• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
University College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Teesside University Featured Masters Courses
"medical" AND "analysis"×
0 miles

Masters Degrees (Medical Analysis)

We have 641 Masters Degrees (Medical Analysis)

  • "medical" AND "analysis" ×
  • clear all
Showing 1 to 15 of 641
Order by 
Diploma MSc is an award-winning provider of online medical education for Postgraduate Diploma and Masters courses. We are now pleased to add the Medical Education Postgraduate Diploma and Masters online courses to our growing range. Read more
Diploma MSc is an award-winning provider of online medical education for Postgraduate Diploma and Masters courses. We are now pleased to add the Medical Education Postgraduate Diploma and Masters online courses to our growing range. Our Medical Education courses are offered in conjunction with our partner, the University of South Wales, who have developed a strong reputation for delivering innovative learning.

Delivered over one year, the online part time distance learning Postgraduate Diploma in Medical Education course is specially developed for busy healthcare professionals who may be expected to teach. The course is worth 120 credits and comprises of 6 modules, each of 6 weeks duration. The course aims to enable graduates to develop a critical knowledge and understanding, and application of medical education.

Our medical education courses will appeal to Doctors, GPs, Healthcare Professionals and those with related undergraduate degrees (e.g. Pharmacists) or equivalent professional qualifications and background experience. Students may apply for the MSc in Medical Education as a two-year course, firstly completing the Postgraduate Diploma (120 credits), followed by the MSc (60 credits).

Postgraduate Diploma in Medical Education

Delivered over one year, the online part time distance learning Postgraduate Diploma in Medical Education course is specially developed for busy healthcare professionals who may be expected to teach. The course is worth 120 credits and comprises of 6 modules, each of 6 weeks duration. The course aims to enable graduates to develop a critical knowledge and understanding, and application of medical education.

On completion of the Medical Education Diploma, you will be able to:
- demonstrate an in-depth knowledge and understanding of specific issues at the forefront of theory and practice in medical education.
- critically evaluate medical education theories and principles to inform educational practice.
- demonstrate awareness of advanced knowledge in educational methods and practice
- display a critical understanding of the intricacies of adult pedagogy.

Course Structure

Our 1 year course consists of 6 modules per year, each of 6 weeks duration.

Module 1 - The practice of medical education
Module 2 - Assessment
Module 3 - Evaluation
Module 4 - Media
Module 5 - Leadership
Module 6 - Curriculum

Assessment

The course puts assessment at the heart of learning by using clinical scenarios to facilitate problem-solving, critical analysis and evidence-based care. The scenarios act as both the focus for learning and assessment thus embedding assessment within the learning process.

Each of the 6 modules has the same assessment format. Due to the online nature of the course, students are expected to login and participate in the course regularly throughout the module (ideally on a daily basis).

Students use the skills gained during the lectures to engage with the different activities (see below).

Clinical case scenarios with case based discussion - 40%
Individual learning portfolio - 10%
Group/individual activity - 20%
Case based examination - 30%

Teaching Methods

Each module has the same format. Using an online platform and one tutor per 10-15 students, the self-directed distance learning is guided by tutor stimulated discussion based on clinically rich case scenarios. Group projects are undertaken alongside independent projects. Reflective practice is recorded in a reflective portfolio to help students consider how the learning can be translated into everyday work and practice. Teaching starts with 1 day of introductory lectures. Students may attend these lectures in the UK (Glyntaff campus, University of South Wales). The lecture series are delivered by the faculty and tutors, they are a pre-course organiser, giving students the tools required to undertake the online course such as:

Scientific writing.
Levels of evidence.
Harvard referencing.
Reflective writing.

The lectures series give an opportunity to meet face to face with tutors/other students prior to the online course.

MSc Medical Education

The MSc in Medical Education course offers progression from the Postgraduate Diploma for individuals who are interested in developing a critical knowledge and understanding and application of medical education.

Entry to the 1 year MSc in Medical Education will require the successful completion of the Postgraduate Diploma in Medical Education (120 credits) either from the University of South Wales or from another UK University.

The MSc Medical Education course is the only one of its title that is accessible online and is not offered by any other institution.

On completion of the course, you will be able to demonstrate:
- an in-depth knowledge and understanding of specific issues at the forefront of theory and practice in medical education.
- a critical understanding of medical education theories and principles to inform educational practice.
- an advanced knowledge of educational methods and practice.
- a critical understanding of the intricacies of adult pedagogy.

Course Structure

Research Methodologies and Critical Appraisal in Medical Education.
Professional Project: Medical Education.

Teaching Methods

Module 1: Research Methodologies and Critical Appraisal - MSc teaching methods for this module are similar to the PG Diploma course modules, however it is run over 12 weeks.
Module 2: Professional Project - To produce the professional project, students continue to use the online course; however much of the work is self-directed.

Read less
Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. Read more

Medical Imaging is an essential component of modern medicine, playing a key role in the diagnosis, treatment and monitoring of disease. The Medical Imaging MSc covers:

  • the basic physics involved in the different imaging techniques
  • image formation, pattern recognition and applications in the field of radiology
  • current issues in a modern UK NHS radiology department.

