• University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
ETH Zürich Featured Masters Courses
"medical" AND "genomics"×
0 miles

Masters Degrees (Medical Genomics)

We have 104 Masters Degrees (Medical Genomics)

  • "medical" AND "genomics" ×
  • clear all
Showing 1 to 15 of 104
Order by 
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. Read more
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. But that was not the end, just the beginning. The “big” data being generated is coming out at an amazing rate. Personalised medicine is around the corner. We need skilled and talented biologists who are capable of analysing, processing and innovating. Gene therapy is hitting the headlines. Stem cell therapy may treat the previously untreatable. You can be part of this new golden age with a masters in medical genomics.

More about this course

We will be enhancing knowledge of genomic science from a health perspective. With our superb laboratory facilities we’re able to offer unique research project opportunities together with outstanding quality of teaching from research active staff.

We have access to guest lecturers at the highest levels of their profession who are collaborating with our staff (Barts, Imperial, Kings, UCL, St Georges, Brunel). In addition, we have a strong collaboration with the prestigious ACFIES in Columbia, which offers exciting international work exchange opportunities.
Students will be eligible to join the Royal Society of Biology with whom we are registering to be accredited.

We can offer unrivalled student learning support and our location means that the job market is on our doorstep. Connections with other prestigious universities mean that students will have the opportunity to meet and discuss their career options and secure work placements or apply for studentships.

You’ll be tested using a wide variety of assessment tools. We will ask students to write laboratory reports, give presentations, sit written exams, take part in debates, answer quizzes and experience virtual labs via asynchronous e-learning, make posters and defend their work aurally.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules includes:
-Biomedical Informatics (core, 20 credits)
-Fundamentals of Medical Genetics and Genomics (core, 20 credits)
-Medical Genetics (core, 20 credits)
-Research Project for Medical Genomics (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Advanced Immunology (option, 20 credits)
-Bioinformatics and Molecular Modelling (option, 20 credits)
-Biomedical Diagnostics (option, 20 credits)
-Epidemiology of Emerging Infectious Disease (option, 20 credits)
-Ethical Issues in Biomedical Science (option, 20 credits)
-Molecular Oncology (option, 20 credits)

After the course

Genomics is important in both public and private domains. It is key for the NHS and via governmental initiatives (the 100,000 genome project). Thus there is a commensurate burgeoning of new genome centres in the UK and abroad: ie the Cambridge Genome centre. There are opportunities for people with degrees and training in human genetics. As genetic testing becomes part of many routine medical evaluations, more geneticists are needed to perform the tests. As genetics is recognised to be a basic part of all biological sciences, more teachers with expertise in genetics will also be needed. In India, genomics is growing through companies like Medgenome. It is indubitable that this is a currently growing area of the job market.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
The Master of Genomics and Health, the first such program in Australia, has been designed to prepare a workforce that is knowledgeable and skilled in practical, ethical and socially responsible implementation of genomics in health. Read more

The Master of Genomics and Health, the first such program in Australia, has been designed to prepare a workforce that is knowledgeable and skilled in practical, ethical and socially responsible implementation of genomics in health. Students will gain knowledge about genomics and engage in discourse around the current and potential impact on health and medicine brought about by advances in genomics and genomic technologies.

This course is designed to be available to students at different stages in their careers, including career starters and those with more established careers who wish to further their knowledge, skills and qualifications.

The Master of Genomics and Health requires completion of a total of 200 points of study and allows flexibility in subject choices to suit individual interests and study preferences. Students have the option of enrolling in a Master degree (200 points) or one of the nested awards - Graduate Diploma (100 points), Graduate Certificate (50 points).

Students undertaking the Masters program will be assisted with organising relevant internships and research projects. Successful completion of the research stream will provide adequate training for those who do not have Honours but may wish to undertake a PhD in future.

The program uses a blended learning approach with regular tutorials conducted in the Health Education and Learning Precinct of the Melbourne Children's Campus in Parkville. Students are encouraged to attend relevant seminars, journal clubs and meetings to complement their studies.

