• Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
Birmingham City University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Leeds Featured Masters Courses
Newcastle University Featured Masters Courses
"medical" AND "image"×
0 miles

Masters Degrees (Medical Image)

  • "medical" AND "image" ×
  • clear all
Showing 1 to 15 of 105
Order by 
The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors. Read more
The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors.

A feature of this pathway is its clinical focus and its flexibility to support students who are reporting or planning to report in a range of imaging modalities and anatomical systems. By the end of the pathway, students will be able to apply their medical image reporting skills, of their chosen area of practice, within the clinical environment, ensuring that technically correct imaging reports are generated.
Typical areas of practice include reporting of the musculoskeletal system, chest, abdomen, cranial CT, and gastrointestinal system.

Students should be practicing in the area for which they intend to study, for example cranial CT students must have access to clinical CT facilities.

Why Bradford?

The University of Bradford has a long tradition in Medical Image Reporting education and this experience is utilised in the delivery of this pathway. The Radiographic Image Reporting (RIR) Certificate pathway was first validated in 1996 subsequently developing to support reporting across a wide range of Medical Imaging examinations and has proved to be a popular choice of study demonstrating its continued clinical relevance and benefit to healthcare professionals.

Modules

Principles of Image Reporting
Medical Image Reporting

Learning activities and assessment

The course sits within the MSc in Medical Imaging programme and the Faculty of Health Studies SSPRD framework, and upon successful completion of this MIR course students can continue their studies by registering for additional modules from the Medical Imaging or School module portfolio, to obtain a postgraduate Diploma or Masters Degree. This part-time pathway is designed to be studied over a one year period and consists of two 30 credit modules, commencing in early September with the Principles of Reporting module, followed in February with the Medical Image Reporting module.

A `block' attendance format is utilised as well as significant “directed” clinical study, with support from your host department and distance support from the academic team in the delivery of the clinical and academic learning. This is consistent with the other named pathways within the MSc in Medical Imaging programme and is popular with students who benefit academically from the concentrated period of time that can be devoted to their studies. There are two blocks of academic learning for the Principles of Reporting module and two blocks for the Medical Image Reporting module.

The module content and learning outcomes have informed the methods of delivery. Students will have opportunity to engage with learning through a range of teaching methods including lectures, tutorials, group work, directed study, and, in the case of the clinical module, guided clinical learning.

This wide range of teaching approaches ensures that students can consolidate learning through a range of activities. In particular, small group learning and discussion of clinical cases promotes problem solving skills and peer education, skills necessary for clinical practitioners aspiring to work at an advanced level of practice. While away from the University, students can access course materials and engage in online discussions and learning activities through the University's Virtual Learning Environment (VLE).

A range of assessments are incorporated into the programme, but there is a requirement to complete a clinical audit of reports which must achieve 95% concurrence during audit, measured against the standard report of the host department.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
This module aims to. -Provide the student with a structured and monitored experiential learning opportunity. -Enable the student to further develop the theoretical and clinical knowledge base required to interpret specified medical images. Read more
This module aims to:
-Provide the student with a structured and monitored experiential learning opportunity
-Enable the student to further develop the theoretical and clinical knowledge base required to interpret specified medical images
-Develop the student`s ability to construct clear and concise medical image reports

The learning in the module will utilise the knowledge and understanding gained in the pre-requisite Principles of Reporting module, and apply it to the students own clinical practice.

The students will undertake a wide range of interpretations and reports for specific areas of practice or imaging modality, and understand pathological processes and mechanisms of injury matching imaging appearances.

Whilst on clinical placement the student will complete a record of clinical experience and reporting practice and undertake work-based projects/case studies as part of the learning process. These work based tasks will include a critical appraisal of published literature and research, and reflection on their practice. Tutorials will be used to facilitate sharing of information by students and learning from each other and recognised clinical experts.

Why Bradford?

