• University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"medical" AND "electronic…×
0 miles

Masters Degrees (Medical Electronics)

We have 78 Masters Degrees (Medical Electronics)

  • "medical" AND "electronics" ×
  • clear all
Showing 1 to 15 of 78
Order by 
Why Surrey?. Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more

Why Surrey?

Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

Programme overview

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

Why not discover more about our programme in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation project. Part-time studemts study the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that all modules are compulsory, there are no optional modules, and may be subject to change.

Facilities, equipment and academic support

Common room

A student common room is available for the use of all Physics students.

Computers

The University has an extensive range of PC and UNIX machines, full internet access and email. The University has invested in resources to allow students to develop their IT skills. It also has an online learning environment, SurreyLearn. Computers are located in dedicated computer rooms. Access to these rooms is available 24 hours per day.

Prizes

Hounsfield Prize

A prize of £200 is awarded annually for the best dissertation on the Medical Physics programme. Sir Hounsfield was jointly awarded the Nobel Prize for Medicine in 1979 for his work on Computed Tomography.

Mayneord Prize

A prize of £200 in memory of Professor Valentine Mayneord will be awarded to the student with the best overall performance on the Medical Physics course. Professor Mayneord was one of the pioneers of medical physics, who had a long association with the Department and encouraged the growth of teaching and research in the field.

Knoll Prize

A prize of £300 in memory of Professor Glenn Knoll is awarded annually to the student with outstanding performance in Radiation Physics and Radiation Measurement on any of the department's MSc programmes. Professor Knoll was a world-leading authority in radiation detection, with a long association with the department

IPEM Student Prize (MSc Medical Physics)

A prize of £250 is awarded annually to a student with outstanding performance in their dissertation.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and related industries. The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context. This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Global opportunities

We give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities and through our international research collaboration. Hence, it may be possible to carry out the dissertation project abroad.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. Read more
The MSc in Electronics with Medical Instrumentation aims to produce postgraduates with an ability to design and implement medical instrumentation based systems used for monitoring, detecting and analysing biomedical data. The course will provide ample opportunity to develop practical skill sets. The student will also develop an in-depth understanding of the scientific principles and use of the underlying components such as medical transducers, biosensors and state-of-the-art tools and algorithms used to implement and test diagnostic devices, therapeutic devices, medical imaging equipment and medical instrumentation devices.

The course broadens the discussion of medical equipment and its design by investigating a range of issues including medical equipment regulation, user requirements, impacts of risk, regulatory practice, legislation, quality insurance mechanisms, certification, ethics and ‘health and safety’ assessment. The course will enable a student with an interest in medical electronics to re-focus existing knowledge gained in software engineering, embedded systems engineering and/or electronic systems engineering and will deliver a set specialist practical skills and a deeper understanding of the underlying principles of medical physics. A graduate from this course will be able to immediately participate in this multi-disciplined engineering sector of biomedical and medical instrumentation systems design.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

Read less
The MSc in Medical and Healthcare Devices is a unique and flexible course for graduates, scientists and technologists. Read more
The MSc in Medical and Healthcare Devices is a unique and flexible course for graduates, scientists and technologists. Study on the course will build an excellent range of knowledge and expertise if you are looking to begin a career in the sector or it will enhance and support your personal development if you are already working in this field.

As a student on the course you will develop an understanding of the properties of advanced materials and how they affect the design of medical and healthcare devices. You will study intelligent bioengineering systems and consider how smart materials, micro-electronics and mechanical and information technology knowledge are used in the development of these devices.

These studies will be supported by considering the principles that underpin the development and application of advanced materials and also regulations, procedures and principles that are applied to this sector. In addition, you will study the use of healthcare and medical devices in the specific context of human anatomy, physiology, illness, disease and rehabilitation.

The MSc Medical and Healthcare Devices course is interdisciplinary and will be delivered at the University of Bolton’s Institute for Materials Research and Innovation (IMRI) in collaboration with the Schools of Business & Creative Technologies (BCT) and Health & Social Sciences (HSS).

