management of complexity in biometric systems and the testing and evaluation of biometric systems; while the School of Computing has participated in the development of X.509 international standard and the first X.509 privilege management infrastructure (PMI) was built by members of this school.

This Master's programme offers an advanced level of learning by providing students with a thorough understanding of the theories, concepts and techniques for the design, development and effective use of secure information systems, and producing graduates who are capable of adapting to changes in the field and leading it in innovation.

The course is designed for practitioners, professionals and graduates with an interest in information security, access control technologies, and application domains using biometric identification and verification systems.

Programme aims

This programme aims to:

- produce graduate engineers with a broad understanding of how to provide effective information security, and how to develop and use modern security systems, with a particular emphasis on biometric identity management

- equip trained engineers with the necessary system development skills to allow them to adapt to a dynamic and fast-changing industrial environment

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build long-term careers in this important discipline.

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) has an excellent record of student employability (http://www.eda.kent.ac.uk/school/employability.aspx). We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers. Within the School of Engineering and Digital Arts, you can develop the skills and capabilities that employers seek. These include problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

Control concepts and methods
Advanced energy conversion systems and power electronic applications
Advanced power electronic technologies for electrical power networks – HVDC and FACTS
Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
Economic analysis of electrical power systems and electricity markets.
While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Read more
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Practical skillset development is emphasized throughout the course. Students will be taught the theory, protocol and the efficient use of both analogue and digital interfaces and sensor devices together with the principles of and use of Real-Time-Operating-Systems (RTOS). A key focus of the course will be in the implementation of power aware sustainable solutions, the course will provide an in-depth discussion of the underlying power management hardware sub-systems within modern MCUs and will show and use software techniques that will exploit these to reduce power consumption.

Broader consideration of embedded system design will be examined. In particular, the design process, risk assessment, product life-cycle, software life-cycle, safety and regulation will be investigated and used. It is intended that the course will re-focus existing knowledge held by the student in software engineering and hardware engineering and deliver a set of enhanced practical skills that will enable the student to fully participate in this multi-disciplined, fast expanding and dominating engineering sector of embedded systems.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

There are plenty of opportunities for employment in the electronic systems subject area, in particular, there is a demand for engineers that can solve problems requiring a multi-disciplined approach covering skills from software engineering, control engineering, digital electronic systems engineering, analogue electronic engineering, medical physics, and mechanics amongst others. The MSc in Electronics and its specialist pathways will provide the foundations required to re-focus existing knowledge and enter this exciting world of multi-disciplined jobs.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Nanotechnology
-Biosensors
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

A. Advancement in Knowledge and Skill
‌•To develop specialists in their respective professional disciplines to enhance their career paths;
‌•To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
‌•To provide a laboratory environment for testing problems encountered at work.

Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:
‌•To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
‌•To introduce students to advances in selected areas of diagnostic laboratory techniques;
‌•‌To develop in students an integrative and collaborative team approach to the investigation of common diseases;
‌•To foster an understanding of the management concepts that are relevant to clinical laboratories; and
‌•To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development
‌•To provide channels for practising professionals to continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities, basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.

This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to the Medical Laboratory Science profession, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective Subjects (from any subjects within the Scheme) and a research-based Dissertation. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests.

Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with their course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
‌•PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
‌•PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 5 Subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of the Core Medical Laboratory Science Subjects. Some subjects are offered only in alternate years.

•Integrated Medical Laboratory Science
‌•Advanced Topics in Health Technology
‌•Clinical Applications of Molecular Diagnostics in Healthcare
‌•Clinical Chemistry
‌•Epidemiology
‌•Haematology & Transfusion Science
‌•Histopathology & Cytology
‌•I‌mmunology
‌•Medical Microbiology
‌•Molecular Technology in the Clinical Laboratory
‌•Workshops on Advanced Molecular Diagnostic Technology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students may take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Imaging and Radiation Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

Additional Document Required
Transcript / Certificate

Other Information
Suitable candidates may be invited to attend interviews.

How to Apply

For latest admission info, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-mmf-mmp website.

Read less
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Read more
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Specialist knowledge and practical skillsets will be taught, extensively developed and practiced in the areas of control systems and the analysis, categorisation and design of robotic systems that facilitate movement with multiple degrees of freedom. The knowledge and skillsets taught are key enabling skillsets used to implement devices for applications such as security drones, warehouse robots, medical robots and more humanoid like robots. It is intended that the course will re-focus and enhance existing knowledge in the areas of software engineering, electronic engineering and real-time embedded systems to enable the student to participate in the fast expanding and exciting sector of industrial and consumer robotic systems.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. Read more
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. It is delivered and awarded jointly by the Universities of Glasgow and Edinburgh. Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and are enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smart phones and every modern car to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring. This is an industry-focused programme, designed for people looking to develop skills that will open up opportunities in a host of end applications.

