• University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bocconi University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"medical" AND "informatic…×
0 miles

Masters Degrees (Medical Informatics)

We have 99 Masters Degrees (Medical Informatics)

  • "medical" AND "informatics" ×
  • clear all
Showing 1 to 15 of 99
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Informatics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Informatics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Health Informatics programme is designed for healthcare professionals and those who want to increase their knowledge and skills in health informatics. Accredited by the UK Council for Health Informatics Professions (UKCHIP), the programme uses state-of-the-art technologies and has a strong focus on practical experience is strongly linked with National Health Service (NHS) organisations, other research institutes and industry within the Life Science sector in Wales, UK.

Key Features of the Health Informatics Programme

- A one year full-time taught masters programme in Health Informatics that has been running successfully since 2001 and has an international reputation.

- The Health Informatics course is also available for three years part-time study with minimum attendance requirements.

- Accredited by the UK Council for Health Informatics Professions Education Quality Assurance Scheme.

- Uses state-of-the-art technologies and has a strong focus on practical experience.

- Strongly linked with National Health Services organisations and industry within the Life Science sector in Wales, UK.

- The Health Informatics course is based within the award winning Centres for Excellence for Administrative Data and eHealth Research of Swansea University, awarded by the Economic and Social Research Council (ESRC) and Medical Research Council (MRC), enhancing the quality of the course.

Who should study MSc Health Informatics?

The Health Informatics course is suitable for current informaticians, those working in the health and healthcare sector, and graduates preparing for a career in health informatics. Applicants from non-graduates with domain experience are welcome.

Course Structure

Health Informatics students must complete 6 modules (5 core and 1 further module from a choice of two) to earn a minimum of 120 credits in total in Part One and produce a dissertation of not more than 20,000 words on a relevant health informatics topic in Part Two to graduate. Each module for this course requires five days of intensive study in Swansea. This will be augmented by preparatory and reflective material supplied via the course website before and after your visit.

Attendance Pattern

Health Informatics students are required to attend the University for 1 week (5 consecutive days) for each module in Part One. Attendance during Part Two is negotiated with the supervisor.

Modules

Modules on the Health Informatics programme typically include:

• Health Informatics in Context

• Communications and Coding

• Using Secondary Health Data

• Systems and Technologies

• Knowledge Management

• Understanding Health Informatics Research

The Health Informatics course introduces two pathways for health informaticians who wish to specialise in one of the following areas:

1. Health Informatics Research

2. Leadership in Project Management

Research Opportunities

In partnership with the National Health Service (NHS) Wales Informatics Service and Health Boards in Wales, the Health Informatics course is able to offer NHS research opportunities within local NHS facilities and the NHS Wales Informatics Research Laboratories based at Swansea University.

Industry Links

In collaboration with the e-Health Industries Innovation Centre UK, this course offers you a unique opportunity to work with the industries to develop your work-based project that will give you the competitive edge and enhance your future employability.

Career Prospects

Health Informatics remains one of the fastest growing areas within healthcare in the UK and US.

In the UK working as a professional health informatician, you could be introducing electronic health records for every person in the country or exploring patient data to identify trends in disease and treatment. If you love working with computers or have an analytical and inquisitive mind, then there is a job for you in health informatics as the NHS Careers in Health Informatics has demonstrated.



Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
This programme is the first taught Masters programme in medical visualisation in the UK. Offered jointly by the University of Glasgow and the Glasgow School of Art, it combines actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation. Read more
This programme is the first taught Masters programme in medical visualisation in the UK. Offered jointly by the University of Glasgow and the Glasgow School of Art, it combines actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation.

Why this programme

◾You will examine human anatomy and reconstruct it in a real-time 3D environment for use in education, simulation, and training.
◾You will have access to the largest stereo 3D lab in Europe, and its state-of-the-art facilities such as laser scanner (for 3D data acquisition), stereo 3D projection, full body motion capture system, haptic devices and ambisonic sound.
◾You will also have access to the Laboratory of Human Anatomy at the University of Glasgow, one of the largest in Europe.
◾The programme has excellent industry connections through research and commercial projects and there are possible internship opportunities. You will benefit from guest lectures by practitioners, researchers and experts from industry.
◾This programme is accredited by the Institute of Medical Illustrators.

Programme structure

You will split your time between the Glasgow School of Art (Digital Design Studio) and the University of Glasgow (Laboratory of Human Anatomy). The programme is structured into three stages.