IMRI is a multidisciplinary centre in which research and innovation is carried out in collaboration with industry and other academic institutions. It is the leader in the UK – and is known internationally – for its research and applications development in the field of applied materials science and engineering.

Developments carried out within IMRI include new, designer and novel smart and multifunctional materials in fibres, films, foams and particles, at nano and micro levels, as well as associated processing technologies that have the potential for development to compete in the global marketplace.

Throughout your studies you will have opportunities to interact and collaborate with medical and healthcare device companies, UK medical and dental schools and the NHS.

Special features

Teaching for each module is delivered as a short course that will last no more than two weeks. The rest of your study is very flexible and may be carried out away from the University.

Class sizes are small which means you will be able to work closely with your fellow students and your tutor.

Your subject of study and your personal project means you have the opportunity to work in an area that is of personal interest or that is closely related to your role in your place of work.

You will study 6 modules:

Introduction to Medical Devices and Product Regulations;
Human Physiology and Biotechnology;
Biomedical Devices and Product Development;
Intelligent Bioengineering Systems;
Research Methods (including an introduction to innovation and intellectual property management);
Research Project.


For more information please visit http://www.bolton.ac.uk/postgrad

Read less
The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. Read more

About the programme

The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. As a result of recent evolutions towards internationalization, we also offer a complete English master program in biomedical engineering. Both the Dutch and English masters are two-year programs and lead to a joint degree from UGent and VUB. Students study either in Ghent or in Brussels upon their own choice.

Tackle complex problems in biology, medicine and health sciences

Biomedical Engineering is a branch of Engineering where students acquire knowledge and skills which can be applied to tackle complex problems in biology, medicine and health sciences. The biomedical engineer herein strives towards a solution in balance with technological, economical and ethical constraints.

Learning outcomes

Graduated students master the fundamentals of current biomedical engineering and have a thorough knowledge of the basic concepts and an overview of the main applications in various fields of biomedical engineering (medical imaging, medical signal processing, medical physics, medical device technology, tissue engineering, biomaterials...). The graduated student has acquired the necessary research skills which allow him or her to independently analyze and solve a problem, and recognizes the importance of permanent learning in a continuously evolving domain.

Work in multidsciplinary teams:
The biomedical engineer is trained to work in multidisciplinary teams (influx of students with different bachelor backgrounds, lecturers from various faculties and scientific domains, multi-disciplinary projects) and has the required communication skills.

Awareness of ethical and socio-medical aspects:
The biomedical engineer is aware of the ethical and socio-economic aspects of biomedical engineering and healthcare, and of the social responsibility of a master in engineering.

Career possibilities:
In this master's course, knowledge and skills in all fields in biomedical engineering will be given, so when you finished the Master's programme, you can be employed as generalist, and you will also be specialised in one particular field of biomedical engineering.

As a student, you are able to select any field within biomedical engineering. You will be trained to work in interdisciplinary project teams, composed of engineers and medical specialists. To prepare further for interdisciplinary teams, students and scholars are treated as equals. To train for working in a European setting, you will get knowledge in the health care situation in several countries in Europe, and you will be trained in cultural differences between European countries.

In summary, the goal of this course is to acquire the ability to:
- work in interdisciplinary (engineering – medical) teams
- work in international and thus intercultural (European) teams
- communicate effectively with experts in (bio)medicine and technology
- perform fundamental research in Biomedical Engineering.
- design innovative devices to improve diagnostics and treatment of patients
- follow a post-Master’s training in Biomedical Engineering
- perform a PhD study
- train continuously (life-long-learning)

Curriculum

Available on http://www.vub.ac.be/en/study/biomedical-engineering/programme

The programme consists of 120 credits, evenly distributed over 4 semesters of each 12 weeks. The specific part of the master involves six basic courses for a total of 30 credits (Quantitative cell biology, Modelling of Physiological Systems, From Genome to Organism, Biomechanics, Bio-electronics and Biomaterials) and 42 credits dedicated to specialist courses in biomedical engineering (Biomedical Imaging, Neuromodulation and Imaging, Medical Physics, Medical Equipment, Biomedical Product Development, Artificial Organs: Technology and Design, Health Care Organization and Informatics, Human and Environment, Safety and Regulations* and Seminars: Innovations in Biomedical Engineering). The programme is further complemented with a master thesis (24 credits) and elective courses for a total of 24 credits.