The medical image reporting pathway at Bradford was developed in the early 1990s and has run since 1996 with an experienced team of academic and teaching staff and invited clinical practitioners.

The programme doesn't limit the scope of practice which can be developed and can be used to support any area or modality.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.
Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Achievement of the learning outcomes will be demonstrated through a work-based portfolio and clinical audit: completion of the portfolio of clinical experience will allow demonstration of clinical competence in reporting and critical evaluation of medical images and related clinical research.

All assessments within a module must achieve 40% to pass.

Career support and prospects

Previous students have used the skills and knowledge gained in this module to progress their careers to advanced and consultant practitioner statuses.

Read less
The module develops the theoretical knowledge base required to interpret specified medical images, and to develop a comprehensive understanding of the factors to be considered in the construction of a clear and concise medical image report. Read more
The module develops the theoretical knowledge base required to interpret specified medical images, and to develop a comprehensive understanding of the factors to be considered in the construction of a clear and concise medical image report.

Typical areas of practice include reporting of the musculoskeletal system, chest, abdomen, cranial CT, and gastrointestinal system.

Lectures and seminars are used to enhance understanding and analysis of the roles of practitioners undertaking the role of medical image reporting.

Emphasis is placed on the medico-legal framework within which such roles have been developed and the transferrable analysis, decision making and communication skills involved in constructing medical image reports.

Assessment involves an assignment which focuses on the development of a scheme of work and protocol to support this development and a presentation showing the effect that this has on service delivery.

Why Bradford?

The medical image reporting pathway at Bradford was developed in the early 1990s and has run since 1996 with an experienced team of academic and teaching staff and invited clinical practitioners. The programme doesn't limit the scope of practice which can be developed and can be used to support any area or modality.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Assessment involves an assignment which focuses on the development of a scheme of work and protocol to support this development and a presentation showing the effect that this has on service delivery. All assessments within a module must achieve 40% to pass.

Career support and prospects

Previous students have used the skills and knowledge gained in this module to progress their careers to advanced and consultant practitioner statuses.

Read less
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. Read more
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. It is also used by the pharmaceutical industry to aid in explanation of their products and by television companies in the production of documentaries.

This highly innovative one-year taught Masters course employs highly specialised tutors from scientific backgrounds alongside experienced medical art supervisors.

Why study Medical Art at Dundee?

Medical Art is the depiction of anatomy, medical science, pathology and surgery. This may include medical images, models or animations for use in education, advertising, marketing and publishing, conceptual work in relation to research, education and publishing and two or three-dimensional visualisation for the training of specific medical professionals.

Medical and forensic artists require technical and conceptual art skills alongside comprehensive medical and anatomical knowledge.

What's so good about studying Medical Art at Dundee?

You will benefit from the facilities of a well-established art college, whilst appreciating the newly-refurbished laboratories, a dedicated library and access to human material in a modern medical science environment.

Internships

Short term internships in forensic and medical institutes throughout the world will be offered to selected students following graduation. Internship institutes offer these internships based on the reputation of the course and its tutors and include the National Centre for Missing and Exploited Children (NCMEC), USA; the Turkish Police Forensic Laboratory, Ankara and Ninewells Hospital, Dundee.

How you will be taught

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

What you will study

Students on both Forensic Art and Medical Art MSc's share joint modules with increasing specialisation. Students may carry out their semester three Dissertation module either at the University or from a working environment or placement.

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

Medical Art students study:

Semester 1 (60 credits)
Anatomy - Head and Neck
Anatomy - Post Cranial
Life Art
Digital Media Practice
Research Methods

Semester 2 (60 credits)
Medical Art 1 - Image Capture and Creation
Medical Art 2 - Communication and Education
Medical-Legal Ethics

Semester 3 (60 credits) - dissertation and exhibition resulting from a research project undertaken either at the university or as a placement.

On successful completion of Semesters 1 and 2 there is an exit award of a Postgraduate Diploma in Medical Art.