Career opportunities

Graduates will be well positioned to gain employment across a broad range of fields such as:

  • Public Health and Health Policy

Public health genomics is the use of genomic information to benefit public health. The program will provide a grounding for people who are interested in combining genomics knowledge with skills in public health to work in areas of public policy for government or across a range of healthcare sectors. This would suit graduates from science, biomedical science or health sciences who would undertake electives from the Master of Public Health and/or science communication with internships in government, health policy think tanks, hospital settings or community advocacy groups.

  • Science

Variant curation is a process of examining genomic data results and using literature and databases to provide evidence about whether a patient’s genomic results have clinical significance. There is a need for variant curator scientists working in clinical services or in research. This would suit a graduate of applied science, science or biomedical science who would undertake electives in bioinformatics, the research stream with internships with clinical laboratories including pathology services, or clinical services with a focus on learning hands-on variant curation.

  • Clinical trials and research

Coordination, patient recruitment and informed consent are critical to the success of clinical trials and research in which patients or the public are involved. This would suit graduates from science, biomedical science or health sciences who would undertake the research stream, electives from the Master of Public Health and/or science communication with internships in research organisations, clinical trials centres, and the pharmaceutical industry.

  • Medical and Allied Health Settings

Health practitioners whose disciplines are at the forefront of the genomics revolution and wish to be better prepared to incorporate this area into their practice. This includes, for example, specialist clinicians and nurses looking to upskill in genomics. In both cases knowledge and skills in genomics can applied to their everyday practice, or prepare them for more research or education based roles.

  •  Law

Given the advances in technology, medical law is an exciting field to be in. Ethical discourse and legal leadership often lag behind the introduction of new medical technologies, yet both are required to ensure safe, equitable and appropriate health system integration. This program will provide those from a law background with a level of specialist genomics knowledge and will allow students to tailor their studies to focus on legal research, or undertake a range of relevant electives to support more applied career paths.

 Who should apply?

  •  Qualified medical and allied health professionals who wish to upskill in the area of genomics and medicine.
  • Recent undergraduates in science (BSci) and biomedicine (BBiomed) who do not want a career in laboratory-based areas and who want to broaden their interest in genomics for the healthcare sector
  • Anyone with a suitable health background who wishes to seek employment in areas such as clinical trials, education, community-based organisations such as genetic support groups, government etc. or use the qualification as an entry point into a graduate research degree.

NB Completion of this course does not fulfil the professional requirements for employment as a genetic counsellor. Students who exit with a Graduate Certificate or a Graduate Diploma in Genomics and Health and who wish to apply for the Master of Genetic Counselling will need to meet all eligibility criteria for that program. Their application will need to demonstrate relevant volunteer work/experience and they will be ranked with all other applicants for that year. If they are successful at interview and are accepted into the Master of Genetic Counselling cohort they may receive appropriate credit for some subjects.



Read less
The advent of affordable rapid genome sequencing will produce enormous amounts of genetic data on both individuals and populations, and the challenge for scientists is to unlock the potential of this ‘big data’. Read more
The advent of affordable rapid genome sequencing will produce enormous amounts of genetic data on both individuals and populations, and the challenge for scientists is to unlock the potential of this ‘big data’. Doing so requires a new generation of scientists who can combine genetics and bioinformatics to understand how genomic changes cause diseases such as cancer, thus enabling the development of novel treatments, through drugs and gene therapy, and prevention strategies. With the huge expansion in number of individual genomes being sequenced, this is one of the fastest growing areas of biomedical science as we embrace the era of personalised medicine.

See the website http://www.brookes.ac.uk/Courses/Postgraduate/Medical-Genetics-and-Genomics/

Why choose this course?

- This is a 12 month full-time course, with part-time places available.

- Aimed at graduates (UK/ EU, International) wishing to develop skills and knowledge in human genetics and genome analysis for employment in the medical biotechnology/pharma and genomics sector, and those wishing to go on to do research degrees.

