• Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Cambridge Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"medical" AND "diagnostic…×
0 miles

Masters Degrees (Medical Diagnostics)

We have 92 Masters Degrees (Medical Diagnostics)

  • "medical" AND "diagnostics" ×
  • clear all
Showing 1 to 15 of 92
Order by 
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
Your programme of study. If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Read more

Your programme of study

If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Did you know researchers at Aberdeen invented the first MRI scanner (Magnetic Resonance Imaging) for instance? Since this time much has been done to further work on the MRI scanner and deliver some of the most advanced forms of body visualisation tools available to the health area. If you have ever wondered how X rays work or you are interested in the latest radiotherapy techniques to provide therapeutic tools from radiographic equipment and advances this programme not only gives you the theory and practice in applying imaging in a health setting, it also gives you opportunities to think about the technologies involved and the applications. There is a lot of Physics and Maths required behind the different technologies involved in medical imaging so if you have these subjects and a life science background plus engineering or similar science disciplines this will make the programme more accessible.

By the end of the MSc programme you will have received a thorough academic grounding in Medical Imaging, been exposed to the practice of Medical Imaging in a hospital Department, and carried out a short research project. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. There are wide ranging career possibilities after graduation. You may wish to go straight into clinic settings to apply your skills within diagnostics or you may wish to study further for a PhD towards teaching or researching. There have also been spin out companies as a result of understanding and applying imaging technologies towards innovative applications. This subject also aligns with some major innovations in Photonics and other areas of medical science which you may like to explore further if you are interested in invention and innovation at the Scottish Innovation Centres: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

  • Radiation in Imaging
  • Introduction to Computing and Image Processing
  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Generic Skills

Semester 2

  • Nuclear Medicine and Positron Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Image Processing and Analysis
  • Diagnostic and Radiation Protection

Semester 3

  • MSc Project for Programme in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You have the opportunity to contribute research within the department, expanding the knowledge of medical imaging technology within the largest teaching hospital and Medical School in Europe
  • You have access to a PET-CT scanner, new radiotherapy centre and linac treatment machines.
  • The university won the Queens Anniversary Prize in recognition of achievements in new medical imaging techniques
  • The MRI scanner was invented at the University over 30 years ago - a major innovation which has been global in impact

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs



Read less
Our MSc Medical Virology course covers the medical and molecular aspects of virology, bacteriology and mycology, as well as immunity to infection and epidemiology. Read more

Our MSc Medical Virology course covers the medical and molecular aspects of virology, bacteriology and mycology, as well as immunity to infection and epidemiology.

In the era of AIDS, avian and swine influenza, and other emerging viral infections, the importance of medical virology as a co-discipline with medical microbiology is increasingly being recognised.

You will explore the current issues and concepts in medical virology, and acquire the academic and practical skills necessary to make independent, informed judgements in relation to these issues.

A unique feature of our course is the focus on practical, laboratory-based teaching; you will spend time in the laboratory, learning how to be a virologist.

At the end of our course, you will be prepared for a career in clinical sciences or academic or industrial research.

This course runs alongside our MSc Medical Microbiology course.

Aims

We aim to provide you with an understanding of and expertise in microbiology, with a particular focus on medical virology.

You will develop an understanding of the scientific basis of established and novel medical virology concepts, as well as the specialist knowledge, practical skills and critical awareness required to pursue a career in medical virology.

Special features

IBMS accreditation

This course is accredited by the Institute of Biomedical Science and meets the requirements for registration with the Science Council as a Chartered Scientist (CSci).

Extensive practical learning

The lab-focused nature of this course means you will gain maximum exposure to both the practical and theoretical aspects of a wide range of clinically relevant pathogens, helping develop practical skills that are valued by potential employers.

Various study options

You can study either full-time or part-time on both the MSc and PGDip routes, enabling you to fit learning around your other commitments if needed.

Teaching and learning

This course is delivered by academics from the University and NHS specialists in infectious disease and medical microbiology.

You will learn via a range of methods, including lectures, seminars, tutorials and comprehensive practical classes.

We use both face-to-face sessions and blended learning methods, with some material delivered and assessed online.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

You will be assessed via continual assessment and formal theory and practical examinations.

