• University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Surrey Featured Masters Courses
"medical" AND "image"×
0 miles

Masters Degrees (Medical Image)

We have 103 Masters Degrees (Medical Image)

  • "medical" AND "image" ×
  • clear all
Showing 1 to 15 of 103
Order by 
The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors. Read more
The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors.

A feature of this pathway is its clinical focus and its flexibility to support students who are reporting or planning to report in a range of imaging modalities and anatomical systems. By the end of the pathway, students will be able to apply their medical image reporting skills, of their chosen area of practice, within the clinical environment, ensuring that technically correct imaging reports are generated.
Typical areas of practice include reporting of the musculoskeletal system, chest, abdomen, cranial CT, and gastrointestinal system.

Students should be practicing in the area for which they intend to study, for example cranial CT students must have access to clinical CT facilities.

Why Bradford?

The University of Bradford has a long tradition in Medical Image Reporting education and this experience is utilised in the delivery of this pathway. The Radiographic Image Reporting (RIR) Certificate pathway was first validated in 1996 subsequently developing to support reporting across a wide range of Medical Imaging examinations and has proved to be a popular choice of study demonstrating its continued clinical relevance and benefit to healthcare professionals.

Modules

Principles of Image Reporting
Medical Image Reporting

Learning activities and assessment

The course sits within the MSc in Medical Imaging programme and the Faculty of Health Studies SSPRD framework, and upon successful completion of this MIR course students can continue their studies by registering for additional modules from the Medical Imaging or School module portfolio, to obtain a postgraduate Diploma or Masters Degree. This part-time pathway is designed to be studied over a one year period and consists of two 30 credit modules, commencing in early September with the Principles of Reporting module, followed in February with the Medical Image Reporting module.

A `block' attendance format is utilised as well as significant “directed” clinical study, with support from your host department and distance support from the academic team in the delivery of the clinical and academic learning. This is consistent with the other named pathways within the MSc in Medical Imaging programme and is popular with students who benefit academically from the concentrated period of time that can be devoted to their studies. There are two blocks of academic learning for the Principles of Reporting module and two blocks for the Medical Image Reporting module.

The module content and learning outcomes have informed the methods of delivery. Students will have opportunity to engage with learning through a range of teaching methods including lectures, tutorials, group work, directed study, and, in the case of the clinical module, guided clinical learning.

This wide range of teaching approaches ensures that students can consolidate learning through a range of activities. In particular, small group learning and discussion of clinical cases promotes problem solving skills and peer education, skills necessary for clinical practitioners aspiring to work at an advanced level of practice. While away from the University, students can access course materials and engage in online discussions and learning activities through the University's Virtual Learning Environment (VLE).

A range of assessments are incorporated into the programme, but there is a requirement to complete a clinical audit of reports which must achieve 95% concurrence during audit, measured against the standard report of the host department.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
This module aims to. -Provide the student with a structured and monitored experiential learning opportunity. -Enable the student to further develop the theoretical and clinical knowledge base required to interpret specified medical images. Read more
This module aims to:
-Provide the student with a structured and monitored experiential learning opportunity
-Enable the student to further develop the theoretical and clinical knowledge base required to interpret specified medical images
-Develop the student`s ability to construct clear and concise medical image reports

The learning in the module will utilise the knowledge and understanding gained in the pre-requisite Principles of Reporting module, and apply it to the students own clinical practice.

The students will undertake a wide range of interpretations and reports for specific areas of practice or imaging modality, and understand pathological processes and mechanisms of injury matching imaging appearances.

Whilst on clinical placement the student will complete a record of clinical experience and reporting practice and undertake work-based projects/case studies as part of the learning process. These work based tasks will include a critical appraisal of published literature and research, and reflection on their practice. Tutorials will be used to facilitate sharing of information by students and learning from each other and recognised clinical experts.

Why Bradford?