- This course will prepare you for entry into a career in medical genetics and genomics.

- Our lecturers conduct first-class research, with over 95% of Biological Science research internationally recognised in the 2014 REF.

- You will be taught by Oxford Brookes staff, with specialist lectures provided by staff of other partners in the Oxford Academic Health Sciences Centre, and will have a range of project opportunities using human genome data.

- The Faculty will invest over £8M in Bioscience facilities from 2015, with funding from HEFCE.

- Projects may be linked to specific needs and interests in the work-place, at Brookes or within other genomic laboratories under Brookes supervision. We also have strong links with local industry.

- We develop your transferable skills, particularly communication, organisation and research planning, which will assist you when carrying out your research project and can provide a basis for application for a research degree or career in genomics research.

Teaching and learning

The taught programme will be available with options for full-time and part-time MSc (180 credits), as well as individual CPD modules. Postgraduate Certificate and Diploma qualifications are also possible, requiring 60 and 120 credits, respectively.

Approach to assessment

Assessment methods used within the course are varied and are designed to be stimulating as well as academically rigorous. They are based on your learning needs, individual aims and the academic standards expected for the course.

You will receive unparalleled support from tutors and have access to state-of-the-art learning technologies via our Moodle platform. Our tutors have reputations for excellence and have established links with colleagues, organisations and institutions at national and international levels.

Embedded throughout the curriculum are skills that are essential to achieve quality outcomes for genomic medicine in practice. This will develop skills culminating in the research project, which will enable students to undertake research and evaluate new findings to implement in patient diagnosis, treatment and care, problem-based learning, work-based learning and inter-professional learning to develop skills for working in specialist and interdisciplinary teams. The development of skills in bioinformatics and use of genomic data will be a key outcome so the programme has a large proportion of hands on experience.

How this course helps you develop

You will develop the in-depth knowledge and specialised skills required to apply genetics and genomics theory to practical problems in the biomedical and pharmaceutical industries, and to undertake research in genetics and genome analysis.

Students will acquire knowledge and skills for employment or PhD positions in the expanding fields of genomics, bioinformatics, or other medically-related research, and academia.

During the course of this programme you will develop a network of colleagues and experts from this field.

Careers

- Research Degree/ PhD
- Pharmaceutical Industry
- Biomedical Industry
- NHS Scientist
- Medical Research
- Academia

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

RESEARCH EXCELLENCE FRAMEWORK (REF) 2014
- Top post '92 University Biological Sciences submission

- 95% of research internationally recognised

- Double the percentage 4* and treble the percentage 3* research compared to 2008, with 58% of research being world leading or internationally excellent

- 80% of impact rated 3* or 4*

Read less
The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. Read more

Genomics Medicine and Healthcare Courses

The Genomic Medicine and Healthcare course has been developed for healthcare professionals including Specialist Medical Practitioners, General Medical Practitioners, Allied Health Professionals, Nurses and Midwives, Genetic Counsellors and those with related undergraduate degrees or equivalent professional qualifications and background experience. It will be of interest to health professionals in the UK and internationally and will provide a solid foundation in the core concepts of genetics and genomics applied to modern medicine and healthcare. Although there are other courses covering the subject area, none are completely online so they are difficult and costly for global healthcare professionals to get involved. This course will reach an international audience in a cost effective, flexible and inclusive way, helping to develop a worldwide network of genomic medical and healthcare leaders.

Our course is well timed given increasing public and professional interests in genetic and genome-level diagnostic and predictive testing for clinical management, disease risk evaluation, prevention of major complications and offering the prospect of improved prognosis. Personalised benefits include the option for reproductive choices and reducing lifetime medical or health risks by judicious use of new emerging preventive medicines and devices combined with lifestyle/behaviour modifications.