How you will be assessed

Anatomy modules will be assessed by spot-tests and practical examinations and coursework. Medico-legal ethics will be assessed by both a written exam and coursework. All other modules will be assessed by coursework.

Careers

This programme aims to provide professional training to underpin your first degree, so that you can enter employment at the leading edge of your discipline. Career opportunities in medical art are varied and will depend on individual background and interests.

In medical art potential careers exist in the NHS as well as industry. Medical art and visualisation is a rapidly changing and broad discipline. Possible careers include:

NHS medical illustration departments producing patient information and illustration services for staff
E-learning
3D model making (including clinical/surgical skills trainers) companies
Digital art and animation studios
Publishing houses
Illustration studios
Medico-legal artwork
Freelance illustration and fine art applications
Special effects and the media/film world
Academia – teaching or research
PhD research

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more

About the course

The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

See the website http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
- Postgraduate certificate - 60 credits
- Postgraduate diploma - 120 credits
- Masters degree - 180 credits

To complete a Masters degree award for this course you need to collect the following credits:
- Research modules - 60 credits
- Image interpretation modules - minimum 30 credits
- Optional interprofessional modules - maximum 90 credits

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Assessment methods include objective structured clinical examinations (OSCEs), clinical portfolios, case study presentations, oral presentations and written presentations.

Work Placement

A recognized clinical placement which provides access to medical diagnostic images is a requirement for the clinical competency modules within the image interpretation pathway. The University cannot offer to provide clinical placements for students.

Professional Accreditations

Accredited by the College of Radiographers

Find out how to apply here http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation#how-to-apply

Find information on Scholarships here http://www.herts.ac.uk/apply/fees-and-funding/scholarships/postgraduate

Read less
Medical Robotics and Image-Guided Intervention are two technology driven areas of medicine that have experienced tremendous growth and improvement over the last twenty years, partly driven by the surgical aim of progressively less invasive and harmful treatments. Read more
Medical Robotics and Image-Guided Intervention are two technology driven areas of medicine that have experienced tremendous growth and improvement over the last twenty years, partly driven by the surgical aim of progressively less invasive and harmful treatments.

This course will provide the research experience required to work within the highly innovative field of medical robotics and surgical technology.

This is a multidisciplinary field and is led by three internationally known departments:

The Hamlyn Centre for Medical Robotics (part of the Institute of Global Health Innovation)
The Department of Surgery and Cancer
The Department of Computing

All teaching and research will take place in the brand new facilities of the Hamlyn Centre.

Taught modules include a mixture of engineering and medical topics such as medical robotics and instrumentation, minimally invasive surgery, surgical imaging and optics, image guided intervention, perception and ergonomics.

You will spend nine months working on a cutting edge research project.

Read less
Overview. The Master of Medical Physics is the entry level qualification that medical physicists have as clinical physical scientists. Read more
Overview
The Master of Medical Physics is the entry level qualification that medical physicists have as clinical physical scientists. It provides you with the tools to apply your knowledge and training to many different areas of medicine including the treatment of cancer, diagnostic imaging, physiological monitoring and medical electronics.

Our postgraduate medical physics program is designed to meet the growing global demand for graduate physical scientists with the specialised knowledge, skills and expertise to work within a clinical setting in the highly scientific and technical environment of medical physics. The University of Sydney Medical Physics Program offers you a wide variety of coursework units of study in radiation physics, nuclear physics, radiation dosimetry, anatomy and biology, nuclear medicine, radiotherapy physics, medical imaging physics, image processing, radiation biology, health physics and research methodology.

Sydney advantage
This program is offered through the School of Physics, which has access to world-class teaching and research facilities and provides highly experienced teaching and research staff in this discipline area through the Institute of Medical Physics and affiliated teaching hospitals and research institutes.