Internships and Project Work

Students are encouraged to do an internship with a company or hospital in Belgium or abroad during the summer holiday period. Internships can be valorised in the curriculum, with an internship of 4 weeks accounting for an elective course of 3 credits, and an internship of minimally 6 weeks accounting for 6 credits. A maximum of 6 credits is allowed. In addition, students can opt for the elective 3 credit course “Multidisciplinary Biomedical Project” during which they can work on an assignment or a project.

Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs:



Read less
Programme description. Bioinformatics is about the application of computer-based approaches to understanding biological processes. Read more

Programme description

Bioinformatics is about the application of computer-based approaches to understanding biological processes. Our programme will introduce you to the current methods used to interpret the vast amounts of data generated by modern high-throughput technologies.

The aim of this MSc is to equip you with a strong background in biology, plus the computing skills and knowledge necessary to navigate the vast wealth of modern biological data. On completing this programme you will be able to take up PhD studies or bioinformatics posts in academia or in industry.

The programme covers programming skills, statistical analysis and database science as well as bioinformatics. Option courses allow you to specialise in several aspects of bioinformatics.

Programme structure

The MSc comprises two semesters of taught courses followed by a research project and dissertation. The project is a key element in deciding how your career in bioinformatics should develop further. Teaching is through lectures, tutorials, seminars, computer practicals and lab demonstrations.

Compulsory courses:

  • Bioinformatics Programming & System Management
  • Bioinformatics Research Proposal
  • MSc Dissertation (Bioinformatics)
  • Statistics & Data Analysis

Optional courses:

  • Bioinformatics 1
  • Human–Computer Interaction
  • Information Processing in Biological Cells
  • Molecular Modelling and Database Mining
  • Quantitating Drug Binding
  • Bioinformatics Algorithms
  • Bioinformatics 2
  • Functional Genomic Technologies
  • Introduction to Website and Database Design for Drug Discovery
  • Molecular Phylogenetics
  • Next Generation Genomics
  • Software Architecture, Process, and Management
  • Drug Discovery
  • Introduction to Java Programming

Research

The research project is carried out independently, but under the guidance of a supervisor, during the summer, with results presented in a dissertation. A wide range of projects is available through both the School of Biological Sciences and the School of Informatics.

Career opportunities

The programme is good preparation for further academic research or for technical or managerial roles in various commercial sectors, from medical electronics to defence.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits), and a research project (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Imaging with Ionising Radiation
-Clinical Practice
-Magnetic Resonance Imaging and Optics
-Medical Electronics and Control
-Professional Skills module

Optional modules
-Aspects of Biomedical Engineering
-Biomedical Engineering
-Computing in Medicine

Dissertation/report
All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in healthcare, industry and academia sectors.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.

Read less
This MSc covers the key technologies required for the physical layer of broadband communications systems. Read more
This MSc covers the key technologies required for the physical layer of broadband communications systems. The programme unites concepts across both radio and optical communication to give students a better understanding of the technical challenges they will face in engineering the rapid development of the broadband communications infrastructure. There is exceptionally strong industry demand for engineers with this skill base.

Degree information

This MSc provides training in the key technologies required for the physical layer of photonic, wireless and wired communications systems and other applications of this technology, ranging from THz imaging to Radar systems. The programme encompasses the complete system design from device fabrication and properties through to architectural and functional aspects of the subsystems that are required to design and build complete communication systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

Core modules
-Introduction to Telecommunications Networks
-Wireless Communications Principles
-Broadband Communications Laboratory
-Communications Systems Modelling
-Broadband Technologies and Components
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Advanced Photonic Devices
-Antennas and Propagation
-Photonic Sub-systems
-Optical Transmission and Networks
-Radar Systems
-RF Circuits and Sub-systems
-Internet of Things
-Mobile Communications Systems

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, laboratory and workshop sessions, seminars, tutorials and project work. All of the programme lecturers carry out leading research in the subjects they are teaching. Student performance is assessed through unseen written examination, coursework, design exercises and the dissertation.