Diploma in Genomics Medicine and Healthcare Courses

Our online 1 year Postgraduate Diploma in Genomic Medicine & Healthcare is designed to be practical and clinically focused. The course will provide an integrated approach to Genomic Medicine and Healthcare and focus on applying scientific principles to direct patient care. The Genomics Diploma course is worth 120 credits and comprises 6 modules of 20 credits each.

The Diploma course aims to equip graduates with critical knowledge and understanding of genomics medicine. Graduates will be able to apply knowledge for direct clinical benefit and future study. Our Genomics Medicine Diploma course caters to the educational needs of a primary and secondary care audience and is the only one of its kind that is completely accessible online.

Our Genomic Medicine Diploma has been designed for General Medical Practitioners, Specialist Medical Practitioners (for example Paediatrics, General Medicine, Obstetrics & Gynaecology, Medical Oncology), Allied Health Professionals (Clinical Psychologists, Occupational Therapists and Physiotherapists), Nurses (Cancer, Cardiac, Paediatric, Neurology etc.) and Midwives. In addition, the course would be of interest to those with related undergraduate degrees (e.g. Dietetics, Biomedical Science, Pharmacy) or equivalent professional qualifications and background experience

On completion you will demonstrate:

- a systematic understanding of genetics and genomic factors in human diseases
- a critical awareness of current issues affecting the management of inherited human diseases
- an advanced knowledge of clinical genomics that will facilitate decision-making in unpredictable and/or complex situations
- an ability to critically evaluate current research in applied and translational genetics and genomics
- an ability to deliver management strategies for the investigation and treatment of patients with inherited human diseases
- a basic understanding of the scope and effect of genomics on treatments including horizon scanning of potential new targeted treatments for wider population

Course Structure

The online course lasts one calendar year and is a part time distance learning course. It consists of 6 modules per year, each of 6 weeks duration.

Module 1 - Principles of Medical Genetics and Genomics
Module 2 - Genetic Counselling
Module 3 - Genomics and Society
Module 4 - Practice of Clinical Genomics
Module 5 - Reproductive Genomics
Module 6 - Genomic Healthcare

Assessment

Online Diploma in Genomic Medicine and Healthcare

The course puts assessment at the heart of learning by using clinical scenarios to facilitate problem-solving, critical analysis and evidence-based care. The scenarios act as both the focus for learning and assessment thus embedding assessment within the learning process.

Each of the 6 modules have the same assessment format. Due to the online nature of the course, students are expected to login and participate in the course regularly throughout the module (ideally on a daily basis).

Students are split into groups of 10-15 students and are assigned a dedicated expert tutor who:

Facilitates clinical case discussions with the group.
Monitors, assesses and marks each student throughout the module.
Students use the skills gained during the lectures to engage with the different activities (see below).
Clinical case scenarios with case based discussion - 40%
Individual learning portfolio - 10%
Group/individual activity - 20%
Case based examination - 30%

Read less
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas, develop your specialisms and focus your study into a practical clinical research project.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Focus your specific interests under the guidance of your personal project advisor and develop an individual final project within the Centre for Biomedical Research and the Systems Biology Centre.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.

Choose from our modules to follow a path of study resulting in one of following MSc awards:
-Biomedical Science (Cellular Pathology)
-Biomedical Science (Clinical Biochemistry)
-Biomedical Science (Haematology and Transfusion)
-Biomedical Science (Immunology)
-Biomedical Science (Medical Genetics)
-Biomedical Science (Medical Microbiology)
-Begin your career with the confidence that the MSc Biomedical Science suite of awards are accredited by the Institute of Biomedical Science.
-Take the course as a full-time intercalated degree programme for those wishing to interrupt their studies as a medical or dental student.

