• Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
"medical" AND "image"×
0 miles

Masters Degrees (Medical Image)

We have 103 Masters Degrees (Medical Image)

  • "medical" AND "image" ×
  • clear all
Showing 1 to 15 of 103
Order by 
The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors. Read more

The pathway is delivered in partnership with key clinical specialists to ensure that it is clinically relevant and delivered using appropriate expertise drawn from the higher education and hospital sectors.

A feature of this pathway is its clinical focus and its flexibility to support students who are reporting or planning to report in a range of imaging modalities and anatomical systems. By the end of the pathway, students will be able to apply their medical image reporting skills, of their chosen area of practice, within the clinical environment, ensuring that technically correct imaging reports are generated.

Typical areas of practice include reporting of the musculoskeletal system, chest, abdomen, cranial CT, and gastrointestinal systemStudents should be practicing in the area for which they intend to study, for example cranial CT students must have access to clinical CT facilities.

The University of Bradford has a long tradition in Medical Image Reporting education and this experience is utilised in the delivery of this pathway. The Radiographic Image Reporting (RIR) Certificate pathway was first validated in 1996 subsequently developing to support reporting across a wide range of Medical Imaging examinations and has proved to be a popular choice of study demonstrating its continued clinical relevance and benefit to healthcare professionals.

What you will study

Modules

Learning and assessment

The course sits within the MSc in Medical Imaging programme and the Faculty of Health Studies SSPRD framework, and upon successful completion of this MIR course students can continue their studies by registering for additional modules from the Medical Imaging or School module portfolio, to obtain a postgraduate Diploma or Masters Degree. This part-time pathway is designed to be studied over a one year period and consists of two 30 credit modules, commencing in early September with the Principles of Reporting module, followed in February with the Medical Image Reporting module.

A `block' attendance format is utilised as well as significant “directed” clinical study, with support from your host department and distance support from the academic team in the delivery of the clinical and academic learning. This is consistent with the other named pathways within the MSc in Medical Imaging programme and is popular with students who benefit academically from the concentrated period of time that can be devoted to their studies. There are two blocks of academic learning for the Principles of Reporting module and two blocks for the Medical Image Reporting module.

The module content and learning outcomes have informed the methods of delivery. Students will have opportunity to engage with learning through a range of teaching methods including lectures, tutorials, group work, directed study, and, in the case of the clinical module, guided clinical learning.

This wide range of teaching approaches ensures that students can consolidate learning through a range of activities. In particular, small group learning and discussion of clinical cases promotes problem solving skills and peer education, skills necessary for clinical practitioners aspiring to work at an advanced level of practice. While away from the University, students can access course materials and engage in online discussions and learning activities through the University's Virtual Learning Environment (VLE).

A range of assessments are incorporated into the programme, but there is a requirement to complete a clinical audit of reports which must achieve 95% concurrence during audit, measured against the standard report of the host department.

Career prospects

One of the University of Bradford's goals is to equip all our students with the attributes and capabilities to be confident and capable in their life beyond university.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careerswebsite.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.



Read less
This programme aims to disseminate medical image analysis knowledge, skills, and understanding, enabling effective and efficient medical image analysis which can be used both clinically and commercially. Read more

This programme aims to disseminate medical image analysis knowledge, skills, and understanding, enabling effective and efficient medical image analysis which can be used both clinically and commercially.

Covering the physics of imaging and related techniques, there is also focus on specialised content covering image processing and analysis.

Students will also be able to make use of the MATLAB computing environment and programming language.

This programme harnesses our expertise in image processing and analysis, which will allow learners to train in this field via an online learning environment.



Read less
To run their medical equipment, hospitals, clinics and large practices require specialists fully trained in the basics of modern medicine and operation of high-tech medical devices. Read more

Expert partner for the use of medical equipment

To run their medical equipment, hospitals, clinics and large practices require specialists fully trained in the basics of modern medicine and operation of high-tech medical devices. This opens up a highly interesting field of work for engineers or scientists that are also trained in medical physics. Their solid university education just needs to be supplemented with the necessary interdisciplinary specialist knowledge in medicine and physics here. This makes them the ideal partner to physicians using high-grade medical equipment. Alongside potential for working at medical facilities, further fields of application include research and development of medical equipment and procedures, testing, monitoring and maintenance, as well as sales, training, etc.

Objective

The course conveys the necessary scientific knowledge in the field of medical physics, tailored to the individual, professional requirements of this career path and with key focuses in the areas of medical radiation physics, medical laser physics and medical image processing. The course concludes with the academic grade "Master of Science" (MSc).