Careers

Rapid growth of the internet and multimedia communications has led to an unprecedented demand for broadband communication systems. There is exceptionally strong industry demand for engineers with this skills base and a clear shortage of supply. First destinations of recent graduates include electrical and technical engineers at companies including Société Générale and Ericsson

Employability
The programme provides a broad package of knowledge in the areas of wireless and optical communications networks, from devices to signal processing theory and techniques, network architecture, and planning and optimisation. Students are expertly equipped to pursue careers as engineers, consultants and system architects in wireless and optical communications. A considerable number of graduates also stay in the education sector undertaking research and teaching.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885 with Professor Sir Ambrose Fleming (the inventor of the thermionic valve and the left-hand and right-hand rules) as the first head of department.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development. We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course. This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. Read more
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course.

Who is it for?

This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. It is open to science and engineering graduates and those working within hospitals or related industry who want to work in healthcare organisations, in the medical devices industry, or in biomedical engineering research.

The course will suit recent graduates and/or clinical engineers with a technical background or those working in healthcare who want to move into a management position.

Objectives

With several medical conditions requiring extensive and continuous monitoring and early and accurate diagnosis becoming increasingly desirable, technology for biomedical applications is rapidly becoming one of the key ingredients of today and tomorrow’s medical care.

From miniaturised home diagnostic instruments to therapeutic devices and to large scale hospital imaging and monitoring systems, healthcare is becoming increasingly dependent on technology. This course meets the growing need for biomedical and clinical engineers across the world by focusing on the design of medical devices from conception to application.

One of the few accredited courses of its kind in London, the programme concentrates on the use of biomedical-driven engineering design and technology in healthcare settings so you can approach this multidisciplinary topic from the biological and medical perspective; the technological design and development perspective; and from the perspective of managing the organisation and maintenance of large scale equipment and IT systems in a hospital.

This MSc in Biomedical Engineering with Healthcare Technology Management course has been created in consultation and close collaboration with clinicians, biomedical engineering researchers and medical technology industrial partners. The programme fosters close links with the NHS and internationally-renowned hospitals including St. Bartholomew's (Barts) and the Royal London Hospital and Great Ormond street so that you can gain a comprehensive insight into the applied use and the management of medical technology and apply your knowledge in real-world clinical settings.

Placements

In the last few years there have been some limited opportunities for our top students to carry out their projects through placements within hospital-based healthcare technology groups or specialist London-based biomedical technology companies. Placement-based projects are also offered to selected students in City’s leading Research Centre for Biomedical Engineering (RCBE). As we continue our cutting-edge research and industrial and clinical collaborations, you will also have this opportunity.

Academic facilities

As a student on this course you will have the opportunity to work with cutting-edge test and measurement instrumentation – oscilloscopes, function generators, analysers – as well as specialist signal generators and analysers. The equipment is predominantly provided by the world-leading test and measurement equipment manufacturer Keysight, who have partnered with City to provide branding to our electronics laboratories. You also have access to brand new teaching labs and a dedicated postgraduate teaching lab. And as part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught through face-to-face lectures in small groups, where there is a lot of interaction and feedback. Laboratory sessions run alongside the lectures, giving you the opportunity to develop your problem-solving and design skills. You also learn software skills in certain modules, which are taught inside computer labs. We also arrange hospital visits so you gain hands-on experience of different clinical environments.

We arrange tutorials for setting coursework, highlight important subject areas, conduct practical demonstrations, and offer support with revision. You are assessed by written examinations at the end of each term, and coursework assignments, which are set at various times throughout the term.