Course unit details

The course consists of 120 credits of taught material and followed by a 60-credit research project (MSc only). Some units are shared with the MSc Medical Microbiology course. The taught units are as follows:

Shared units

  • Principles of Microbiology (15 credits)
  • Research Methods (15 credits)
  • Understanding Infection (15 credits)
  • Microbial Pathogenesis (15 credits)
  • Molecular Diagnostics (15 credits)
  • Global Health and Epidemiology (15 credits)

Course-specific units

  • Clinical Virology 1 (15 credits)
  • Clinical Virology 2 (15 credits)

All MSc students carry out a three-month research project in medical virology.

Full-time (FT) students take the above units and research project in Year 1. Part-time (PT) students can undertake the MSc over two years, one full semester per year.

Facilities

This course is based in Stopford Building on Oxford Road, where you will find state-of-the-art teaching and research laboratories, a student common room and good access to University computing clusters.

You will attend lectures across the University campus.

You will be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service .

Career opportunities

Our graduates typically find employment in the NHS and related organisations, or as medical microbiologists in industrial and pharmaceutical settings.

In addition, many graduates progress to PhD study and a research or academic career.

The course is also useful if you work or plan to work in developing countries that need expertise in the existing and emerging virological and microbiological challenges facing developing communities.

Accrediting organisations

Our MSc is accredited by the Institute of Biomedical Science (IBMS).



Read less
Biotechnology is a rapidly expanding global industry. Read more

Why take this course?

Biotechnology is a rapidly expanding global industry. It's driven by the development of new tools for molecular biological research, the expansion of the ‘green economy’ seeking biotechnical solutions to energy and industrial needs, and remarkable advances in the application of biotechnology to medical diagnosis, therapeutics and to biomedical research.

The MSc in Medical Biotechnology will give you sought-after advanced skills in molecular biotechnology in the context of diagnostics, therapeutics and in biomedical research. You will also gain a vital understanding of how these are applied in molecular medicine.

What will I experience?

On this course you can:

Develop practical and theoretical understanding of the molecular techniques used in the biotechnology sector
Learn how these are applied in diagnostics, therapeutics and molecular medicine
Develop your practical skills on high tech research equipment
Conduct your own medical biotechnology research

What opportunities might it lead to?

This Master's degree in Medical Biotechnology will prepare you for a role within either research or industry in the biotechnology sector and, more generally, in the bioscience and pharmaceutics areas.

Here are some routes our graduates can pursue:

product development
research scientist
diagnostics and pathology lab work
PhD

Module Details

The Medical Biotechnology course is made up of core and optional units so that you can tailor your learning. The core units give you both practical and research skills as well as the knowledge that would be expected of an advanced course in molecular biotechnology. The optional units allow specialisation towards pathology, drug development, business or bioinformatics. Further options are included through a wide choice of subjects for your research project.

Core units include:

Medical Biotechnology Diagnostics
Medical Biotechnology Therapeutics
Molecular Medicine
Medical Biotechnology Research Skills and Project
Options to choose from include:

Clinical Pathology
Business Skills for Biotechnology
Drug Design and Clinical Trials
Bioinformatics and Omics

Programme Assessment

The course is delivered to develop your practical and theoretical skills in Medical Biotechnology. Teaching is typically in small groups with a mixture of lectures, seminars, workshops and practical work that includes case and problem-based learning. The course is delivered by a team of expert scientists who publish regularly in international journals. In the research project that forms a third of the course you will work alongside other researchers in a laboratory setting.

Assessment will cover all aspects of what is required to be a professional scientist using a variety of methods:

written exams
practical work
problem solving
presentations
essay
project work

Student Destinations

This Master's degree in Medical Biotechnology will equip you to meet the needs of small and medium-sized enterprises and global business in the area of Biotechnology, as well as public and private health service providers. The course covers the practical as well as theoretical skills for your new career.

Roles our graduates might take include:

product development
research scientist
diagnostics and pathology lab work
PhD student
sales
teaching

Read less
Our long-running MSc Medical Microbiology course is ideal if you are a graduate looking to develop your skills as a microbiologist. Read more

Our long-running MSc Medical Microbiology course is ideal if you are a graduate looking to develop your skills as a microbiologist.

The course is unique because you will spend much of your time actually in the laboratory, learning how to be a microbiologist. You will cover the medical and molecular aspects of bacteriology, virology, mycology and immunity to infection.

We aim to give you a significant level of theoretical and practical understanding of the subject, which will be important if you want to follow a career in clinical sciences or academic and industrial research.

This course runs alongside our MSc Medical Virology course.