Target group

The three-year, accredited distance learning Master's degree is aimed at graduates of technical and science-based degrees with at least one year of professional experience in the field of medical physics, medical engineering or other closely related fields. This course is ideal for those already working or seeking to work in the areas of medical radiation physics, laser physics or image processing.

Program content

The "Medical Physics" distance learning Master's degree encompasses a phase of basic and advanced study, as well as a graduation phase of two terms. Once the phase of basic study is completed, the distance learning degree focuses on more advanced materials in the fields of medical radiation physics, medical laser physics and medical image processing, whereby students each select one specialist field.
In the subsequent graduation phase, students can work on the contents of one of the other two specialist fields. The Master's dissertation is then written to complete the graduation phase. The contents of the course include conveying basic medical knowledge and legal frameworks, as well as both the function and application of medical equipment and procedures. Among other things, the teaching catalogue is aligned with the training recommendations of the German Society for Medical Physics (DGMP e.V.). The distance learning master degree course "Medical Physics" has been certified since 2010 according to the current revision of the DGMP further education regulation to obtain professional recognition.



This course is held entirely in German.

Read less
Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. Read more

Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. The Medical Imaging MSc covers:

  • the basic physics involved in the different imaging techniques
  • image formation, pattern recognition and applications in the field of radiology
  • current issues in a modern UK NHS radiology department.

Whilst not a clinical skills course, the teaching of the technical aspects of imaging techniques is firmly grounded and in their clinical usage. Many of our lecturers are at the forefront of research in their field and bring insights from emerging imaging techniques.

This programme is designed for recent graduates preparing for a career in medical imaging, professionals already working in the field, and medical students wishing to intercalate.

More Information

You can study this subject at a MSc, Postgraduate Diploma or Postgraduate Certificate level.

You may transfer from your original programme to another one, provided that you do this before you have completed the programme and before an award has been made. Part-time study is also an option. 

You’ll become familiar with the range of clinical imaging techniques.

By the end of the programme you should be able to:

  • Demonstrate knowledge and understanding of the physical and mathematical aspects of image formation of several techniques;
  • Identify the anatomical and physiological properties of tissue associated with image formation and contrast for several techniques;
  • Analyse and compare the technical performance of various modalities;
  • Demonstrate an understanding of the clinical applications of each technique, the variables involved and how they can be compared;
  • Apply IT in literature searching, analysis and display of data, and report writing to enhance life-long learning in medical imaging;
  • Demonstrate enhancement of their professional skills in communication, problem-solving, learning effectively and quickly, and effective self-management;
  • Critically evaluate relevant published work, demonstrating an understanding of the underpinning principles of statistics, project design and data analysis.

Course structure

PGCert

Compulsory modules:

  • Medical Imaging Core Skills 15 credits

For more information on typical modules, read Medical Imaging PGCert in the course catalogue

PGDip

Compulsory modules :

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits

For more information on typical modules, read Medical Imaging PGDip in the course catalogue

MSc

You’ll study modules worth 180 credits. If you study this programme part time you will study fewer modules in each year.

Compulsory modules:

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits
  • Research Project 60 credits 

As an MSc student, you undertake a research project in the field of Medical Imaging. New research topics are available each year and include projects in MRI, Ultrasound, X-ray and their clinical application. You'll be asked to state your preferred research project. Before projects are allocated, you are encouraged to meet potential supervisors and discuss the research work.

Learning and teaching

All modules (except for your research project) are taught through traditional lectures, tutorials, practicals and computer based sessions. We also employ blended learning, combining online learning with other teaching methods.

You’ll be taught about the underpinning science of the various imaging modalities, and we cover a range of clinical applications demonstrating the use of medical imaging in modern medicine. Many of the lecturers are at the forefront of research in their particular field and will bring insights from current clinical imaging practice and developments of new and emerging imaging techniques.

Assessment

The taught modules are assessed by coursework and unseen written examinations. Exams are held during the University exam periods in January and May.

The research project is assessed in separate stages, where you submit a 1,000-word essay (20%), a 5,000-word journal-style research article (70%) and make an oral presentation (10%).

Career opportunities

Past graduates have gone on to enter careers in medical imaging or related disciplines, such as radiology and radiography. Often students are already working in the area, and use the skills and knowledge gained in the programme to enhance their careers. Students have gone on to take lecturer or research positions, and have also chosen to take post graduate research degrees (such as a PhD). As a intercalated degree for medical students the programme is useful for students considering radiology or many other medical specialties.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management. Read more

Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management.