The medical image reporting pathway at Bradford was developed in the early 1990s and has run since 1996 with an experienced team of academic and teaching staff and invited clinical practitioners.

The programme doesn't limit the scope of practice which can be developed and can be used to support any area or modality.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.
Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Achievement of the learning outcomes will be demonstrated through a work-based portfolio and clinical audit: completion of the portfolio of clinical experience will allow demonstration of clinical competence in reporting and critical evaluation of medical images and related clinical research.

All assessments within a module must achieve 40% to pass.

Career support and prospects

Previous students have used the skills and knowledge gained in this module to progress their careers to advanced and consultant practitioner statuses.

Read less
The module develops the theoretical knowledge base required to interpret specified medical images, and to develop a comprehensive understanding of the factors to be considered in the construction of a clear and concise medical image report. Read more
The module develops the theoretical knowledge base required to interpret specified medical images, and to develop a comprehensive understanding of the factors to be considered in the construction of a clear and concise medical image report.

Typical areas of practice include reporting of the musculoskeletal system, chest, abdomen, cranial CT, and gastrointestinal system.

Lectures and seminars are used to enhance understanding and analysis of the roles of practitioners undertaking the role of medical image reporting.

Emphasis is placed on the medico-legal framework within which such roles have been developed and the transferrable analysis, decision making and communication skills involved in constructing medical image reports.

Assessment involves an assignment which focuses on the development of a scheme of work and protocol to support this development and a presentation showing the effect that this has on service delivery.

Why Bradford?

The medical image reporting pathway at Bradford was developed in the early 1990s and has run since 1996 with an experienced team of academic and teaching staff and invited clinical practitioners. The programme doesn't limit the scope of practice which can be developed and can be used to support any area or modality.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Assessment involves an assignment which focuses on the development of a scheme of work and protocol to support this development and a presentation showing the effect that this has on service delivery. All assessments within a module must achieve 40% to pass.

Career support and prospects

Previous students have used the skills and knowledge gained in this module to progress their careers to advanced and consultant practitioner statuses.

Read less
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. Read more
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. It is also used by the pharmaceutical industry to aid in explanation of their products and by television companies in the production of documentaries.

This highly innovative one-year taught Masters course employs highly specialised tutors from scientific backgrounds alongside experienced medical art supervisors.

Why study Medical Art at Dundee?

Medical Art is the depiction of anatomy, medical science, pathology and surgery. This may include medical images, models or animations for use in education, advertising, marketing and publishing, conceptual work in relation to research, education and publishing and two or three-dimensional visualisation for the training of specific medical professionals.

Medical and forensic artists require technical and conceptual art skills alongside comprehensive medical and anatomical knowledge.

What's so good about studying Medical Art at Dundee?

You will benefit from the facilities of a well-established art college, whilst appreciating the newly-refurbished laboratories, a dedicated library and access to human material in a modern medical science environment.

Internships

Short term internships in forensic and medical institutes throughout the world will be offered to selected students following graduation. Internship institutes offer these internships based on the reputation of the course and its tutors and include the National Centre for Missing and Exploited Children (NCMEC), USA; the Turkish Police Forensic Laboratory, Ankara and Ninewells Hospital, Dundee.

How you will be taught

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

What you will study

Students on both Forensic Art and Medical Art MSc's share joint modules with increasing specialisation. Students may carry out their semester three Dissertation module either at the University or from a working environment or placement.

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

Medical Art students study:

Semester 1 (60 credits)
Anatomy - Head and Neck
Anatomy - Post Cranial
Life Art
Digital Media Practice
Research Methods

Semester 2 (60 credits)
Medical Art 1 - Image Capture and Creation
Medical Art 2 - Communication and Education
Medical-Legal Ethics

Semester 3 (60 credits) - dissertation and exhibition resulting from a research project undertaken either at the university or as a placement.

On successful completion of Semesters 1 and 2 there is an exit award of a Postgraduate Diploma in Medical Art.