Stage one: digital technologies applied to medical visualisation (delivered by the Digital Design Studio at the Glasgow School of Art)

Core courses
◾3D modelling and animation
◾Applications in medical visualisation
◾Volumetric and 3D surface visualisation
◾Core research skills for postgraduates.

Stage two: human anatomy (delivered by the Laboratory of Human Anatomy at the University of Glasgow).

Core courses
◾Introduction to anatomy
◾Structure and function of the human body
◾Cadaveric dissection techniques.

In stage three you will complete a self-directed final project, supported throughout with individual supervision.

Career prospects

Career opportunities exist within the commercial healthcare device manufacturer, the public and private healthcare sectors, as well as in academic medical visualisation research. Students with medical, biomedical, anatomy, or health professional backgrounds will be able to gain 3D visualisation skills that will enhance their portfolio of abilities; students with computer science or 3D graphics background will be involved in the design and development of healthcare related products through digital technology, eg diagnostic and clinical applications, creating content involving medical visualisation, simulation, cardiac pacemakers, and biomechanically related products for implantation, such as knee, hip and shoulder joint replacements.

Here are some examples of roles and companies for our graduates:
◾Interns, Clinical Assistants and Clinical Researchers at Toshiba Medical Visualisation Systems
◾Research Prosector (GU)
◾3D printing industry
◾Demonstrators in Anatomy
◾PhD studies - medical history, medical visualisation
◾Medical School
◾Dental School
◾Digital Designer at Costello Medical
◾Lead Designer at Open Bionics
◾Founder of Axial Medical Printing Ltd
◾Digital Technician at University of Leeds
◾Digital Project Intern at RCPSG
◾Researcher and Factual Specialist at BBC
◾Graduate Teaching Assistants
◾Freelance Medical Illustration
◾Numerous successful placements on PhD programmes (medical visualisation, anatomy, anatomy education, medical humanities)
◾MBChB, BDS courses

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Informatics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Health Informatics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The developing discipline of health informatics is becoming an increasingly important component of health provision in the 21st Century. This programme builds on the successful MSc in Health Informatics which has been running at Swansea University since 2001.

Key Features of MRes in Health Informatics

- The focus is on primary research, undertaken over 2 years.

- Research skills are developed through three short modules as the student develops their own health informatics research project in the first 9 months of the course.

- The research project may be undertaken within the student’s own place of work.

- The research is supported within an organisation with a strong research reputation. Each student will have one to one supervision at all stages of the research process.

- The Health Informatics programme is based within the award winning Centres for Excellence for Administrative Data and eHealth Research at Swansea University, as awarded by the Economic and Social Research Council (ESRC) and the Medical Research Council (MRC).

- Through partnerships with National Health Service (NHS) bodies in Wales, we are able to offer a range of research opportunities.

Who should study MRes Health Informatics?

The Health Informatics course is designed for those with experience in health informatics who want to make a contribution to the field by helping develop the knowledge base. Applications for non-graduates with domain expertise are welcome.

Course Structure

Health Informatics students must undertake 3 modules of a total of 60 credits at level in their first academic year. The second year will comprise supervised completion of a research based thesis. The requirements for supervision and review, as set out for standard research degrees, will be integrated into the course.

Attendance Pattern

Only 3 individual weeks of attendance required in the first 9 months, one week for each of the modules.

Modules

Modules on the MRes Health Informatics typically include:

Critical Appraisal and Evaluation

Undertaking health informatics research

Any one existing health informatics module relating to the chosen topic



Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill
‌•To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
‌•To develop specialists in their respective professional disciplines and enhance their career paths;
‌•To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
‌•To provide a laboratory environment for testing problems encountered at work;
‌•To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong ‌Kong; and
‌•To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development
‌•To provide channels through which practising professionals can continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

The Medical Imaging and Radiation Science award offers channels for specialization and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to Medical Imaging and Radiation Science, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective subjects (from any subjects within the Scheme) and a research-based Dissertation or 3 other subjects from the Scheme. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests. Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with the course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 4 subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of Core Subjects. Some subjects are offered in alternate years.