For more information about the part-time version of this course, view this web-page: https://www.plymouth.ac.uk/courses/postgraduate/msc-biomedical-science-2

Course details

You’ll take five modules: three core modules, one diagnostic research applications module, plus one discipline-specific module to determine your final award. You'll design and execute a research project, supported by your project advisor. Other core modules include molecular biology (genomics, transcriptomics and proteomics) and project design and development, where you’ll also critically review scientific literature. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Core modules
-BIOM5005 Project Design and Development
-BIOM5001 Molecular Biology: Genomics, Transcriptomics and Proteomics
-BIOM5006 Research Project

Optional modules
-BIOM5008 Clinical Microbiology
-BIOM5002 Contemporary Applications of Cell Biology
-BIOM5003 Contemporary Science of Infection and Immunity
-BIOM5014 Bioinformatics
-BIOM5007 Cellular Basis of Clinical Immunology
-BIOM5009 Haematology and Transfusion
-BIOM5010 Medical Genomics and Personalised Medicine
-BIOM5011 Molecular and Cellular Pathology
-BIOM5012 Clinical Biochemistry

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Introduction to programming for biology. Introduction to statistical computing in R. Algorithms for molecular biology. Medical genomics I. Read more

Core modules

• Introduction to programming for biology
• Introduction to statistical computing in R
• Algorithms for molecular biology
• Medical genomics I: genomics of rare and common diseases
• Medical genomics II: the cancer genome
• Genomics techniques I: sequencing library preparation
• Genomics techniques II: genomics data analysis

Optional modules

• Scientific visualization
• Probabilistic models for molecular biology
• Molecular and cell biology of cancer
• Advanced and applied immunology
• Stochastic processes
• Machine learning
• Applied statistics
• Advanced probability with applications
• Linear modeling
• Bayesian Modeling

Read less
Programming for biology. Overview of molecular biology/genetics concepts. Statistical computing in R. Algorithms for molecular biology. Read more

Core modules

• Programming for biology
• Overview of molecular biology/genetics concepts
• Statistical computing in R
• Algorithms for molecular biology
• Medical genomics I: genomics of rare and common diseases
• Medical genomics II: the cancer genome
• Genomics techniques I: sequencing library preparation
• Genomics techniques II: genomics data analysis

Optional modules

• Scientific visualization
• Probabilistic models for molecular biology
• Molecular and cell biology of cancer
• Advanced and applied immunology
• Stochastic processes
• Machine learning
• Applied statistics
• Advanced probability with applications
• Linear modeling
• Bayesian Modeling

Read less
Master's specialisation in Medical Epigenomics. The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.

Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.

- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.

- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.

- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.

When you enter the job market, you’ll have:

- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development

- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;

- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;

- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:

- University or research institute;

- Pharmaceutical company, such as Synthon or Johnson & Johnson;

- Food company, like Danone or Unilever;

- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:

- Biological or medical consultant;

- Biology teacher;

- Policy coordinator, regarding genetic or medical issues;

- Patent attorney;

- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology

In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches

Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples

Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:

- Autoimmune diseases, like rheumatoid arthritis and lupus

- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer

- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Radboud University Master's Open Day 10 March 2018



Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
This course is designed to give you the opportunity to study and analyse the theoretical and practical basis of medical microbiology and many of the specialist areas within it. Read more
This course is designed to give you the opportunity to study and analyse the theoretical and practical basis of medical microbiology and many of the specialist areas within it. You will gain greater insight into the importance and role of medical microbiology, with an emphasis on cutting edge areas such as molecular diagnostics and genomics, emerging pathogens and antibiotic resistance.

You will study a range of core and option modules that will allow you to tailor studies to your own requirements. You will expand your knowledge of the basic science and analytical techniques relating to medical microbiology and gain an up-to-date understanding of the application of medical microbiology in bioscience/pharmaceutical research, as well as in diagnostic and therapeutic medicine. There will be an emphasis in the course on development of critical analysis skills in assessment of scientific literature and laboratory data. In addition you will have the opportunity to design and execute your own research project. The course team is supported by visiting lecturers who are practising scientists in the field, which helps to ensure that taught material is current and relevant.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CLINICAL ASPECTS OF MICROBIAL PHYSIOLOGY AND CHEMOTHERAPY
-INFECTIOUS DISEASES AND PUBLIC HEALTH
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-AUTOMATION IN BIOMEDICAL SCIENCES
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-MOLECULAR BIOINFORMATICS
-PRINCIPLES OF MOLECULAR MEDICINE
-SYSTEMS BIOLOGY

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Associated careers

As well as gaining knowledge and skills in medical microbiology and other associated subject areas you will develop numerous other skills that are designed to make you competitive in the jobs market. Some students will already be working in healthcare and public health laboratories in the UK and overseas while others will be gaining the skills they need to work as a Biomedical or Clinical Scientist.