Aims

We aim to provide you with an understanding of the scientific basis of traditional and modern microbiological concepts.

In addition, you will develop the knowledge, specialist practical skills and critical awareness needed to pursue a career in medical microbiology.

Special features

IBMS accreditation

This course is accredited by the Institute of Biomedical Science and meets the requirements for registration with the Science Council as a Chartered Scientist (CSci).

Extensive practical learning

The lab-focused nature of this course means you will gain maximum exposure to both the practical and theoretical aspects of a wide range of clinically relevant pathogens, helping develop practical skills that are valued by potential employers.

Various study options

You can study either full-time or part-time on both the MSc and PGDip routes, enabling you to fit learning around your other commitments if needed.

Research experience

You will typically carry out research projects within one of the microbiology, virology or mycology research groups. The close relationship between the diagnostic microbiology and virology services and the University department enable our research activities to be directly related to current relevant issues in medical microbiology.

Teaching and learning

This course is delivered by academics from the University and NHS specialists in infectious disease and medical microbiology.

You will learn via a range of methods, including lectures, seminars, tutorials and comprehensive practical classes.

We use both face-to-face sessions and blended learning methods, with some material delivered and assessed online.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

You will be assessed via continual assessment and formal theory and practical examinations.

Course unit details

The course consists of 120 credits of taught material and followed by a 60-credit research project (MSc only). There are shared and course-specific units across the Medical Microbiology and Medical Virology courses as follows:

Shared units

  • Principles of Microbiology (15 credits)
  • Research Methods (15 credits)
  • Understanding Infection (15 credits)
  • Microbial Pathogenesis (15 credits)
  • Global Health and Epidemiology (15 credits)
  • Molecular Diagnostics (15 credits)

Course-specific units

  • Clinical Microbiology 1 (15 credits)
  • Clinical Microbiology 2 (15 credits)

MSc Medical Microbiology students should take Clinical Microbiology 1 and 2. Students wishing to have a more virology-focused curriculum should enrol on the  MSc Medical Virology course and will take Clinical Virology 1 and 2.

All MSc students carry out a three-month research project after the taught components have been successfully completed.

Full-time (FT) students take the above units and research project in Year 1. Part-time (PT) students can undertake the MSc over two years, one full semester per year.

Career opportunities

Our graduates typically find employment in the NHS and related organisations, or as medical microbiologists in industrial and pharmaceutical settings.

In addition, many graduates progress to PhD study and a research or academic career.

Accrediting organisations

Our MSc is accredited by the Institute of Biomedical Science (IBMS).



Read less
Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career. On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. Read more

Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career.

On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. You can specialise in exciting contemporary topics in the areas of human disease, bioinformatics, biotechnology and plant science, and choose from a range of optional modules, including those associated with the specialisms we offer. This means you can study the topics that interest you and match your career aspirations.

You’ll also carry out an independent research project in an area related to your course options.

The course is 100% coursework assessed (although some modules have small in-course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Course content

This course is designed to equip you with the expertise necessary to work at the forefront of the modern bioscience sector. We’ll offer you a combination of practical training and theoretical modules to help you build your knowledge and skills.

The practical experience you gain during this degree is a vital part of your career preparation. You’ll receive substantial training in practical methods and technologies currently being used to advance the biological sciences.

During the course you’ll apply yourself through core research training modules. You’ll undertake a laboratory-based mini-project providing a hands-on experience in molecular biology techniques. You’ll also carry out a laboratory-based independent research project on an innovative topic related to your course options.

Importantly, we’ll also give you a strong foundation of theoretical teaching to enhance your practical training. You’ll develop your knowledge through research planning exercises and by studying methodologies underpinning contemporary bioscience, with many optional modules available to choose from, including Advanced Immunology, Plant Biotechnology, and Medical Diagnostics.

Course structure

Compulsory modules

  • Practical Bioinformatics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

Optional modules

  • Bioimaging 10 credits
  • Advanced Immunology 10 credits
  • Topics in Plant Science 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Drug and Chemical Toxicology 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • Medical Diagnostics 10 credits
  • Treatment of Infectious Disease and Cancer 10 credits

For more information on typical modules, read Bioscience MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

The learning context has a strong research ethos, preparing you for academic (PhD and post-doctoral), industrial or public sector research. Taught modules address problems at the forefront of the subject, and learning activities (such as group work and mini-research projects) are designed to develop your subject-specific knowledge and research skills.