‌•Multiplanar Anatomy
‌•Advanced Radiotherapy Planning & Dosimetry
‌•Advanced Technology & Clinical Application in Computed Tomography
‌•Advanced Technology & Clinical Application in Magnetic Resonance Imaging
‌•Advanced Topics in Health Technology
‌•Advanced Ultrasonography
‌•Computed Tomography (CT): Practicum
‌•Digital Imaging & PACS
‌•Imaging Pathology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students can take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Laboratory Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

‌•Additional Document Required
‌•Employer's Recommendation
‌•Personal Statement
‌•Transcript / Certificate

How to Apply

For latest admission, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] website http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-rmf-rmp

Read less
Degree. Master of Science (two years) with a major in Biomedical Engineering. Teaching language. English. Read more
Degree: Master of Science (two years) with a major in Biomedical Engineering
Teaching language: English

Biomedical Engineering encompasses fundamental concepts in engineering, biology and medicine to develop innovative approaches and new devices, materials, implants, algorithms, processes and systems for the medical industry. These could be used for the assessment and evaluation of technology; for prevention, diagnosis, and treatment of diseases; for patient care and rehabilitation and for improving medical practice and health care delivery.

The first year of the Biomedical Engineering programme is focused on mandatory courses expanding students’ engineering skills and knowledge in areas like anatomy and physiology but also biology and biochemistry. Courses in mathematics, statistics, multidimensional biomedical signal generation and analysis, combined with medical informatics and biomedical modelling and simulation, create a solid foundation for the continuation of the programme.

In the second year, three areas of specialisation, medical informatics, medical imaging and bioengineering, are introduced. Coinciding with the specialisation, a course in philosophy of science is mandatory, preparing and supporting the onset of the degree project.
A graduate of the Biomedical Engineering programme should be able to:

• formulate and solve engineering problems in the biomedical domain, encompassing the design of devices, algorithms, systems, and processes to improve human health and integrating a thorough understanding of the life sciences.
• use, propose and evaluate engineering tools and approaches.
• identify and manage the particular problems related to the acquisition, processing and interpretation of biomedical signals and images.
• integrate engineering and life science knowledge, using modelling and simulation techniques.
• communicate engineering problems in the life science domain.

The Biomedical Engineering curriculum supports and sustains "Engineering for Health" through a relevant mixture of mandatory and elective courses. This enables both broad-based and in-depth studies, which emphasises the importance of multidisciplinary and collaborative approaches to real-world engineering problems in biology and medicine.

Welcome to the Institute of Technology at Linköping University

Read less
Programme description. Demand is growing for high value data specialists across the sciences, medicine, arts and humanities. The aim of this unique, modular, online distance learning programme is to enhance existing career paths with an additional dimension in data science. Read more

Programme description

Demand is growing for high value data specialists across the sciences, medicine, arts and humanities. The aim of this unique, modular, online distance learning programme is to enhance existing career paths with an additional dimension in data science.

The programme is designed to fully equip tomorrow’s data professionals, offering different entry points into the world of data science – across the sciences, medicine, arts and humanities.

Students will develop a strong knowledge foundation of specific disciplines as well as direction in technology, concentrating on the practical application of data research in the real world.

You can study to an MSc, Postgraduate Diploma, Postgraduate Certificate or Postgraduate Professional Development level.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to the University of Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

You can study to an MSc, MSc with Medical Informatics specialism, Postgraduate Diploma, Postgraduate Certificate or Postgraduate Professional Development level.

Find out more about the compulsory and optional courses in this degree programme. We publish the latest available information for this programme. Please note that this may be for a previous academic year.

These credits will be recognised in their own right for postgraduate level credits or may be put towards gaining a higher award such as a PgCert.

Learning outcomes

The modular course structure offers broad engagement at different career stages. Individual courses provide an understanding of modern data-intensive approaches while the programme provides the knowledge base to develop a career that majors in data science in an applied domain.

Career opportunities

This programme is intended for professionals wishing to develop an awareness of applications and implications of data intensive systems. Our aim is to enhance existing career paths with an additional dimension in data science, through new technological skills and/or better ability to engage with data in target domains of application.



Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

A. Advancement in Knowledge and Skill
‌•To develop specialists in their respective professional disciplines to enhance their career paths;
‌•To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
‌•To provide a laboratory environment for testing problems encountered at work.

Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:
‌•To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
‌•To introduce students to advances in selected areas of diagnostic laboratory techniques;
‌•‌To develop in students an integrative and collaborative team approach to the investigation of common diseases;
‌•To foster an understanding of the management concepts that are relevant to clinical laboratories; and
‌•To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development
‌•To provide channels for practising professionals to continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities, basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.

This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to the Medical Laboratory Science profession, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective Subjects (from any subjects within the Scheme) and a research-based Dissertation. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests.

Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with their course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
‌•PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
‌•PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 5 Subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of the Core Medical Laboratory Science Subjects. Some subjects are offered only in alternate years.