You also work towards an individual project, which is assessed in the form of a written thesis and an oral examination at the end of the summer. The project can be based on any area of biomedical engineering, telemedicine or technology management and will be supervised by an academic or clinical scientist with expertise in the subject area. Many projects are based in hospital clinical engineering departments, or if you are a part-time student, you can base the project on your own workplace. You will have regular contact with the supervisor to make sure the project progresses satisfactorily. Some of the programme’s current students are working on a project focusing on devices that use brain signals to move external objects such as a remote control car and a prosthetic arm.

Some of the previous projects students have worked on include:
-A cursor controller based on electrooculography (EOG)
-Modelling a closed-loop automated anaesthesia system
-Design of a movement artefact-resistant wearable heart rate/activity monitor
-Review of progress towards a fully autonomous artificial mechanical heart
-Design of smartphone-based healthcare diagnostic devices and sensors.

If you successfully complete eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed eight modules, you will be awarded 120 credits and a postgraduate diploma. Completing four modules (60 credits) will lead to a postgraduate certificate.

Modules

Along with the 60 credit dissertation eight core modules cover diverse subject areas including biomedical electronics and instrumentation, technology infrastructure management, as well as the latest advances in medical imaging and patient monitoring.

The course includes a special module which gives you an introduction to anatomy, physiology and pathology designed for non-clinical science graduates.

The most innovative areas of biomedical and clinical engineering are covered and the content draws from our research expertise in biomedical sensors, bio-optics, medical imaging, signal processing and modelling. You will learn from academic lecturers as well as clinical scientists drawn from our collaborating institutions and departments, which include:
-Charing Cross Hospital, London
-The Royal London Hospital
-St Bartholomew's Hospital, London
-Basildon Hospital
-Department of Radiography, School of Community and Health Sciences, City, University of London

Modules
-Anatomy, Physiology and Pathology (15 credits)
-Physiological Measurement (15 credits)
-Biomedical Instrumentation (15 credits)
-Medical Electronics (15 credits)
-Cardiovascular Diagnostics and Therapy (15 credits)
-Medical Imaging Modalities (15 credits)
-Clinical Engineering Practice (15 credits)
-Healthcare Technology Management (15 credits)

Career prospects

This exciting MSc programme offers a well-rounded background and specialised knowledge for those seeking a professional career as biomedical engineers in medical technology companies or research groups but is also uniquely placed for offering skills to clinical engineers in the NHS and international healthcare organisations.

Alumnus Alex Serdaris is now working as field clinical engineer for E&E Medical and alumna Despoina Sklia is working as a technical support specialist at Royal Brompton & Harefield NHS Foundation Trust. Other Alumni are carrying out research in City’s Research Centre for Biomedical Engineering (RCBE).

Applicants may wish to apply for vacancies in the NHS, private sector or international healthcare organisations. Students are encouraged to become members of the Institute of Physics and Engineering in Medicine (IPEM) where they will be put in touch with the Clinical Engineering community and any opportunities that arise around the UK during their studies. Application to the Clinical Scientist training programme is encouraged and fully supported.

The Careers, Student Development & Outreach team provides a professional, high quality careers and information service for students and recent graduates of City, University of London, in collaboration with employers and other institutional academic and service departments. The course also prepares graduates who plan to work in biomedical engineering research and work within an academic setting.

Read less
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. Read more
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. This prestigious programme offers significant research content alongside taught courses strongly linked to industrial requirements.

Degree information

Students develop an advanced understanding of the architecture and components that are used to construct a broadband network. The programme offers an overview of the network structures used to build telecommunications networks, enables students to specialise in a specific area of telecommunications, and includes a substantial research project.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a research project (105 credits).

Core modules
-Introduction to Telecommunications Networks
-Professional Development Module: Transferable Skills

Optional modules
-Broadband Technologies and Components
-Communications Systems Modelling
-Introduction to IP Networks
-Mobile Communications Systems
-Wireless Communications Principles
-Network and Services Management
-Optical Transmission and Networks
-Software for Network Services and Design
-Telecommunications Business Environment
-Antennas and Propagation
-RF Circuits and Devices
-Photonic Sub-systems
-Radar Systems
-Network Planning and Operations
-Advanced Photonic Devices
-Internet of Things

Dissertation/report
All students undertake a substantial research project working in association with one of the research groups at UCL or a collaborating industrial research laboratory.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and workshops. Student performance is assessed through unseen written examination, coursework (written and design assignments) and the substantial research project, which is assessed by dissertation and presentations.