How you will be assessed

Anatomy modules will be assessed by spot-tests and practical examinations and coursework. Medico-legal ethics will be assessed by both a written exam and coursework. All other modules will be assessed by coursework.

Careers

This programme aims to provide professional training to underpin your first degree, so that you can enter employment at the leading edge of your discipline. Career opportunities in medical art are varied and will depend on individual background and interests.

In medical art potential careers exist in the NHS as well as industry. Medical art and visualisation is a rapidly changing and broad discipline. Possible careers include:

NHS medical illustration departments producing patient information and illustration services for staff
E-learning
3D model making (including clinical/surgical skills trainers) companies
Digital art and animation studios
Publishing houses
Illustration studios
Medico-legal artwork
Freelance illustration and fine art applications
Special effects and the media/film world
Academia – teaching or research
PhD research

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more

About the course

The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

See the website http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
- Postgraduate certificate - 60 credits
- Postgraduate diploma - 120 credits
- Masters degree - 180 credits

To complete a Masters degree award for this course you need to collect the following credits:
- Research modules - 60 credits
- Image interpretation modules - minimum 30 credits
- Optional interprofessional modules - maximum 90 credits

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Assessment methods include objective structured clinical examinations (OSCEs), clinical portfolios, case study presentations, oral presentations and written presentations.

Work Placement

A recognized clinical placement which provides access to medical diagnostic images is a requirement for the clinical competency modules within the image interpretation pathway. The University cannot offer to provide clinical placements for students.

Professional Accreditations

Accredited by the College of Radiographers

Find out how to apply here http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation#how-to-apply

Find information on Scholarships here http://www.herts.ac.uk/apply/fees-and-funding/scholarships/postgraduate

Read less
Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries. Read more

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Medical Robotics and Image-Guided Intervention are two technology driven areas of medicine that have experienced tremendous growth and improvement over the last twenty years, partly driven by the surgical aim of progressively less invasive and harmful treatments. Read more
Medical Robotics and Image-Guided Intervention are two technology driven areas of medicine that have experienced tremendous growth and improvement over the last twenty years, partly driven by the surgical aim of progressively less invasive and harmful treatments.

This course will provide the research experience required to work within the highly innovative field of medical robotics and surgical technology.

This is a multidisciplinary field and is led by three internationally known departments:

The Hamlyn Centre for Medical Robotics (part of the Institute of Global Health Innovation)
The Department of Surgery and Cancer
The Department of Computing

All teaching and research will take place in the brand new facilities of the Hamlyn Centre.

Taught modules include a mixture of engineering and medical topics such as medical robotics and instrumentation, minimally invasive surgery, surgical imaging and optics, image guided intervention, perception and ergonomics.

You will spend nine months working on a cutting edge research project.

Read less
Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. Read more

Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. The Medical Imaging MSc covers:

  • the basic physics involved in the different imaging techniques
  • image formation, pattern recognition and applications in the field of radiology
  • current issues in a modern UK NHS radiology department.

Whilst not a clinical skills course, the teaching of the technical aspects of imaging techniques is firmly grounded and in their clinical usage. Many of our lecturers are at the forefront of research in their field and bring insights from emerging imaging techniques.

This programme is designed for recent graduates preparing for a career in medical imaging, professionals already working in the field, and medical students wishing to intercalate.

More Information

You can study this subject at a MSc, Postgraduate Diploma or Postgraduate Certificate level.

You may transfer from your original programme to another one, provided that you do this before you have completed the programme and before an award has been made. Part-time study is also an option. 

You’ll become familiar with the range of clinical imaging techniques.