•Integrated Medical Laboratory Science
‌•Advanced Topics in Health Technology
‌•Clinical Applications of Molecular Diagnostics in Healthcare
‌•Clinical Chemistry
‌•Epidemiology
‌•Haematology & Transfusion Science
‌•Histopathology & Cytology
‌•I‌mmunology
‌•Medical Microbiology
‌•Molecular Technology in the Clinical Laboratory
‌•Workshops on Advanced Molecular Diagnostic Technology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students may take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Imaging and Radiation Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

Additional Document Required
Transcript / Certificate

Other Information
Suitable candidates may be invited to attend interviews.

How to Apply

For latest admission info, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-mmf-mmp website.

Read less
This taught Masters is designed to provide you with an advanced programme of study in Medical Physics. It provides an understanding of the application of physics and technology to a range of disciplines within medical physics at a level appropriate for a professional physicist. Read more
This taught Masters is designed to provide you with an advanced programme of study in Medical Physics. It provides an understanding of the application of physics and technology to a range of disciplines within medical physics at a level appropriate for a professional physicist. We have expertise in traditional areas like ionising radiation, but also specialist sections in PET Scanning, Ophthalmology, Urology, Informatics and leading researchers in MRI.

Why this programme

◾A key strength of this programme is that you will be taught mostly by physicists working in the NHS. It will quip you for employment in a clinical environment.
◾Due to the large size of the NHS medical physics department in Glasgow, all mainstream areas of medical physics are covered along with some specialised fields.
◾The programme is accredited with the Institute of Physics & Engineering in Medicine (IPEM), the UK professional body for medical physicists.
◾The department has access to 1.5, 3 and 7 Tesla MRI, Pet Scanning, a cyclotron, dedicated SPECT and has its own radiosotope dispensary.
◾Your lecturers are operating at the forefront of the profession with a balance of research and clinical practice, perfect for studying Medical Science.
◾The research component of this programme allows you to develop valuable skills for practising and interpreting research.
◾We draw on expert resources within the wider university for anatomy, statistics and the two optional courses.

Programme structure

You will attend lectures, seminars and tutorials, take part in e-learning and undertake a research project.

Core courses
◾Radiation physics
◾Anatomy and physiology
◾Statistics and experimental techniques
◾Medical imaging physics
◾Programming
◾Scientific management
◾Clinical medical imaging
◾Radiotherapy
◾Clinical measurement
◾Research dissertation.

Optional courses
◾Advanced data analysis
◾Problem solving.

Career prospects

Career opportunities include positions in the NHS, private healthcare and equipment manufacturers. This is the course followed by the NHS trainees in Scotland so it is highly attuned to preparing the successful student for employment.

Read less
The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.
Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.
- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.
- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.
- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.
When you enter the job market, you’ll have:
- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development
- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;
- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;
- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:
- University or research institute;
- Pharmaceutical company, such as Synthon or Johnson & Johnson;
- Food company, like Danone or Unilever;
- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:
- Biological or medical consultant;
- Biology teacher;
- Policy coordinator, regarding genetic or medical issues;
- Patent attorney;
- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology
In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches
Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples
Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:
- Autoimmune diseases, like rheumatoid arthritis and lupus
- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer
- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Read less
The MSc in Medical Visualisation and Human Anatomy is a one-year taught postgraduate programme offered by the School of Simulation and Visualisation at The Glasgow School of Art in collaboration with the Laboratory of Human Anatomy, University of Glasgow. Read more
The MSc in Medical Visualisation and Human Anatomy is a one-year taught postgraduate programme offered by the School of Simulation and Visualisation at The Glasgow School of Art in collaboration with the Laboratory of Human Anatomy, University of Glasgow.

The course presents a unique opportunity to combine actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation using state of the art virtual reality facilities. It allows students to examine human anatomy, and to reconstruct it in a real-time 3D environment for use in education, simulation, and training. This Masters programme provides an ideal opportunity for enhancement of research into human anatomy, diagnostics, simulation, and visualisation, and is accredited by the Institute of Medical Illustrators.

Programme Structure:

The MSc Medical Visualisation & Human Anatomy programme is delivered over one year (45 weeks) in 3 Stages. Students undertaking the programme will split their time equally between the University of Glasgow and the Glasgow School of Art. The programme is delivered as two core areas - digital technologies applied to medical visualisation (delivered by the School of Simulation and Visualisation in Stage 1) and human anatomy (delivered by the Laboratory of Human Anatomy in Stage 2). In Stage 3, students work towards a large-scale self-directed final project, supported by supervisors from both DDS and GU.