Why this programme

◾This is a jointly taught and awarded degree from the University of Glasgow and the University of Edinburgh, developed in with conjunction with CENSIS.
◾CENSIS is a centre of excellence for Sensor and Imaging Systems (SIS) technologies, CENSIS enables industry innovators and university researchers to collaborate at the forefront of market-focused SIS innovation, developing products and services for global markets.
◾CENSIS, the Innovation Centre for Sensor and Imaging Systems, is one of eight Innovation Centres that are transforming the way universities and business work together to enhance innovation and entrepreneurship across Scotland’s key economic sectors, create jobs and grow the economy. CENSIS is funded by the Scottish Funding Council (£10m) and supported by Scottish Enterprise, Highlands and Islands Enterprise and the Scottish Government.
◾CENSIS has now launched its collaborative MSc in Sensor and Imaging Systems, designed to train the next generation of sensor system experts.
◾This programme will allow you to benefit from the commercial focus of CENSIS along with the combined resources and complementary expertise of staff from two top ranking Russell Group universities, working together to offer you a curriculum relevant to the needs of industry.
◾The Colleges of Science and Engineering at the University of Glasgow and the University of Edinburgh delivered power and impact in the 2014 Research Excellent Framework. Overall, 94% of Edinburgh’s and 90% of Glasgow’s research activity is world leading or internationally excellent, rising in Glasgow’s case to 95% for its impact.
◾Fully-funded places and bursaries are available to Scottish/EU candidates. Further information on funded places.

Programme structure

The programme comprises a mix of core and optional courses. The curriculum you undertake is flexible and tailored to your prior experience and expertise, your particular research interests, and the specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme.

Graduates receive a joint degree from the universities of Edinburgh and Glasgow.

Programme timetable
◾Semester 1: University of Glasgow
◾Semester 2: University of Edinburgh
◾Semester 3: MSc project, including the possibility of an industry placement

Core courses
◾Circuits and systems
◾Fundamentals of sensing and imaging
◾Imaging and detectors
◾Technology and innovation management
◾Research project preparation.

Optional courses
◾Biomedical imaging techniques
◾Biophysical chemistry
◾Biosensors and instrumentation
◾Chemical biology
◾Digital signal processing
◾Electronic product design and manufacture
◾Electronic system design
◾Entrepreneurship
◾Lab-on-chip technologies
◾Lasers and electro-optic systems
◾Microelectronics in consumer products
◾Microfabrication techniques
◾Nanofabrication
◾Physical techniques in action
◾Waves and diffraction.

Career prospects

You will gain an understanding of sensor-based systems applicable to a whole host of markets supported by CENSIS.

Career opportunities are extensive. Sensor systems are spearheading the next wave of connectivity and intelligence for internet connected devices, underpinning all of the new ‘smart markets’, e.g., grid, cities, transport and mobility, digital healthcare and big data.

You will graduate with domain-appropriate skills suitable for a range of careers in areas including renewable energy, subsea and marine technologies, defence, automotive engineering, intelligent transport, healthcare, aerospace, manufacturing and process control, consumer electronics, and environmental monitoring.

Globally, the market for sensor systems is valued at £500Bn with an annual growth rate of 10%. The Scottish sensor systems market is worth £2.6Bn pa. There are over 170 sensor systems companies based in Scotland (SMEs and large companies), employing 16,000 people in high-value jobs including product R&D, design, engineering, manufacturing and field services.

Read less
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. Read more
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. It equips graduates with essential knowledge and skills in the fields of operations, quality, and innovation management.

The programme aims to enhance graduates’ technical and management contribution in various enterprises including manufacturing, financial services, health services, government, and many more. It invites participants from many disciplines: it is suitable for Engineering, Science, Commerce, and Arts graduates who wish to pursue a career in a high-tech environment. This conversion course aspect is of significant interest to students who may wish to change direction from their course of undergraduate study and pursue a new career path that offers them sound employment prospects in a growth area.

The Masters of Applied Science (Enterprise Systems) programme is highly regarded by employers and there has always been a strong demand for our graduates. Graduates of this programme have secured roles in engineering, management and IT in companies such as Accenture, Apple, Boston Scientific, Medtronic, Ingersoll Rand, Pepsi Co. Kerry Group, IBM, Ericsson, Elan and Hewlett Packard.