Careers

Recent graduates have gone on to become university researchers, and senior software engineers and research scientists at companies including Nokia UK Ltd and QinetiQ.

Employability
The Telecommunications MRes programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885. The department has more than a century of tradition of internationally leading research, from Professor Sir Ambrose Fleming, the inventor of the thermionic valve and the left-hand and right-hand rules, to Professor Charles Kao, PhD alumnus and 2009 Nobel Prize in Physics recipient for his research in communication with optical fibres that began whilst studying at UCL.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world. Read more
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course covers a number of contemporary topics, including power electronics, signal processing, renewable systems, holistic modeling of electronic systems and image processing. Building on your previous experience, and with developed practical skills, you’ll leave with the expert knowledge and understanding to practice safely and effectively in a wide range of environments.

Cambridge is home to the Silicon Fen, Europe’s largest high-technology commercial research and development centre. We have excellent, established links with many employers in the sector including:

- ARM Ltd
- British Computer Society
- Cambridge Network
- Cambridge Silicon Radio
- E2V
- Ford Motor Company
- Selex Sensors and Airborne Systems
- South East Essex PCT

Our specially equipped laboratories provide you with the essential tools you need in the field of industrial electronics and microelectronics. Among other features they are equipped with wind and solar energy systems, development boards with FPGA circuits and power electronics modules. You’ll also have access to our CAD laboratories with the very latest software.

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course is designed to address the challenges of the modern industrial world. It focuses on power electronics, renewable systems, signal processing, holistic modelling of electronic systems and image processing. The main aims of the course are to:
• Meet a local, national and international demand for skilled electronic and electrical engineers.
• Provide an opportunity for students to gain in-depth relevant specialist knowledge in electronics systems design.
• Synthesise formal solutions through the application of specialist knowledge to design and create innovative electronic and electrical circuits.
• Perform and develop objective and critical analysis skills necessary to synthesis effective solutions when presented with a set of specifications.
• Equip you with the appropriate depth in understanding of electronic engineering development tools and techniques.

Upon completion of the course you will be able to:
• Exercise an in-depth understanding of the design mechanisms which can be used to create electronic and electrical designs and critically evaluate their effectiveness.
• Demonstrate an ability to deal with complex and interdependent design issues both systematically and creatively in a sustainability context.
• Analyse and devise strategies to design, evaluate and optimise microelectronics based systems.
• Critically evaluate the tools and techniques required to create microelectronics circuits which satisfy specifications.
• Analyse current research and technical problems within the discipline for further reflection for evaluation and critique.
• Recognise your obligations to function in a professional, moral and ethical way.
• Synthesise original circuit design from a knowledge of current tools, methodologies and strategies.
• Critically survey current and recent practice in the field of electronic and electrical engineering, in a sustainability context, in order to identify examples of best practice and to propose new hypotheses.
• Develop the ability to act autonomously to plan and manage a project through its life cycle, and to reflect on the outcomes.
• Define the goals, parameters and methodology of a research and development activity.

Careers

The possibilities that are open to you range from design or systems engineering, to medical electronics, environmental monitoring, sound technology biophysics or microelectronics. Across industry, whether it’s in process control, construction and building or services, teaching and beyond, there’ll be opportunities to find your own specialist niche.

Core modules

Sustainable Technologies
DSP Applications and ARM® Technology
Digital Systems Design with VHDL and FPGAs
Power Conversion Systems
Remote Sensing and the Internet of Things
Research Methods
Major Project

Assessment

You’ll be assessed through exams and written assignments based on case studies and scenarios.

Facilities

Our Department has specialist laboratories for electronics and microelectronics, equipped with wind and solar energy systems, power electronics modules, development boards with FPGA circuits and more. Our laboratories are designed, maintained, and operated by an in-house team of technical experts. Students also benefit from access to a wide range of central computing and media facilities.