Stage 1

3D modelling and animation
Applications in medical visualisation
Volumetric visualisation
Core research skills for postgraduates

Stage 2

Introduction to anatomy
Structure and function of the human body
Cadaveric dissection techniques

Stage 3

MSc Research Project

Part time study is also available. Please see the Part Time Study Guide for more information.

Scholarships and Funded Places:

A range of scholarships are available which cover partial or full fees. More information can be found here.

Entry requirements:

You should have a good Honours degree or equivalent in any of the following disciplines:

• Life sciences, medical or biomedical science, e.g. anatomy, physiology, dentistry or dental technology, forensic anthropology, molecular biological degrees and the allied health professionals
• Computer science, 3D visualisation, computer graphics, health informatics, mathematics, and physics
• Medical illustration, 3D design, product design, digital media, digital arts, 3D modeling and animation
• or equivalent professional practice

High calibre graduates from other disciplines may be considered if they are able to demonstrate an interest and ability in the field of medical visualisation.

IELTS 6.5 for overseas applicants for whom English is not their first language.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical and Health Care Studies at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical and Health Care Studies at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The research and innovation arm of Swansea University’s Medical School is the Institute of Life Science (ILS). The vision for ILS is to advance medical science through interdisciplinary research and innovation to improve the health wealth and well-being of the people of Wales and beyond.

The Institute of Life Science

- is a unique example of successful collaboration between the NHS, academia and industry in the life science and health sector.

- enjoys close links with the Colleges of Engineering and Science especially through the Centre for NanoHealth.

- is Wales’ premier purpose-built medical research facility.

- is a collaboration between Swansea University and the Welsh Government, together with Abertawe Bro Morgannwg University Health Board, and industry and business partners.

Our research within Medical and Healthcare Studies focuses around four themes:

Biomarkers and Genes

Devices, Microbes and Immunity

Patient and Population Health

Informatics

Thanks to the interdisciplinary ethos of the Institute of Life Science, researchers dedicated to four theme areas work together seamlessly on complex medical problems that have both biological and social impacts. Candidates for the Medical and Health Care Studies programme are asked to nominate their preferred research area.



Read less
USF’s Master of Science in Health Informatics program is focused on training the next generation of informaticists in the art and science of health data analytics. Read more

The Art and Science of Health Data Analytics

USF’s Master of Science in Health Informatics program is focused on training the next generation of informaticists in the art and science of health data analytics. Healthcare and technical professionals learn everything from the basics of programming to cutting-edge statistical and machine learning methods in interprofessional, project-based classrooms.

Two tracks are available for students to pursue. Students may follow a track, or take any combination of courses that best suit their goals:

• Health Data Analytics - for students who want advanced training in data science
• Clinical Informatics - for clinicians and executives who are preparing for leadership positions

We seek highly motivated students who have a passion for improving healthcare through the application of data science and information technology. Our ideal student will have either:

• Clinical background (e.g., MD, RN, DPT, PsyD, PharmD, Allied Health, other post-baccalaureate clinical degree, or equivalents)
• Science or Engineering background with an interest in healthcare
• Healthcare Executives, Health IT leaders, and others involved in healthcare that wish to gain broad and deep knowledge in Health Informatics.
• Strong academic background, passion for healthcare, and quantitative aptitude

Program Features

REAL-WORLD PROBLEMS IN THE CLASSROOM

Classroom projects engage interdisciplinary teams of students to tackle real-world problems from faculty research or industry partners.

PROGRAMMING AND DATA ANALYTICS SKILLS

All students, regardless of background, learn programming skills in the context of working with healthcare data.

ENTREPRENEURIAL PERSPECTIVE

Located in the epicenter of the global digital revolution, our program engages with the Silicon Valley startup community. Interested students are given startup mentoring opportunities.

INTERNSHIP AND PRACTICUM OPPORTUNITIES

Students are required to complete a Capstone Experience consisting of original research, substantial project in health and biomedical informatics, or an internship with industry partner. We provide support for students in finding their internships and projects.

ADVANCED CLINICAL TRAINING

Clinically trained students are able to take graduate level nursing courses that fully count toward an advanced nursing degree including Doctor of Nursing Practice (DNP) or Master of Science in Nursing (MSN) at USF.

Job Outcomes

Our graduates are well-prepared for current and future challenges in this field. Importantly, our graduates have the technical skill to work with computer scientists and programmers, and a deep understanding of the healthcare environment to work with doctors, nurses, psychologists, and other healthcare professionals.