Your major project will involve cutting edge research with potential for publication in peer reviewed literature.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Bioscience MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications

You will also have access to seminars and presentations from industry professionals (including our alumni) at faculty led career events. We also have regular research seminars presented by leading academics from around the world on their specialist subjects.



Read less
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. Read more
Our MSc Applied Bioscience course will develop your skills within several major areas of applied bioscience, including molecular cell biology, biomedical genetics and specialised topics in medical diagnostics. You'll focus on the rapidly evolving research into the applications of bioscience in healthcare, to diagnose and treat diseases. You'll also develop a comprehensive and critical understanding of the theory and practice of advanced analytical techniques as used and applied in bioscience.

Throughout our course you'll develop advanced knowledge and skills in the diverse areas of applied bioscience, emphasising on medical applications. Upon completion you'll be able to confidently design, execute and critically analyse both independent and group based scientific research in an appropriate area of applied bioscience.

You'll be immersed in an environment that mirrors a modern laboratory setting and benefit from the expertise of our Biomedical Science team and their intimate knowledge and collaborations within the field of bioscience. Using our purpose-built laboratory facilities, you'll be in the heart of our rapidly evolving scientific environment.

Our course is suitable for candidates who wish to specialise in the current medical applications of bioscience such as molecular and cell biology as a progression from a relevant first degree and for candidates with a strong background in ‘traditional’ analytical science (chemistry or biology).

Careers

Healthcare is a rapidly growing and constantly evolving sector. MSc Applied Bioscience course encourages the development of specialist cross-disciplinary laboratory skills, such as molecular genetics and bioinformatics, accompanied by an emphasis on professional practice. Graduates from the MSc Applied Bioscience course will have training to progress into a wide range of careers within the sciences, including industry and academic research, clinical trials, product development, production and quality assurance.

Cambridge is the home of the Wellcome Trust Sanger Institute, the Biomedical Campus at Addenbrooke's Hospital and the Babraham Research Institute. Throughout the course, you will have the opportunity to attend seminars or events with Cambridge’s many local biotechnology companies. Graduates from the course are also in the perfect position to continue an academic career and move up to our Biomedical Science PhD.

MSc Applied Bioscience is the right course for you if you:
•Want to develop a wide array of practical and conceptual scientific skills which are vital for a career in Biosciences
•Find the biosciences fascinating and want to deepen your understanding of the applications in healthcare
•Are interested in pursuing a career in research – either academic, clinical or industrial

Core modules

Molecular Genetics and Bioinformatics
Modern Medical Diagnostics
Research Methods and Preparation
Laboratory Techniques in Bioscience
Professional and Ethical Practice
Major Project

Assessment

We use a range of assessment methods to enable both you and the university to check your progress during your studies and then to ensure that you meet the required standards when you complete the course.

Although they vary, our assessment strategies are all carefully designed to challenge you so that you expand your critical and analytical thinking as well as your problem-solving skills. The assessments will enable you to demonstrate that you can synthesise existing knowledge and accumulate new knowledge, and will evidence the development of your professional practice. Some examples of assessment include poster and oral presentations, essays and portfolios of evidence. In addition, you will undertake practicals in many of the modules, developing your technical laboratory skills.

Please note that you will need to complete all of the above core modules. This course does not have any optional modules.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge. Read more

The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge.

We’ll give you advanced training in the mechanisms underpinning a spectrum of infectious and non-infectious diseases, including viral, bacterial and parasitic infections, cancer, neurodegeneration, cardiovascular disease and chromosomal abnormalities. You’ll also explore current and emerging diagnostic and treatment strategies.

You’ll learn about the latest molecular, genetic and cellular approaches being used to understand, diagnose and treat human disease, including traditional methods such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), and novel methods involving genome and proteome analysis.

You’ll also have the opportunity to investigate the role of the immune system in the response to infection and disease, covering topics such as innate and adaptive immunity, allergy and immune evasion.

If you choose to study at Leeds, you’ll join a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014), and you’ll graduate with the solid base of scientific knowledge and specialist skills highly valued by employers.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular sciences. You’ll investigate five topic areas: molecular biology, structural biology, cell imaging and flow cytometry, high throughput techniques and transgenic organisms.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

To help you to develop and specialise, you’ll get substantial subject-specific training through an independent research project in an area of infection, immunity or human disease.