Key features of the programme include:
• An ethos of innovation
• Engaging teaching methods
• Customised learning programme
• Multidisciplinary approach
• Extensive career opportunities.

Content

You can choose from the following courses. Technology Innovation & Entrepreneurship; Project Management; Applied Innovation; Operations Management; Operations Strategy; Logistics and Transportation; Operations Research; Lean Systems; Quality Systems; Human Reliability; Systems Reliability; Ergonomics; Safety and Risk Management; Regulatory Affairs; Decision Systems & Business Analytics; Information Systems Strategy & Planning.

You will also prepare an industrial based research thesis on a topic to be agreed with an academic supervisor. We will provide some company specific case studies (and industrial mentors) in Med Tech, High Tech and Services organisations.

What some of our employers say

Martin Conroy | Senior Director Medtronic

The Enterprise systems programme at NUI Galway focuses on providing the necessary knowledge to be excellent systems thinkers. Graduates have the ability to understand people; process as well as technology related issues in an organisation. The programme encourages candidates to analyse problems using scientific methods and to generate innovative and effective solutions to these problems. Furthermore graduates are given real skills such as the ability to work in a team and communicate well. Such skills are essential to fast moving high tech companies like ours.

Alan Phelan | CEO Nucleus VP Group

We have engaged and recruited graduates and found them to be great problem solvers and critical thinkers. Their background in lean systems has been very applicable to a number of our companies where they have helped to implement sound systems and processes which have allowed our subsidiaries to scale rapidly.

What some of our graduates say

Paul Gleeson | Accenture

The programme is well delivered as there is a nice balance between practical and classroom based learning. I found the lecturers to be some of the most helpful and engaging people I have come across during my studies as they take a hand on approach to getting students involved in class discussions and debates. All in all, the programme is an excellent foundation for finding future employment opportunities due to the high level of personal and professional development you will obtain. It helped open up numerous career opportunities for me so it is a programme that I would highly recommend.

Sean Hehir | Marvao Medical

With a broad subject choice the Masters of Applied Science at NUI Galway allowed me to tailor the course to focus on the areas of interest to me which also complemented my science degree. Through team-oriented projects I developed better inter-personal skills and grew exponentially both professionally and personally. With a flexible course structure and forward thinking/innovative faculty the degree encourages and inspires entrepreneurship and innovation. The course is very relevant to current industrial practices as I found I had a working knowledge of the medical device industry from day one in my current job.

Paul McCormack | Allergan

I undertook the Masters of Applied Science in NUI Galway with the aim of acquiring new skills and knowledge to aid in my future career progression. The course was challenging and required high standards throughout. While striving to meet these standards I believe I have greatly improved my knowledge of business systems and gained valuable new skills. I believe the lessons learnt during the course will facilitate my personal and professional development into the future.

Wenjing Tang | Ernst and Young

The Master of Applied Science (Enterprise systems) programme offers a variety of multidisciplinary modules, which was a great conversion for me from the pure technical background. The essential knowledge and skills I gained from the course help me to work in different roles, either as a software developer in a technology company or an IT consultant in a financial service company. The programme is a great foundation to pursue wider career path.

Read less
- Intercalating medical students, or students intending to pursue a medical degree. - Students with a degree in the social sciences or humanities wishing to acquire a broad understanding of medical anthropology with reference to Asia or Africa, but also including other parts of the world. Read more

Who is this programme for?:

- Intercalating medical students, or students intending to pursue a medical degree.

- Students with a degree in the social sciences or humanities wishing to acquire a broad understanding of medical anthropology with reference to Asia or Africa, but also including other parts of the world

- People with professional experience in medical practice who have an interest in cross-cultural understandings of health and illness.

- Students with a degree in social anthropology wishing to pursue more specialist topics in the anthropology of medicine.

- Students without a previous degree in Anthropology looking for an MA conversion degree to serve as a qualification for pursuing a further research degree in anthropology

- The two-year intensive language pathway is directed at students who want to engage with a country in a professional as well as academic way, as the intensive language courses will enable them to reach a near proficient knowledge of the language.

As one might expect of study at SOAS, our programme is unique in that we take a cultural and phenomenological approach to the anthropology of medicine. That is, we stress a truly cross-cultural method, one which unites all medical systems in a unified comparative perspective. This allows students to grasp the underlying principles and questions common to all therapeutic systems. Given the diversity of the School’s courses, students may choose options which strengthen either the humanities or the development studies aspects of their interests.

It can also be taken with an intensive language pathway over two years, therefore making this programme unique in Europe.