Program expectations
You will learn the latest knowledge and techniques enabling you to find employment in the areas of medical physics applied to the treatment of cancer, medical imaging, physiological monitoring and medical electronics.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
If you're aiming to work in medical imaging, then you'll want to gain valuable experience using up-to-date medical equipment. That's where we come in. Read more
If you're aiming to work in medical imaging, then you'll want to gain valuable experience using up-to-date medical equipment. That's where we come in. Our excellent reputation for medical imaging training extends across the world, with courses designed to demonstrate academic ability as well as clinical proficiency. We'll help you develop in your role within medical imaging, gaining confidence and competence as well as critical evaluation skills.

Our Medical Imaging Laboratory is equipped with the latest industry-standard medical imaging workstations, allowing you to develop practical experience that will help you in finding future employment. We use Adobe Photoshop™ and other bespoke scientific packages such as 'Somisoft' specifically for image analysis, meaning you get to work with top quality programmes to make your training go as smoothly as possible. You'll learn everything you need to go into the world of medical imaging, so make sure you get the right level of training by taking this intellectually stimulating course.

Course outline

You'll learn to demonstrate the judgement and problem solving skills necessary to produce the highest quality diagnostic medical images, preparing you for the next stage in your career. You'll develop an understanding and clinical expertise in the theory and application of medical imaging in a modern medical setting.

Graduate destinations

This qualification can lead to employment within the field of medical imaging. A masters level degree is becoming a requirement in many departments, so you will have a head start in finding work within the NHS or in the private sector.

Read less
If you're aiming to work in medical imaging, then you'll want to gain valuable experience in using up-to-date medical equipment. That's where we come in. Read more
If you're aiming to work in medical imaging, then you'll want to gain valuable experience in using up-to-date medical equipment. That's where we come in. Our excellent reputation for medical imaging training extends across the world, with courses designed to demonstrate academic ability as well as clinical proficiency. We'll help you develop in your role within medical imaging, gaining confidence and competence as well as critical evaluation skills.

Our Medical Imaging Laboratory is equipped with the latest industry-standard medical imaging workstations, allowing you to develop practical experience that will help you in finding future employment. We use Adobe Photoshop™ and other bespoke scientific packages such as 'Somisoft' specifically for image analysis, meaning you get to work with top quality programmes to make your training go as smoothly as possible. You'll learn everything you need to go into the world of medical imaging, so make sure you get the right level of training by taking our stimulating course.

Course outline

You'll learn to demonstrate the judgement and problem solving skills necessary to produce the highest quality diagnostic medical images, preparing you for the next stage in your career. You'll develop an understanding and clinical expertise in the theory and application of medical imaging in a modern medical setting.

Graduate destinations

This qualification can lead to employment within the field of medical imaging. A masters level degree is becoming a requirement in many departments, so you will have a head start in finding work within the NHS or the private sector.

Read less
If you're aiming to work in medical imaging, then you'll want to gain valuable imaging techniques using up-to-date medical equipment. Read more
If you're aiming to work in medical imaging, then you'll want to gain valuable imaging techniques using up-to-date medical equipment. That's where we come in. Our excellent reputation for medical imaging training extends across the world, with courses designed to demonstrate academic ability as well as clinical proficiency. We'll help you develop in your role within medical imagine, gaining confidence and competence as well as critical evaluation skills.

Our Medical Imaging Laboratory is equipped with the latest industry-standard medical imaging workstations, allowing you to develop practical experience that will help you in finding future employment. We use Adobe Photoshop™ and other bespoke scientific packages such as 'Somisoft' specifically for image analysis, meaning you get to work with top quality programmes to make your training go as smoothly as possible. You'll learn everything you need to go into the world of medical imaging, so make sure you get the right level of training by taking this intellectually stimulating course.

Course outline

You'll learn to demonstrate the judgement and problem solving skills necessary to produce the highest quality diagnostic medical images, preparing you for the next stage in your career. You'll develop an understanding and clinical expertise in the theory and application of medical imaging in a modern medical setting.