You’ll also take specialist taught modules covering topics such as infectious and non-infectious disease, advanced immunology, medical diagnostics and treatment of infectious diseases and cancer.

If you have previous experience of immunology, you could opt to investigate the structure, regulation and development of the pharmaceutical manufacturing sector, or explore aspects of human toxicology. These could include the actions of toxicants on the cardiovascular, immune and nervous systems, kidneys, liver and lungs, genetic toxicology and chemical carcinogenesis, and the effects of chemicals on fetal development.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Compulsory modules

  • Advanced Immunology 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Practical Bioinformatics 10 credits
  • Medical Diagnostics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Treatment of Infectious Disease and Cancer 10 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Infection, Immunity and Human Disease MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Infection, Immunity and Human Disease MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our programmes.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications.


Read less
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

 A. Advancement in Knowledge and Skill

  • ​To develop specialists in their respective professional disciplines to enhance their career paths;
  • To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
  • To provide a laboratory environment for testing problems encountered at work.

 Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:

  • ​To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
  • To introduce students to advances in selected areas of diagnostic laboratory techniques;
  • To develop in students an integrative and collaborative team approach to the investigation of common diseases;
  • To foster an understanding of the management concepts that are relevant to clinical laboratories; and
  • To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development

  • ​To provide channels for practising professionals to continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.

Characteristics

Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities; basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.

Recognition

This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme structure

To be eligible for the MSc in Medical Laboratory Science (MScMLS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • Dissertation (9 credits)
  • 3 Core Subjects (9 credits)
  • 2 Elective Subjects (6 credits)

Apart from the award of MScMLS, students can choose to graduate with the following specialism:

  • MSc in Medical Laboratory Science (Molecular Diagnostics)

 To be eligible for the specialism, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to the specialism, 4 Specialty Subjects (12 credits) and 1 Elective Subject (3 credits).

Compulsory Subjects

  • ​Integrated Medical Laboratory Science
  • Research Methods & Biostatistics

Core Subjects

  • Advanced Topics in Health Technology
  • Clinical Chemistry
  • Epidemiology
  • Haematology & Transfusion Science
  • Histopathology & Cytology
  • Immunology
  • Medical Microbiology
  • Clinical Applications of Molecular Diagnostics in Healthcare *
  • Molecular Technology in the Clinical Laboratory *
  • Workshops on Advanced Molecular Diagnostic Technology *

Elective Subjects

  • Bioinformatics in Health Sciences *
  • Professional Development in Infection Control Practice

* Specialty Subject



Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
The MSc in Medical Visualisation and Human Anatomy is a one-year taught postgraduate programme offered by the School of Simulation and Visualisation at The Glasgow School of Art in collaboration with the Laboratory of Human Anatomy, University of Glasgow. Read more
The MSc in Medical Visualisation and Human Anatomy is a one-year taught postgraduate programme offered by the School of Simulation and Visualisation at The Glasgow School of Art in collaboration with the Laboratory of Human Anatomy, University of Glasgow.

The course presents a unique opportunity to combine actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation using state of the art virtual reality facilities. It allows students to examine human anatomy, and to reconstruct it in a real-time 3D environment for use in education, simulation, and training. This Masters programme provides an ideal opportunity for enhancement of research into human anatomy, diagnostics, simulation, and visualisation, and is accredited by the Institute of Medical Illustrators.

Programme Structure:

The MSc Medical Visualisation & Human Anatomy programme is delivered over one year (45 weeks) in 3 Stages. Students undertaking the programme will split their time equally between the University of Glasgow and the Glasgow School of Art. The programme is delivered as two core areas - digital technologies applied to medical visualisation (delivered by the School of Simulation and Visualisation in Stage 1) and human anatomy (delivered by the Laboratory of Human Anatomy in Stage 2). In Stage 3, students work towards a large-scale self-directed final project, supported by supervisors from both DDS and GU.

Stage 1

3D modelling and animation
Applications in medical visualisation
Volumetric visualisation
Core research skills for postgraduates

Stage 2

Introduction to anatomy
Structure and function of the human body
Cadaveric dissection techniques

Stage 3

MSc Research Project

Part time study is also available. Please see the Part Time Study Guide for more information.

Scholarships and Funded Places:

A range of scholarships are available which cover partial or full fees. More information can be found here.