By the end of the programme you should be able to:

  • Demonstrate knowledge and understanding of the physical and mathematical aspects of image formation of several techniques;
  • Identify the anatomical and physiological properties of tissue associated with image formation and contrast for several techniques;
  • Analyse and compare the technical performance of various modalities;
  • Demonstrate an understanding of the clinical applications of each technique, the variables involved and how they can be compared;
  • Apply IT in literature searching, analysis and display of data, and report writing to enhance life-long learning in medical imaging;
  • Demonstrate enhancement of their professional skills in communication, problem-solving, learning effectively and quickly, and effective self-management;
  • Critically evaluate relevant published work, demonstrating an understanding of the underpinning principles of statistics, project design and data analysis.

Course structure

PGCert

Compulsory modules:

  • Medical Imaging Core Skills 15 credits

For more information on typical modules, read Medical Imaging PGCert in the course catalogue

PGDip

Compulsory modules :

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits

For more information on typical modules, read Medical Imaging PGDip in the course catalogue

MSc

You’ll study modules worth 180 credits. If you study this programme part time you will study fewer modules in each year.

Compulsory modules:

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits
  • Research Project 60 credits 

As an MSc student, you undertake a research project in the field of Medical Imaging. New research topics are available each year and include projects in MRI, Ultrasound, X-ray and their clinical application. You'll be asked to state your preferred research project. Before projects are allocated, you are encouraged to meet potential supervisors and discuss the research work.

Learning and teaching

All modules (except for your research project) are taught through traditional lectures, tutorials, practicals and computer based sessions. We also employ blended learning, combining online learning with other teaching methods.

You’ll be taught about the underpinning science of the various imaging modalities, and we cover a range of clinical applications demonstrating the use of medical imaging in modern medicine. Many of the lecturers are at the forefront of research in their particular field and will bring insights from current clinical imaging practice and developments of new and emerging imaging techniques.

Assessment

The taught modules are assessed by coursework and unseen written examinations. Exams are held during the University exam periods in January and May.

The research project is assessed in separate stages, where you submit a 1,000-word essay (20%), a 5,000-word journal-style research article (70%) and make an oral presentation (10%).

Career opportunities

Past graduates have gone on to enter careers in medical imaging or related disciplines, such as radiology and radiography. Often students are already working in the area, and use the skills and knowledge gained in the programme to enhance their careers. Students have gone on to take lecturer or research positions, and have also chosen to take post graduate research degrees (such as a PhD). As a intercalated degree for medical students the programme is useful for students considering radiology or many other medical specialties.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
-Postgraduate certificate - 60 credits
-Postgraduate diploma - 120 credits
-Masters degree - 180 credits

Why choose this course?

-It gives you the opportunity to share ideas with other health professions in order to develop intellectual abilities and assist in the advancement of health care
-It offers you flexible study options based on a modular structure
-It includes interprofessional learning
-The teaching is done by experienced staff and visiting external specialists
-Accredited by the College of Radiographers

Professional Accreditations

Accredited by the College of Radiographers.

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to support healthcare professionals develop their knowledge, understanding and skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

This part-time MSc pathway is a modular programme encompassing a range of academic and work-based modules related to medical imaging, and research.

Upon successful completion of the MSc Medical Imaging, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging programme at Bradford is a long standing and successful programme delivered by an experienced radiography team, with diagnostic radiographers coming from around the UK, and full time international students choosing to study here.

The programme is delivered in partnership with clinical and scientific experts, and the research informed curriculum ensures it is relevant to current and innovative practice.

Learning activities and assessment

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices.

Assessments range from: portfolio's demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The programme supports students to develop advancing practice skills, knowledge, critical reflection and research skills. It supports developing practitioners and academics current and future career prospects within a dynamic and evolving healthcare environment.

Read less
Diagnostic radiography and medical imaging are core components of modern healthcare and rely on rapidly changing diagnostic modalities. Read more

Diagnostic radiography and medical imaging are core components of modern healthcare and rely on rapidly changing diagnostic modalities. It is widely accepted that medical imaging will remain an essential component of diagnostic services for many years to come and that the demand for imaging services will continue to rise.