It is also a key tool in medical research and it is becoming increasingly possible to relate imaging studies to genetic traits in individuals and populations. Novel imaging biomarkers of disease can enable more rapid and precise diagnosis and inform decision making in drug discovery programmes.

As medical imaging involves knowledge of anatomy, physiology, pathology, physics, mathematics and computation, our course is suitable if you want to expand your disciplinary horizons and pursue a career in an image-related field in clinical medicine, medical research, or technological research or development.

You will cover the basic science and technology behind the principal imaging modalities currently used in medicine and medical research, as well as advanced imaging methods, clinical and research applications, imaging biomarkers and computational methods.

You will learn how advanced imaging techniques are applied in medical research and drug discovery with an emphasis on magnetic resonance (MR) and positron emission tomography (PET) imaging. You will also receive training in computational and quantitative methods of image analysis or in the interpretation of clinical images from different imaging modalities.

This course comprises both a taught component and a research project, giving you the skills and knowledge required for a career in an image-related field in clinical practice, clinical or scientific research, or technical development.

Aims

We aim to provide you with:

  • with a systematic understanding of the scientific basis of the major medical imaging modalities;
  • a broad understanding of the principal clinical applications of medical imaging and its role in diagnosis, monitoring and therapy;
  • an understanding of the capabilities and limitations of medical imaging for deriving quantitative anatomical and physiological data;
  • knowledge of how advanced imaging techniques are applied in medical research and drug discovery;
  • the experience to plan, implement and complete a research project;
  • generic transferrable skills required in a multidisciplinary scientific or clinical research environment;
  • the knowledge and skills required for a career in an image-related field in clinical practice, clinical research, scientific research or technical development.

Special features

Excellent facilities

Benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Learn from experts

Manchester has an imaging and image computing research group with a strong international reputation. Our research groups and facilities are staffed by scientists conducting research in novel imaging and image analysis methods, and clinicians who apply these methods in clinical practice.

Flexible learning

Learn when it suits you thanks to options for either full-time or part-time study.

Multidisciplinary learning

Study alongside physicists, engineers, mathematicians, computer scientists, chemists, biologists and clinicians working in hospitals and research-dedicated imaging facilities.

Teaching and learning

As this course aims to produce graduates equipped to pursue either clinically or technically-focused careers in imaging, it is important to provide an adequate knowledge base. For this reason, much of the teaching takes the form of lectures.

However, in most course units, this is supplemented by group discussions and practical exercises. Other than the introductory units, most course units provide you with an understanding of research methods by requiring submission of a critical review of appropriate research literature or clinical material, either as a report or presentation.

Where appropriate, practical imaging exercises are provided, requiring you to cooperate in acquiring images and analysing results.

All units require a considerable component of independent research and study.

Coursework and assessment

Assessment will occur in a variety of forms.

Summative assessment takes the form of written assignments, examinations, oral presentations and online quizzes. Written assignments and presentations, as well as contributing to summative assessment, have a formative role in providing feedback, particularly in the early stages of course units.

Online quizzes provide a useful method of regular testing, ensuring that you engage actively with the taught material. As accumulation of a knowledge base is a key aim of the course, examinations (both open-book and closed-book) form an important element of summative assessment.

In addition, formal assessment of your research and written communication skills is achieved via the dissertation. This is a 10,000 to 15,000-word report, written and organised to appropriate scientific standards, describing the design, execution and results of the research project.

Course unit details

The MSc requires students to pass 180 credits composed of eight course units of 15 credits each and a 60-credit research project.

We provide course units in Human Biology and Introductory Mathematics and Physics to bring students up to the required level in these topics.

Semester 1: Compulsory units

  • Scientific Skills
  • Mathematical Foundations of Imaging
  • Radioisotope Imaging (PET/SPET)
  • Non-radioisotope Imaging (MRI, CT, US)

Semester 2: Compulsory units

  • Advanced MR Imaging
  • Advanced PET Imaging
  • Quantitative Imaging into Practice (Imaging Biomarkers for Healthcare and Research)

Semester 2: Elective units (select one)

  • Imaging in Clinical Diagnosis
  • Medical Image Analysis and Mathematical Computing

Semester 3:

  • Research project

Facilities

You will benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Each student will have an identified personal tutor who can provide advice and assistance throughout the course. During the research project, you will be in regular contact with your research supervisor.You will also be able to access a range of other library and e-learning facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Graduates will be in an excellent position to pursue careers in image-related fields in healthcare and research. This MSc will also form a sound basis for students who wish to proceed to PhD research in any aspect of medical imaging.