Graduate destinations

This qualification can lead to employment within the field of medical imaging. A masters level degree is becoming a requirement in many departments, so you will have a head start in finding work within the NHS or the private sector.

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
-Postgraduate certificate - 60 credits
-Postgraduate diploma - 120 credits
-Masters degree - 180 credits

Why choose this course?

-It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
-It offers you flexible study options based on a modular structure
-It includes interprofessional learning
-The teaching is done by experienced staff and visiting external specialists
-Accredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Read less
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to support healthcare professionals develop their knowledge, understanding and skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

This part-time MSc pathway is a modular programme encompassing a range of academic and work-based modules related to medical imaging, and research.

Upon successful completion of the MSc Medical Imaging, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging programme at Bradford is a long standing and successful programme delivered by an experienced radiography team, with diagnostic radiographers coming from around the UK, and full time international students choosing to study here.

The programme is delivered in partnership with clinical and scientific experts, and the research informed curriculum ensures it is relevant to current and innovative practice.

Learning activities and assessment

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices.

Assessments range from: portfolio's demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The programme supports students to develop advancing practice skills, knowledge, critical reflection and research skills. It supports developing practitioners and academics current and future career prospects within a dynamic and evolving healthcare environment.

Read less
Medical Imaging impinges on virtually every facet of clinical practice and is one of the key elements in diagnosis, monitoring of and in some cases guiding of therapy. Read more
Medical Imaging impinges on virtually every facet of clinical practice and is one of the key elements in diagnosis, monitoring of and in some cases guiding of therapy. Knowledge of the appropriateness and limitations of the various techniques for imaging is therefore an important skill for clinical scientists, healthcare professionals and clinicians.

It is as well to emphasise at this stage that the programmes offered in Medical Imaging are not clinical courses. However, the teaching of the technical aspects of the various imaging modalities will be firmly grounded in the clinical usage of those modalities. Many of the lecturers are also at the forefront of research in their particular field and will bring insights from, not just current imaging practice but, imaging techniques which are currently in their infancy.

An MSc and a PGDip are offered in Medical Imaging; you are allowed to transfer from your original programme, to another one, provided that you do this before you have completed the programme and before an award has been made. Part time study is also an option. Please contact us on for information on this.

Course Aim

This MSc is designed not only for recent graduates preparing for a career in medical imaging, but also for professionals already working in the field. It aims to cover all aspects of medical imaging, from the basic physics involved, through the different modalities, to the current issues involved in working in a modern UK NHS radiology department.

Objectives - By the end of the MSc programme students should be able to:
•Demonstrate knowledge and understanding of the physical and mathematical aspects of image formation of several techniques;
•Identify the anatomical and physiological properties of tissue associated with image formation and contrast for several techniques;
•Analyse and compare the technical performance of various modalities;
•Demonstrate an understanding of the clinical applications of each technique, the variables involved and how they can be compared;
•Critically analyse the optimisation of combinations of imaging modalities for specific patient groups;
•Analyse the equipment and staff management issues associated with the use of modern technology in modern clinical practice;
•Apply IT in literature searching, analysis and display of data, and report writing to enhance life-long learning in medical imaging;
•Demonstrate enhancement of their professional skills in communication, problem-solving, learning effectively and quickly, and effective self-management;
•Critically evaluate relevant published work, demonstrating an understanding of the underpinning principles of statistics, project design and data analysis;
•Plan and implement a research project.

Read less
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. Read more
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. This programme is run together with the Department of Physics.

PROGRAMME OVERVIEW

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Image Processing and Vision
-Professional Skills for Clinical Science and Engineering
-Radiation Biology
-Radiation Physics
-AI and AI Programming
-Computer Vision and Pattern Recognition
-Diagnostic Apps of Ionising Radiation
-Non-Ionising Radiation Imaging
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Information retrieval. Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental content
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X