The course will also allow you to work in industry including the pharmaceutical and biotechnology sectors as well as regulatory affairs. You will also be well prepared for a career in research including further study at PhD level.

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

● This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
● The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
● The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
● The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
● The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
● New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
● You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
● This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
● The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
● For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Visit the website for more information http://www.gla.ac.uk/postgraduate/taught/clinicalgenetics/#/programmestructure

Read less
Genomic technologies and information will transform practice across the clinical professions over the next decade. This MSc is a new programme developed by Health Education England and being offered by a network of centres across England. Read more

Genomic technologies and information will transform practice across the clinical professions over the next decade.

This MSc is a new programme developed by Health Education England and being offered by a network of centres across England. It includes study of the genomics and informatics of rare and common diseases, cancer and infectious diseases, which can be applied to clinical practice and medical research, and enhance knowledge and skills, in this rapidly evolving field.

What does our MSc provide?

This programme, delivered by the Faculty of Medicine, will provide a comprehensive perspective in genomics applied to clinical practice and medical research, with particular emphasis on the 100,000 Genomes Project. It will equip students to bring benefit to their patients through improved diagnosis and personalised treatment, and disseminate knowledge to peers, patients and the public.

Who should study?

This programme is particularly suitable for health professionals as well as students seeking to make the most of genomics as it applies to their current or future career.

Flexible learning:

Our modular structure and blended learning formats are delivered flexibly as a one year full-time or two year part-time option, or as individual or grouped modules, to facilitate access from as wide as possible a range of healthcare professionals.

Introducing your course

Genomic technologies and information will transform practice across the clinical professions over the next decade. Our MSc Genomic Medicine degree is designed to enhance knowledge and skills in this rapidly evolving field. The masters course has been developed by Health Education England and includes study of the genomics and informatics of rare and common diseases, cancer and infectious diseases, which can be applied to clinical practice and medical research. This degree is suitable for health professionals working in the NHS, as well as students seeking to make the most of genomics as it applies to their current or future career.

Overview

This MSc Genomic Medicine has been commissioned by NHS England / Health Education England to provide education and training in genomics for health professionals from different professional backgrounds such as medicine, nursing, public health, science and technology, for whom knowledge of genomics will impact on the way they deliver their service to patients and the public.

Tailored content

This programme can be tailored to meet your career aspirations and enables you to choose your module options, plan your programme route, and choose from October or March to begin your studies.

You can study part-time or undertake smaller numbers of, or even individual, modules to fit your study around your other commitments.

Modules

Southampton’s MSc Genomic Medicine comprises eight core modules delivered through intensive face-to-face study and independent learning.

Our core modules include an introduction to the genetics and genomics of rare and common diseases, cancer and infectious disease, informatics analysis, and a laboratory research project or dissertation.

Optional modules within the programme include the Ethics, Counselling Skills and Teaching the Teachers to Teach.

Teaching and learning

Using a mix of learning formats, our modules include two groups of two days' intensive face-to-face teaching interspersed with independent study.

The first core module will include an additional day of student contact to incorporate an induction to the University’s facilities and introduction to basic research skills such as literature searching and critical appraisal of scientific literature).

A variety of learning and teaching methods will be adopted to promote a wide range of skills and meet differing learning styles, including seminars, group work, practical demonstrations and exercises surrounding interpretation of data and clinical scenarios.