Intercalating medical students may use this qualification as a platform to pursue a clinical career in radiology.

Physical science/engineering graduates may see this as a route to imaging research or development in an academic or commercial environment.



Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
Your programme of study. If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Read more

Your programme of study

If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Did you know researchers at Aberdeen invented the first MRI scanner (Magnetic Resonance Imaging) for instance? Since this time much has been done to further work on the MRI scanner and deliver some of the most advanced forms of body visualisation tools available to the health area. If you have ever wondered how X rays work or you are interested in the latest radiotherapy techniques to provide therapeutic tools from radiographic equipment and advances this programme not only gives you the theory and practice in applying imaging in a health setting, it also gives you opportunities to think about the technologies involved and the applications. There is a lot of Physics and Maths required behind the different technologies involved in medical imaging so if you have these subjects and a life science background plus engineering or similar science disciplines this will make the programme more accessible.

By the end of the MSc programme you will have received a thorough academic grounding in Medical Imaging, been exposed to the practice of Medical Imaging in a hospital Department, and carried out a short research project. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. There are wide ranging career possibilities after graduation. You may wish to go straight into clinic settings to apply your skills within diagnostics or you may wish to study further for a PhD towards teaching or researching. There have also been spin out companies as a result of understanding and applying imaging technologies towards innovative applications. This subject also aligns with some major innovations in Photonics and other areas of medical science which you may like to explore further if you are interested in invention and innovation at the Scottish Innovation Centres: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

  • Radiation in Imaging
  • Introduction to Computing and Image Processing
  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Generic Skills

Semester 2

  • Nuclear Medicine and Positron Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Image Processing and Analysis
  • Diagnostic and Radiation Protection

Semester 3

  • MSc Project for Programme in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You have the opportunity to contribute research within the department, expanding the knowledge of medical imaging technology within the largest teaching hospital and Medical School in Europe
  • You have access to a PET-CT scanner, new radiotherapy centre and linac treatment machines.
  • The university won the Queens Anniversary Prize in recognition of achievements in new medical imaging techniques
  • The MRI scanner was invented at the University over 30 years ago - a major innovation which has been global in impact

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/medical-physics-bioengineering-mres

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Standard
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the 2nd year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules and a research project.

- Core Modules
There are no core modules for this programme.

- Options
Students choose four optional modules from the following:
Ionising Radiation Physics: Interactions and Dosimetry
Medical Imaging
Clinical Practice
Treatment with Ionising Radiation
Medical Electronics and Control
Bioengineering
Optics in Medicine
Computing in Medicine
Medical Devices and Applications
Foundations and Anatomy and Scientific Computing
Image Processing
Computational Modelling in Biomedical Imaging
Programming Foundations for Medical Image Analysis
Information Processing in Medical Imaging
Image-Directed Analysis and Therapy

- Dissertation/report
All students undertake a research project.

Further information on modules and degree structure available on the department web site Medical Physics and Bioengineering MRes http://www.ucl.ac.uk/medphys/prospective-students/phd/dtp

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

Our graduates typically find work in academia, the NHS, and in industry

Why study this degree at UCL?

The department is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Student / staff ratios › 144 staff including 110 postdocs › 107 taught students › 135 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is suitable either for students wishing to study for a stand-alone MRes in Medical Physics & Bioengineering or for students planning progression to a Doctoral Training Programme.

What are we looking for?
When we assess your application we would like to learn:
- why you want to study Medical Physics and Bioengineering at graduate level
- why you want to study Medical Physics and Bioengineering at UCL
- what particularly attracts you to this programme
- how your personal, academic and professional background meets the demands of a challenging programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

For more information see the Applications page http://www.ucl.ac.uk/prospective-students/graduate/apply .

Read less
The part time Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more

The part time Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to support healthcare professionals develop their knowledge, understanding and skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

This part-time pathway is a modular programme encompassing a range of academic and work-based modules related to medical imaging, and research.

Upon successful completion of the MSc Medical Imaging, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Named interim awards within the programme include:

"The University of Bradford has a prestigious reputation for postgraduate courses in diagnostic radiography. The way the courses are designed to suit the needs of working radiographers and their employers is particularly appealing. My studies have had a significant impact on my professional approach to work, and in advancing my career."

David Adebayo

What you will study

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices.