Entry requirements:

You should have a good Honours degree or equivalent in any of the following disciplines:

• Life sciences, medical or biomedical science, e.g. anatomy, physiology, dentistry or dental technology, forensic anthropology, molecular biological degrees and the allied health professionals
• Computer science, 3D visualisation, computer graphics, health informatics, mathematics, and physics
• Medical illustration, 3D design, product design, digital media, digital arts, 3D modeling and animation
• or equivalent professional practice

High calibre graduates from other disciplines may be considered if they are able to demonstrate an interest and ability in the field of medical visualisation.

IELTS 6.5 for overseas applicants for whom English is not their first language.

Read less
Physician Associates are skilled members of the health care team who are qualified to provide a wide range of medical services in practice with a licensed physician. Read more

Physician Associates are skilled members of the health care team who are qualified to provide a wide range of medical services in practice with a licensed physician. Training as a Physician Associate allows you to develop and direct your healthcare career in a primary care setting or almost any medical specialty. This flexibility is unique to the Physician Associate role and makes it an exciting new career choice. Physician Associate training is based on a ‘fast track’ medical school model that was developed in the U.S in 1965.

UK/EU Physician Associate students may be eligible for a bursary to cover a proportion of their fees. Find out more under 'fees and additional costs'.

Our MSc in Physician Associate Studies is delivered within the University’s Institute of Medical Sciences at the Medway campus where students have the added benefit of training in a specialist facility with qualified medical practitioners engaged in postgraduate education and research.

You will spend a significant portion of the first year in the simulation suite learning hands on skills. The simulation suite is equipped with mock wards as well as a surgical suite with anesthesia and laparoscopic equipment. Highly sophisticated human simulation models will be used in the teaching of hands on skills to prepare you for your second year clinical based modules. 

The Physician Associate role was introduced in the UK in 2003. Physician Associates are now recognised as skilled and valued members of the health care profession. The newly qualified Physician Associate post has been evaluated under the NHS Agenda for change at Band 7 with potential to advance to Band 8 with experience and advanced education.

Physician Associates can perform medical history and physical examinations, screen and interpret results of diagnostic studies, diagnose patients, implement treatment plans, counsel patients regarding illness and preventative medicine and facilitate access to appropriate health care resources.

As with many types of medical providers, duties of a Physician Associate will depend on the medical setting where they work, their level of experience, their specialty and their supervising physician.

Physician Associates may provide care to individuals across the age spectrum in a variety of healthcare settings. More information on the Physician Associate profession and salary may be found on the Royal College of Physicians Physician Associate Faculty web page. 

Suitability

The course is aimed at people interested in pursuing a healthcare career in a primary care setting or almost any medical specialty.

It is designed for people with a strong science background. Please see more details under 'Further entry requirements'.

Content

he Physician Associate curriculum begins with a year of rigorous medical science, pharmacology and clinical reasoning taught by a qualified team of specialist physicians and Physicians Associates. One day per week in the first year is spent in a general practice clinical setting. The second year is comprised of six specialist clinical placements and intensive classroom teaching in advanced skills and concepts.

Upon successful completion of the MSc in Physician Associate Studies*, you are eligible to take the National Exam for Physician Associates and be part of the Physician Associate Managed Voluntary Registry (PAMVR) which allows you to be employed by the NHS. The profession is currently working towards regulation in the UK and is overseen by the Royal College of Physicians Physician Associate Faculty.

All modules are taught using a combination of teaching methods, including lectures, problem based learning, short case review and hand on/skills practice.

Lecture, practice based learning, case review and skills application are incorporated in each module to ensure students assimilate clinical knowledge and skills in all areas.

What can I do next?

Physician Associates in the UK work in a wide variety of healthcare settings which include:

• GP surgeries

• Accident and Emergency departments

• Inpatient medical and surgical wards

• Trauma and Orthopaedics

• Mental Health

• Paediatrics

• Hospital Operating Theatres

The MSc in Physician Associate Studies is delivered within the University’s Institute of Medical Sciences (IMS) at the Medway campus which has a growing reputation for expertise in medical education and research.

The Institute houses a fully equipped clinical simulation suite enabling clinicians to develop skill and expertise using specialised endoscopic surgical equipment, cardiology diagnostics or otorhinolaryngological techniques and procedures.