Recent modernisation within the NHS has raised the profile and extended the scope of practice for allied health professionals (AHPs). Diagnostic radiographers, as one of the sixteen registered AHP groups, are now required to build and extend their scope of professional expertise within a multi-professional setting. Continuing professional development (CPD) is a requirement for all AHPs in the UK in order to secure re-registration with the Health and Care Professions Council (HCPC) and to retain the right to practise within the UK. Radiographers are therefore required to evidence their learning and to demonstrate how this learning has informed practice.

Diagnostic radiography is a profession which is both intellectually and scientifically demanding. Professional responsibility includes a need to be able to formulate imaging standards and strategies as well as assume a greater degree of autonomy within different imaging modalities. To practise effectively the radiographer needs to be able to analyse and evaluate the requirements of healthcare delivery and to be aware of the roles and skills of other healthcare professionals. To optimise patient care the diagnostic radiographer must adopt a critical approach to decision-making in the context of current practice.

This MSc provides CPD opportunities for diagnostic radiographers and other healthcare professionals, but does not lead to UK registration with the HCPC or the right to practice within the UK. Therefore, this course aims to foster an intellectual approach to personal and professional development, encouraging diagnostic radiographers to challenge and progress radiography practice in response to evolutionary change. The course aims to provide flexibility in learning with the opportunity for learners to select modules in order to support individual practice development.

Teaching, learning and assessment

This course uses a wide range of learning and teaching methods, based on a problem based learning approach with students working independently and collaboratively.  The teaching and learning strategies are designed to enable independent progress within a supportive framework.

Teaching hours and attendance

The course is modular and offers a variety of attendance pathways for study: work-based learning; online and block attendance. A range of modules related to the development and progression of the Radiography profession can be used to form the course content.

Modules

To obtain a PgCert in any route, you will study 60 credits from the profession specific modules outlined below. To obtain a PgDip, you will study a further 60 credits taken from either profession specific modules or elective modules from the QMU Postgraduate Module Catalogue.

Ultrasound

15 credits: Physics and Instrumentation of Ultrasound+/ Professional Issues Relating to Medical Imaging+

30 credits: General Medical Ultrasound in Clinical Practice*/ Obstetric Ultrasound in Clinical Practice*/ Breast Ultrasound in Clinical Practice*/ Musculoskeletal Ultrasound in Clinical Practice*/ Musculoskeletal Ultrasound in Clinical Practice for AHPs*

MRI

15 credits: Principles of Magnetic Resonance Imaging+/ Principles of Image Evaluation+

30 credits: Magnetic Resonance Imaging in Practice*/ Advanced Practice in Magnetic Resonance Imaging (negotiated study)

CT

15 credits: Principles of Computed Tomography+ / Principles of Image Evaluation+ 30 credits: Advanced Practice in Computed Tomography of the Head*/ Computed Tomography in Practice (Head, Chest, Abdomen and Pelvis)*/ Advanced Practice in Computed Tomography  Colonography*

Clinical Reporting

15 credits: Pathophysiology for Musculoskeletal Image Evaluation+/ Principles of Image Evaluation+

30 credits: Clinical Reporting of the Axial and Appendicular Musculoskeletal System* A sample of relevant elective modules are:

15 credits: Epidemiology (distance)/  Developing Professional Practice*/ Leading Professional Practice+/ Practice Development for Person-centred Cultures+

30 credits: Current Developments (distance)/ Developing Professional Practice*

45 credits: Developing Professional Practice*

To obtain an MSc, you require:

30 credits: Research Methods (distance/ contact)

60 credits: Research Project (in an area relevant to medical imaging) (distance) Key: * attendance and work-based + Block/ day release

Careers

This qualification may enhance your career prospects within the allied health professions.

Quick Facts

  • A flexible approach to learning is taken.  
  • This course is accredited by the Society and College of Radiographers. 
  • The ultrasound route is accredited by the Consortium of Sonographic Education (CASE).