The Japanese pathway is available for students who have an intermediate level of Japanese. Students will be required to take a placement exam in the week before classes begin in order to determine if their level is suitable. Please contact Professor Drew Gerstle () for further information.

The Korean pathway is designed for beginner learners of Korean. Students with prior knowledge of Korean are advised to contact the programme convenor, Dr Anders Karlsson (). Students will take four course units in the Korean language, one of them at a Korean university during the summer after year 1.

The Arabic pathway is designed for beginner learners of Arabic. Students will take four units of Arabic, one of them at the Qasid Institute in Jordan or another partner institution during the summer after year 1. Programme convenor: Dr Mustafa Shah ()

Visit the website http://www.soas.ac.uk/anthropology/programmes/ma-medical-anthropology-and-intensive-language/

Structure

- Core course: Cultural Understandings of Health - 15PANC093 (1.0 unit).

- Dissertation in Anthropology and Sociology - 15PANC999 (1.0 unit). This is a 10,000 word dissertation on a topic agreed with the Programme Convenor of the MA Medical Anthropology and the candidate’s supervisor.

- In addition, all MA Anthropology students 'audit' the course Ethnographic Research Methods during term 1 - this will not count towards your 4 units.

- Students without previous experience of anthropology must take the foundation course, Theoretical Approaches to Social Anthropology - 15PANC008 (1.0 unit).

Option Courses - Group A and Group B:

Students then choose TWO 0.5 unit courses from the Group A and B lists.

- AT LEAST ONE of the two 0.5 unit courses normally must come from Group A
- Students not taking Theoretical Approaches to Social Anthropology may then select their fourth unit (either a single 1.0 unit course or two 0.5 unit courses) from the Option Courses list.
- Alternatively, one language course may be taken from the Faculty of Languages and Cultures
- In the two-year language pathway, students take 2 intensive language units and Cultural Understandings of Health (1 unit) in their first year. During the summer, they will participate in a summer school abroad (location dependant on language). Upon their return, they will take one intensive language unit in their second year and two optional anthropology units. In the intensive-language pathway, the same rules apply as for the usual MA.

Programme Specification

MA Medical Anthropology and Intensive Language Programme Specification (pdf; 230kb) - http://www.soas.ac.uk/anthropology/programmes/ma-medical-anthropology-and-intensive-language/file93566.pdf

Teaching & Learning

Aims and Outcomes:
- All students are introduced to the types of problem and areas of questioning which are fundamental to the anthropology of medicine.

- Students new to the discipline are given knowledge of the general principles of anthropological enquiry

- All students develop advanced knowledge and understanding of the theoretical approaches which help form an anthropological perspective.

- All students gain an understanding of the practical methods by which this perspective is applied in field research.
All students will be provided with a near proficient ability in a language.

Knowledge:

- Students will be familiar with the foundational literature on the basis of which medical anthropology is linked to and emerges from broader disciplinary concerns.

- Students will have knowledge of the intersections linking medical anthropology to related fields, such as social studies of science, studies in bioethics, and critical approaches to public health

- Students will be familiar with the numerous ethnographic studies of health and illness.

Intellectual (thinking) skills:

- Students will learn to deploy an ethnographic kind of questioning – one directed toward teasing out of complex situations the sets of particular norms or principles which condition or shape them.

- As anthropologists, they will be trained to look for the specifically social in everything (even & especially in the “natural”)

- Students will learn how to form an anthropological problem – that is to distinguish an anthropological problem from a mere topic or area of interest.

Subject-based practical skills:

- Personal drive: Students are expected to take responsibility for their own learning

- Students will develop research skills: including location and adjustment to differing types of library collection, as well as locating organizations and people who hold significant information

- Listening & understanding: Students will be able to assimilate complex arguments quickly on the basis of listening – and to discuss or disagree constructively with points made by others.

- Planning and problem solving: students will be able to set targets and achieve them, and will be able to work well to deadlines.

- Working in a group: students will learn to lead by contributing to the development of consensus.

- In the two year intensive language pathway, to acquire/develop skills in a language to Effective Operational Proficiency level, i.e., being able to communicate in written and spoken medium in a contemporary language.

Transferable skills:

- Students will develop an ability to begin from a general question or issue and develop an appropriate research model and method.
- Ability to clearly represent a concise understanding of a project/problem and its solution.
- An ability to recognize and appreciate for what it is an unconventional approach or an unfamiliar idea
- An ability creatively to resolve conflict while working in a team; being able to see the other person’s point of view
- An ability to work and feel at ease in multicultural or cross cultural environments.

Find out how to apply here - http://www.soas.ac.uk/admissions/pg/howtoapply/

Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries. Read more

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X