Learning and assessment

Assessments range from: portfolio's demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career prospects

One of the University of Bradford's goals is to equip all our students with the attributes and capabilities to be confident and capable in their life beyond university.

The programme supports students to develop advancing practice skills, knowledge, critical reflection and research skills.

It supports developing practitioners and academics current and future career prospects within a dynamic and evolving healthcare environment.



Read less
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. Read more
Medical art encompasses a wide range of applications from patient communication and information to medical teaching and training. It is also used by the pharmaceutical industry to aid in explanation of their products and by television companies in the production of documentaries.

This highly innovative one-year taught Masters course employs highly specialised tutors from scientific backgrounds alongside experienced medical art supervisors.

Why study Medical Art at Dundee?

Medical Art is the depiction of anatomy, medical science, pathology and surgery. This may include medical images, models or animations for use in education, advertising, marketing and publishing, conceptual work in relation to research, education and publishing and two or three-dimensional visualisation for the training of specific medical professionals.

Medical and forensic artists require technical and conceptual art skills alongside comprehensive medical and anatomical knowledge.

What's so good about studying Medical Art at Dundee?

You will benefit from the facilities of a well-established art college, whilst appreciating the newly-refurbished laboratories, a dedicated library and access to human material in a modern medical science environment.

Internships

Short term internships in forensic and medical institutes throughout the world will be offered to selected students following graduation. Internship institutes offer these internships based on the reputation of the course and its tutors and include the National Centre for Missing and Exploited Children (NCMEC), USA; the Turkish Police Forensic Laboratory, Ankara and Ninewells Hospital, Dundee.

How you will be taught

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

What you will study

Students on both Forensic Art and Medical Art MSc's share joint modules with increasing specialisation. Students may carry out their semester three Dissertation module either at the University or from a working environment or placement.

The course is delivered using traditional methods including lectures, practical studio sessions and small group discussions with an encouragement into debate and theoretical solutions to current problems.

Medical Art students study:

Semester 1 (60 credits)
Anatomy - Head and Neck
Anatomy - Post Cranial
Life Art
Digital Media Practice
Research Methods

Semester 2 (60 credits)
Medical Art 1 - Image Capture and Creation
Medical Art 2 - Communication and Education
Medical-Legal Ethics

Semester 3 (60 credits) - dissertation and exhibition resulting from a research project undertaken either at the university or as a placement.

On successful completion of Semesters 1 and 2 there is an exit award of a Postgraduate Diploma in Medical Art.

How you will be assessed

Anatomy modules will be assessed by spot-tests and practical examinations and coursework. Medico-legal ethics will be assessed by both a written exam and coursework. All other modules will be assessed by coursework.

Careers

This programme aims to provide professional training to underpin your first degree, so that you can enter employment at the leading edge of your discipline. Career opportunities in medical art are varied and will depend on individual background and interests.

In medical art potential careers exist in the NHS as well as industry. Medical art and visualisation is a rapidly changing and broad discipline. Possible careers include:

NHS medical illustration departments producing patient information and illustration services for staff
E-learning
3D model making (including clinical/surgical skills trainers) companies
Digital art and animation studios
Publishing houses
Illustration studios
Medico-legal artwork
Freelance illustration and fine art applications
Special effects and the media/film world
Academia – teaching or research
PhD research

Read less
The Medical Physics and Biomedical Engineering MRes provides structured training in this diverse and multidisciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more

The Medical Physics and Biomedical Engineering MRes provides structured training in this diverse and multidisciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

About this degree

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's-level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the second year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules (15 credits each) and a research project (120 credits).

Core modules

  • There are no core modules for this programme.

Optional modules

Students choose four optional modules from the following:

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Medical Imaging
  • Clinical Practice
  • Treatment with Ionising Radiation
  • Medical Electronics and Control
  • Bioengineering
  • Optics in Medicine
  • Computing in Medicine
  • Medical Devices and Applications
  • Foundations and Anatomy and Scientific Computing
  • Image Processing
  • Computational Modelling in Biomedical Imaging
  • Programming Foundations for Medical Image Analysis
  • Information Processing in Medical Imaging
  • Image-Directed Analysis and Therapy

Dissertation/report

All students undertake a research project.

Teaching and learning

Further information on modules and degree structure is available on the department website: Medical Physics and Biomedical Engineering MRes

Careers

Our graduates typically find work in academia, the NHS, and in industry

Employability

This programme gives students a good grounding in basic research training in a focused topic. Graduates will be ideally suited to enter PhD programmes in a variety of subject areas or enter professions requiring a postgraduate Master's qualification.