Read less
The International Master Program in Image Processing and Computer Vision provides specialized training in a field of increasing importance in our daily lives. Read more

The International Master Program in Image Processing and Computer Vision provides specialized training in a field of increasing importance in our daily lives. It is essential in domains such as medicine, surveillance, industrial control, remote sensing, e-commerce and automation. The program covers a wide range of methods in computer vision thus guaranteeing highly-qualified graduates in this field. Three partner universities, with internationally recognized experience in these domains, have pooled their complementary expertise and developed this international postgraduate cooperation initiative.

The result is a high-quality, strongly recognized, triple Master degree that respects the 120 ECTS syllabus, and is well adapted to job market criteria. In order to benefit from the knowledge of these three partner universities and their professors, students spend an entire semester in each university.

Program structure

All students follow the same curriculum with some optional courses. The program is organized as follows:

Semester 1: PPCU, Budapest, Hungary

  • Functional Analysis (5 ECTS) – Compulsory
  • Parallel Computing Architectures (3 ECTS) – Compulsory
  • Numerical Analysis 1 (4 ECTS) – Compulsory
  • Basic Image Processing Algorithms (5 ECTS) – Compulsory
  • Data mining (5 ECTS) - Compulsory
  • Stochastic Signals and Systems (4 ECTS) – Optional
  • FPGA-based Algorithm Design (5 ECTS) – Optional
  • Biomedical Signal Processing (4 ECTS) – Optional
  • Programming Methodology (5 ECTS) – Optional
  • Intelligent Sensors (3 ECTS) – Optional

Semester 2: UAM, Madrid, Spain

  • Applied Bayesian Methods (6 ECTS) – Compulsory
  • Biomedical Image Processing and Applications (6 ECTS) – Compulsory
  • Biometrics (6 ECTS) – Compulsory
  • Video Sequences Analysis for Video Surveillance (6 ECTS) – Compulsory
  • Tutored Research Project 1 (6 ECTS) - Compulsory

Semester 3: UBx, Bordeaux, France

  • Image and Inversion (6 ECTS) – Compulsory
  • Variational Methods and PDEs for Image Processing (6 ECTS) - Compulsory
  • Advanced Image Processing (3 ECTS) - Compulsory
  • Video and Indexing (3 ECTS) – Compulsory
  • Image Acquisition and Reconstruction (3 ECTS) – Compulsory
  • IT Project Management (3 ECTS) – Compulsory
  • Tutored Research Project 2 (6 ECTS) – Compulsory

Semester 4: Internship in academic or industry laboratory

Strengths of this Master program

  • International program taught by experts from three different universities in Europe.
  • Triple Master degree.
  • International mobility period in three countries.

After this Master program?

After graduation, students have access to career opportunities such as engineers or further research as PhD students.

Their educational background makes them attractive candidates for companies in the following areas: E-commerce, Medical imaging, Personal assistance, Automation, Industrial control, Security, Post-production, Remote sensing, Software publishing.



Read less
We offer a technology-oriented research Master’s programme that prepares for a career in this strongly multidisciplinary field. Read more

Medical Imaging

We offer a technology-oriented research Master’s programme that prepares for a career in this strongly multidisciplinary field. The programme combines elements from physics, mathematics, computer science, biomedical engineering, biology, and clinical medicine allowing you to attain a high level of knowledge and skills in various areas of medical imaging, such as image acquisition physics, quantitative image analysis, computer-aided diagnosis, and image-guided interventions.

The field of medical imaging is evolving rapidly, since medical diagnosis and treatment are increasingly supported by imaging procedures. The programme is offered in close collaboration between the Imaging Division of the University Medical Center Utrecht and Eindhoven University of Technology (TU/e). This collaboration tops a solid technological basis with strong links to research performed in a clinical setting.

Read less

Show 10 15 30 per page



Cookie Policy    X