Experts from a range of academic and health care professional backgrounds are chosen to ensure a breadth and depth of perspective, giving a good balance between theories and principles, and practical management advice.

Independent study is delivered through a virtual learning environment, delivering a library of study materials including uploaded lectures, virtual patients and independent learning tasks, reference materials, links to online tutorials, student fora, and guest lecturer web chats.

A significant component of your research will comprise either an original project or a literature-based dissertation.

What you will gain

Students who complete the programme will be equipped to harness the unprecedented transformation of the 100,000 Genomes Project, bring benefit to their patients through improved diagnosis and personalised treatment, and disseminate knowledge to peers, patients and the public.

Visit the programme specification document for this course



Read less
There is currently a worldwide shortage in graduates qualified in Bioinformatics and the skills to interpret the data that is going to underpin advances in biology and medicine in 21st Century. Read more
There is currently a worldwide shortage in graduates qualified in Bioinformatics and the skills to interpret the data that is going to underpin advances in biology and medicine in 21st Century. With the advent of Personalised Medicine, the demand for specialists in Computational Biology and Bioinformatics will further increase. This gives you the opportunity to build your transferable skill set across a range of cutting edge technologies and start building a career in this central facet of modern biology.

Students completing the MSc course in Bioinformatics and Computational Genomics will have the necessary skills and knowledge to undertake research and development in industry (Biotechnology, Pharmaceutical, Diagnostic companies), in medical research centres and in academic institutions worldwide.

Computational, statistical and machine learning methods form an integral part of modern research in Molecular Biology, Cell Biology, Pharmacology, Public Health Care and in Medicine. The past decade has seen enormous progress in the development of molecular and biomedical technologies. Today’s high-throughput array and sequencing techniques produce data in the range of terabytes on a daily basis and new technologies continuously emerge. This will further increase the stream of data available for biomedical research. For this reason analyzing, visualizing and managing this huge amount of data is a challenging task. The Queen’s MSc course in Bioinformatics and Computational Genomics targets these data-driven challenges of modern science. The course is open to graduates in computer science, life sciences, physics or statistics.

The programme will consist of an Introductory short course (two weeks) in Cell Biology, followed by modules in:

• Genomics & Genetics
• Analysis of Gene Expression
• Scientific Programming & Statistical Computing
• Algorithmic Biology
• Statistical Biology
• Bioimaging Informatics
• Research project : MSc dissertation

Read less
RESEARCH STRENGTHS AND FACILITIES. The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. Read more

Graduate Program

RESEARCH STRENGTHS AND FACILITIES
The Department of Medical Genetics Graduate Program is a leading program that attracts students from all over Canada and the world. The Program offers Master’s and Doctoral programs that take place in Vancouver, one of the world’s most livable cities, at locations affiliated with the University of British Columbia, an institution which is consistently ranked among the world’s best universities.

The Department is composed of dozens of faculty members at the forefront of their fields who use cutting edge genetic, epigenetic, genomic, and bioinformatic methodologies to gain insight into diseases such as cancer, diabetes, obesity, neurodegenerative and neurological disorders, and other genetic diseases. Research is highly interactive and often involves local, national, and international collaborations which further enrich the research experience.

Individual labs conduct clinical and/or translational research and basic experimental research engaging a wide variety of approaches including the use of model organisms such as mice, flies (D. melanogaster), worms (C. elegans), and yeast (S. cerevisiae). Prospective students with interests in the investigative areas below have an opportunity to pursue world class research in labs affiliated with the Medical Genetics Graduate Program.

Areas of Research

- Developmental genetics and birth defects
- Epigenetics and chromosome transmission
- Genomics and bioinformatics
- Genetic epidemiology and human gene mapping
- Neurogenetics and immunogenetics
- Stem cells and gene therapy
- Pharmacogenomics
- Clinical genetics, genetic counselling, ethics and policy

Quick Facts

- Degree: Master of Science
- Specialization: Medical Genetics
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less

Show 10 15 30 per page



Cookie Policy    X