The teaching team is comprised of specialists in Cardiology, M.H, Endocrinology, Ear Nose and Threat (ENT), Paediatrics, Geriatrics, Emergency Medicine, Orthopaedics, GU, GI, WH, SH, Anaesthesia/Pain, GP, Neurology and Genetics

Attendance

The Physician Associate Studies programme is full time, Monday – Friday, 8:30am – 5pm for 45 – 47 weeks per year.

The programme is very challenging and demanding, therefore we caution students who plan to work while enrolled on the course.

Funding

To be confirmed, please enquire



Read less
The MSc Molecular Genetics and Diagnostics is suitable for graduates in life sciences, biomedical sciences and allied subjects, as well as people already employed in related fields who wish to improve and update their knowledge and gain valuable experience. Read more
The MSc Molecular Genetics and Diagnostics is suitable for graduates in life sciences, biomedical sciences and allied subjects, as well as people already employed in related fields who wish to improve and update their knowledge and gain valuable experience.

The course is designed to explain the technology, theory and practical approaches of molecular genetic methods to the diagnosis and understanding of human disease.

The course has a start date in September,

The course aims to:

• Provide an advanced course of study in the theoretical and practical aspects of the genetic basis and diagnosis of human disease
• Allow students adequate time to integrate into an active research laboratory where they are able to develop the skills which are essential when considering a career in research
• Train students to carry out critical evaluation of published scientific papers so that they develop the ability to report and interpret results

The academic staff involved with the course are recognised at an international level for their work on the genetic basis of complex diseases, including chronic obstructive pulmonary disease (COPD), Alzheimer's disease and infectious disease caused by clinically relevant microbial pathogens such as Pseudomonas spp., Yersinia spp. and Staphylococcus spp. Colleagues working in Molecular Diagnostics and Clinical Genetics within the NHS also contribute to the teaching on the course.

Key Facts

• The MSc Molecular Genetics and Diagnostics was previously known as the MSc Molecular Diagnostics, and has been running since 2004
• One of the many strengths of the course is the five-month research project that is conducted in the laboratory with a member research staff within the School
• The latest Research Assessment Exercise (RAE) confirmed The University of Nottingham's position as a world class research-led institution. Over 60% of the University's RAE scores identified research as being of a level of international excellence.
• This achievement has helped put Nottingham in the world’s top 1% of Universities internationally according to the latest (2014) QS World University Ranking.
• The peer-reviewed research carried out within the Human Genetics and Molecular and Cellular Bacteriology groups is recognized as being of either international or world-class standard.
• The MSc Molecular Genetics and Diagnostics is coordinated by academic staff within the Molecular and Cellular Bacteriology Research Group, part of the School of Life Sciences. Staff are based either within the Centre for Biomedical Science, a new state of the art research and teaching centre, the adjacent medical school which itself is located in the Queen’s Medical Centre or the Nottingham City Hospital.
• Extensive IT facilities are available across all campuses, including several computer rooms within the medical school.
• The University library service provides access to more than a million books and journals. The Greenfield Medical Library houses a broadly-based collection of biomedical, nursing and healthcare-related books and periodicals and holds current subscriptions to 780 journals, reports and series titles. In addition to the print versions housed in the library, the majority of journals can be accessed electronically.

Read less
Medical Molecular Biology is the application of modern molecular biology and genetics in medical research, medical sciences and the clinic has led to huge advances in the understanding, diagnosis and treatment of human disease. Read more
Medical Molecular Biology is the application of modern molecular biology and genetics in medical research, medical sciences and the clinic has led to huge advances in the understanding, diagnosis and treatment of human disease. Students choosing to study the Medical Molecular Biology with Genetics program will enjoy a modular, but highly integrated course that delivers the theoretical knowledge and extensive practical laboratory experience required for progress on to PhD studies in medical molecular research and/or employment in molecular diagnostics or medical sciences industries.

Successful graduates will also have attained transferable skills required to independently adapt and optimize scientific methodologies, critically interpret and evaluate self-generated and published scientific literature and data and undertake a predominantly self-reliant approach to laboratory based work, study and research.

Modules:

Research Skills
Medical Biotechnology
Human Molecular Genetics
Human Immunology & Disease
Laboratory Molecular Research
Stem Cells, Disease & Therapy
Applied Anatomy & Histopathology
Research projects are run in the Robert Edwards laboratory and the laboratories of the North West Cancer Research Institute.

Semester 3 consists of a 60-credit laboratory based research project and dissertation.

Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less

Show 10 15 30 per page



Cookie Policy    X