Why study this degree at UCL?

UCL Medical Physics & Biomedical Engineering is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Medical Physics & Biomedical Engineering

95% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. Read more

About the course

The MSc Medical Imaging and Radiation Sciences course and its four specialised pathways is designed to enable you to enhance your current knowledge and understanding in the field of diagnostic and therapeutic radiography and give you opportunities to challenge and critically evaluate your professional practice. The aim is to advance your skills as a professional and develop your career so that you can practice safely, effectively and legally.

The Image Interpretation pathway is designed for students who want to develop competency in the extended role of image interpretation and helps you specialise in this specific area of practice. Clinical modules are offered in musculoskeletal reporting. Other specialist reporting areas can be taken via the independent study modules.

See the website http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation

Course structure

The MSc Medical Imaging and Radiation Sciences: image interpretation pathway is modular in structure. If you wish to collect credits towards and award or a qualification see below the award and credit requirements:
- Postgraduate certificate - 60 credits
- Postgraduate diploma - 120 credits
- Masters degree - 180 credits

To complete a Masters degree award for this course you need to collect the following credits:
- Research modules - 60 credits
- Image interpretation modules - minimum 30 credits
- Optional interprofessional modules - maximum 90 credits

Teaching methods

Modules are facilitated by a variety of experienced lecturers from the University as well as external lecturers.

Delivery of modules incorporates blended learning which aims to combine e-learning activities with campus based learning. You need to have access to a suitable personal computer and a good reliable Internet connection (broadband recommended). Most modern PCs or Macs (less than 3 years old) should be suitable. If you have any queries or need any additional support with IT skills, the School employs an e-learning technologist who will be pleased to help and advise you. Please contact the module lead for details.

Assessment methods include objective structured clinical examinations (OSCEs), clinical portfolios, case study presentations, oral presentations and written presentations.

Work Placement

A recognized clinical placement which provides access to medical diagnostic images is a requirement for the clinical competency modules within the image interpretation pathway. The University cannot offer to provide clinical placements for students.

Professional Accreditations

Accredited by the College of Radiographers

Find out how to apply here http://www.herts.ac.uk/courses/msc-medical-imaging-and-radiation-sciences-image-interpretation#how-to-apply

Find information on Scholarships here http://www.herts.ac.uk/apply/fees-and-funding/scholarships/postgraduate

Read less
EXACT SCIENCE AND CUTTING-EDGE TECHNOLOGY IN HEALTH CARE. The field of medical imaging is evolving rapidly, since diagnosis and treatment are increasingly supported by imaging procedures. Read more

EXACT SCIENCE AND CUTTING-EDGE TECHNOLOGY IN HEALTH CARE

The field of medical imaging is evolving rapidly, since diagnosis and treatment are increasingly supported by imaging procedures. The Medical Imaging Master’s programme combines elements from physics, mathematics, computer science, biomedical engineering, biology and clinical medicine. Master’s students will attain a high level of knowledge and skills in various areas of medical imaging, such as image acquisition physics, quantitative image analysis, computer-aided diagnosis, and image-guided interventions.

A CHALLENGING PROGRAMME COMPOSED BY TWO RENOWNED INSTITUTIONS

The programme is offered in close collaboration between the imaging divisions of the UMC Utrecht and Eindhoven University of Technology (TU/e). Two leading organizations at the forefront of health care and technology. This collaboration tops a solid technological basis with strong links to research performed in a clinical setting.

Are you a student with a clear interest in health care technology, a ‘beta-mindset’, a curiosity towards the natural sciences and medical imaging, and ambition in research? Do you have a background in natural or physical sciences, e.g. physics, mathematics, computer science or more applied technical sciences like biomedical engineering? This Master’s programme might just be a perfect fit.

WHY YOU SHOULD STUDY MEDICAL IMAGING AT UTRECHT UNIVERSITY

  1. It’s a strongly technology-oriented Master’s programme in a clinical setting. It allows you to work with an impressive range of imaging platforms.
  2. You will have the opportunity to carry out research projects at renowned international research groups and with selected industrial partners, and gain valuable experience which helps your career in the world of research and technology development.
  3. The whole field of medical imaging, ranging from image acquisition physics to advanced image processing and analysis topics, is covered.
  4. You will benefit from the excellent international reputation and strong position of the Image Sciences Institute (ISI) and the Center for Image Sciences (CIS) at UMC Utrecht.


Read less
Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries. Read more

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X