We also operate modern electronic Computer Aided Design labs loaded with the latest software that includes Integrated Synthesis Environment Design Suite, Matlab, Simulink and other relevant software.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/medical-physics-bioengineering-mres

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Standard
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the 2nd year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules and a research project.

- Core Modules
There are no core modules for this programme.

- Options
Students choose four optional modules from the following:
Ionising Radiation Physics: Interactions and Dosimetry
Medical Imaging
Clinical Practice
Treatment with Ionising Radiation
Medical Electronics and Control
Bioengineering
Optics in Medicine
Computing in Medicine
Medical Devices and Applications
Foundations and Anatomy and Scientific Computing
Image Processing
Computational Modelling in Biomedical Imaging
Programming Foundations for Medical Image Analysis
Information Processing in Medical Imaging
Image-Directed Analysis and Therapy

- Dissertation/report
All students undertake a research project.

Further information on modules and degree structure available on the department web site Medical Physics and Bioengineering MRes http://www.ucl.ac.uk/medphys/prospective-students/phd/dtp

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

Our graduates typically find work in academia, the NHS, and in industry

Why study this degree at UCL?

The department is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Student / staff ratios › 144 staff including 110 postdocs › 107 taught students › 135 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is suitable either for students wishing to study for a stand-alone MRes in Medical Physics & Bioengineering or for students planning progression to a Doctoral Training Programme.

What are we looking for?
When we assess your application we would like to learn:
- why you want to study Medical Physics and Bioengineering at graduate level
- why you want to study Medical Physics and Bioengineering at UCL
- what particularly attracts you to this programme
- how your personal, academic and professional background meets the demands of a challenging programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

For more information see the Applications page http://www.ucl.ac.uk/prospective-students/graduate/apply .

Read less
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Read more
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Practical skillset development is emphasized throughout the course. Students will be taught the theory, protocol and the efficient use of both analogue and digital interfaces and sensor devices together with the principles of and use of Real-Time-Operating-Systems (RTOS). A key focus of the course will be in the implementation of power aware sustainable solutions, the course will provide an in-depth discussion of the underlying power management hardware sub-systems within modern MCUs and will show and use software techniques that will exploit these to reduce power consumption.

Broader consideration of embedded system design will be examined. In particular, the design process, risk assessment, product life-cycle, software life-cycle, safety and regulation will be investigated and used. It is intended that the course will re-focus existing knowledge held by the student in software engineering and hardware engineering and deliver a set of enhanced practical skills that will enable the student to fully participate in this multi-disciplined, fast expanding and dominating engineering sector of embedded systems.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

There are plenty of opportunities for employment in the electronic systems subject area, in particular, there is a demand for engineers that can solve problems requiring a multi-disciplined approach covering skills from software engineering, control engineering, digital electronic systems engineering, analogue electronic engineering, medical physics, and mechanics amongst others. The MSc in Electronics and its specialist pathways will provide the foundations required to re-focus existing knowledge and enter this exciting world of multi-disciplined jobs.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Read more
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Specialist knowledge and practical skillsets will be taught, extensively developed and practiced in the areas of control systems and the analysis, categorisation and design of robotic systems that facilitate movement with multiple degrees of freedom. The knowledge and skillsets taught are key enabling skillsets used to implement devices for applications such as security drones, warehouse robots, medical robots and more humanoid like robots. It is intended that the course will re-focus and enhance existing knowledge in the areas of software engineering, electronic engineering and real-time embedded systems to enable the student to participate in the fast expanding and exciting sector of industrial and consumer robotic systems.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. Read more
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. The core aim of the course is to produce students who are “silicon qualified” by providing them with a complete SoC design experience by setting a framework of activities that allow the student to use industry-standard Computer-Aided-Engineering (CAE) software tools for the fast and accurate design, simulation and verification of integrated circuits.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.
Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less

Show 10 15 30 per page



Cookie Policy    X