Our graduates have found opportunities in large hospitals or medical centers, research institutions, startups, government health agencies, and global health organizations. Positions have included Clinical Data Analyst, Director of Clinical Informatics Research, Statistical Analyst, Senior Programmer Analyst and Advanced Research or Clinical training (MD, DNP, PhD in Biomedical Informatics).

Read less
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. Read more
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. But that was not the end, just the beginning. The “big” data being generated is coming out at an amazing rate. Personalised medicine is around the corner. We need skilled and talented biologists who are capable of analysing, processing and innovating. Gene therapy is hitting the headlines. Stem cell therapy may treat the previously untreatable. You can be part of this new golden age with a masters in medical genomics.

More about this course

We will be enhancing knowledge of genomic science from a health perspective. With our superb laboratory facilities we’re able to offer unique research project opportunities together with outstanding quality of teaching from research active staff.

We have access to guest lecturers at the highest levels of their profession who are collaborating with our staff (Barts, Imperial, Kings, UCL, St Georges, Brunel). In addition, we have a strong collaboration with the prestigious ACFIES in Columbia, which offers exciting international work exchange opportunities.
Students will be eligible to join the Royal Society of Biology with whom we are registering to be accredited.

We can offer unrivalled student learning support and our location means that the job market is on our doorstep. Connections with other prestigious universities mean that students will have the opportunity to meet and discuss their career options and secure work placements or apply for studentships.

You’ll be tested using a wide variety of assessment tools. We will ask students to write laboratory reports, give presentations, sit written exams, take part in debates, answer quizzes and experience virtual labs via asynchronous e-learning, make posters and defend their work aurally.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules includes:
-Biomedical Informatics (core, 20 credits)
-Fundamentals of Medical Genetics and Genomics (core, 20 credits)
-Medical Genetics (core, 20 credits)
-Research Project for Medical Genomics (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Advanced Immunology (option, 20 credits)
-Bioinformatics and Molecular Modelling (option, 20 credits)
-Biomedical Diagnostics (option, 20 credits)
-Epidemiology of Emerging Infectious Disease (option, 20 credits)
-Ethical Issues in Biomedical Science (option, 20 credits)
-Molecular Oncology (option, 20 credits)

After the course

Genomics is important in both public and private domains. It is key for the NHS and via governmental initiatives (the 100,000 genome project). Thus there is a commensurate burgeoning of new genome centres in the UK and abroad: ie the Cambridge Genome centre. There are opportunities for people with degrees and training in human genetics. As genetic testing becomes part of many routine medical evaluations, more geneticists are needed to perform the tests. As genetics is recognised to be a basic part of all biological sciences, more teachers with expertise in genetics will also be needed. In India, genomics is growing through companies like Medgenome. It is indubitable that this is a currently growing area of the job market.

Read less
Healthcare demand is exceeding supply worldwide and there is a need for radical solutions. Innovative IT approaches are transforming healthcare. Read more

Healthcare demand is exceeding supply worldwide and there is a need for radical solutions. Innovative IT approaches are transforming healthcare. Health providers and leading multinationals are investing massively in technology and demand for qualified health informatics professionals is high.

This programme offers a detailed overview of health informatics, including telehealth, mHealth, data analytics, knowledge management and decision support. It takes a strong information systems perspective, building transferable skills in areas like soft systems, process modelling, strategy and system development, and focusing these on health.

The Yorkshire Centre for Health Informatics has a strong national and international reputation and is actively engaged in delivering education, skills, research and development to the NHS and a network of national and international software suppliers. As a student on the Masters programme, you’ll be actively involved with us in listening to, and informing, the informatics agenda for health.

More information

The professional development events run by the Yorkshire Centre for Health Informatics (YCHI) mean we have an established network of employers keen to recruit masters students and support their masters projects.

You’ll benefit from our location too. The Leeds Teaching Hospitals NHS Trust is the largest UK hospital trust and Leeds is the headquarters for many Department of Health organisations, such as NHS Digital and NHS England. We also have close relationships with leading health software suppliers based in Leeds, in particular The Phoenix Partnership, providers of SystmOne and ResearchOne. YCHI is part of the Leeds Institute of Data Analytics, bringing opportunities to be involved in exciting developments in “big data”.

You can also study this subject at Postgraduate Diploma and Certificate levels.



Read less

Show 10 15 30 per page



Cookie Policy    X