Whilst not a clinical skills course, the teaching of the technical aspects of imaging techniques is firmly grounded and in their clinical usage. Many of our lecturers are at the forefront of research in their field and bring insights from emerging imaging techniques.

This programme is designed for recent graduates preparing for a career in medical imaging, professionals already working in the field, and medical students wishing to intercalate.

More Information

You can study this subject at a MSc, Postgraduate Diploma or Postgraduate Certificate level.

You may transfer from your original programme to another one, provided that you do this before you have completed the programme and before an award has been made. Part-time study is also an option. 

You’ll become familiar with the range of clinical imaging techniques.

By the end of the programme you should be able to:

  • Demonstrate knowledge and understanding of the physical and mathematical aspects of image formation of several techniques;
  • Identify the anatomical and physiological properties of tissue associated with image formation and contrast for several techniques;
  • Analyse and compare the technical performance of various modalities;
  • Demonstrate an understanding of the clinical applications of each technique, the variables involved and how they can be compared;
  • Apply IT in literature searching, analysis and display of data, and report writing to enhance life-long learning in medical imaging;
  • Demonstrate enhancement of their professional skills in communication, problem-solving, learning effectively and quickly, and effective self-management;
  • Critically evaluate relevant published work, demonstrating an understanding of the underpinning principles of statistics, project design and data analysis.

Course structure

PGCert

Compulsory modules:

  • Medical Imaging Core Skills 15 credits

For more information on typical modules, read Medical Imaging PGCert in the course catalogue

PGDip

Compulsory modules :

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits

For more information on typical modules, read Medical Imaging PGDip in the course catalogue

MSc

You’ll study modules worth 180 credits. If you study this programme part time you will study fewer modules in each year.

Compulsory modules:

  • Principles for Medical Imaging Interpretation 15 credits
  • Medical Imaging Core Skills 15 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Magnetic Resonance Imaging 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Research Methods 15 credits
  • Research Project 60 credits 

As an MSc student, you undertake a research project in the field of Medical Imaging. New research topics are available each year and include projects in MRI, Ultrasound, X-ray and their clinical application. You'll be asked to state your preferred research project. Before projects are allocated, you are encouraged to meet potential supervisors and discuss the research work.

Learning and teaching

All modules (except for your research project) are taught through traditional lectures, tutorials, practicals and computer based sessions. We also employ blended learning, combining online learning with other teaching methods.

You’ll be taught about the underpinning science of the various imaging modalities, and we cover a range of clinical applications demonstrating the use of medical imaging in modern medicine. Many of the lecturers are at the forefront of research in their particular field and will bring insights from current clinical imaging practice and developments of new and emerging imaging techniques.

Assessment

The taught modules are assessed by coursework and unseen written examinations. Exams are held during the University exam periods in January and May.

The research project is assessed in separate stages, where you submit a 1,000-word essay (20%), a 5,000-word journal-style research article (70%) and make an oral presentation (10%).

Career opportunities

Past graduates have gone on to enter careers in medical imaging or related disciplines, such as radiology and radiography. Often students are already working in the area, and use the skills and knowledge gained in the programme to enhance their careers. Students have gone on to take lecturer or research positions, and have also chosen to take post graduate research degrees (such as a PhD). As a intercalated degree for medical students the programme is useful for students considering radiology or many other medical specialties.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Read more
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires contributions from research scientists, clinical laboratory scientists and clinicians to investigate the causes of, and therefore permit optimal management for, diseases for which alterations in the genome, either at the DNA sequence level or epigenetic level, play a significant role. Collaboration between staff from the University of Glasgow and the NHS West of Scotland Genetics Service enables the MSc in Medical Genetics and Genomics to provide a state-of-the-art view of the application of modern genetic and genomic technologies in medical genetics research and diagnostics, and in delivery of a high quality genetics service to patients, as well as in design of targeted therapies.

Why this programme

◾This is a fully up-to-date Medical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
◾The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
◾The MSc Medical Genetics Course is based on the south side of the River Clyde in the brand new (2015) purpose built Teaching & Learning Centre, at the Queen Elizabeth University Hospitals (we are located 4 miles from the main University Campus). The Centre also houses state of the art educational resources, including a purpose built teaching laboratory, computing facilities and a well equipped library. The West of Scotland Genetic Services are also based here at the Queen Elizabeth Campus allowing students to learn directly from NHS staff about the latest developments to this service.
◾The Medical Genetics MSc Teaching Staff have won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education.
◾The close collaboration between university and hospital staff ensures that the Medical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics and visit the diagnostic laboratories at the new Southern General Hospital laboratory medicine building.
◾The Medical Genetics degree explores the effects of mutations and variants as well as the current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
◾New developments in medical genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
◾You will develop your skills in problem solving, experimental design, evaluation and interpretation of experimental data, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾This MSc programme will lay the academic foundations on which some students may build in pursuing research at PhD level in genetics or related areas of biomedical science or by moving into related careers in diagnostic services.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
◾For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Medical Genetics and Genomics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.
◾The Medical Council of Hong Kong recognises the MSc in Medical Genetics and Genomics from University of Glasgow in it's list of Quotable Qualifications.

Programme structure

Genetic Disease: from the Laboratory to the Clinic

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Medical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

Students will take this course OR Omic Technologies for Biomedical Sciences OR Frontiers in Cancer Science.

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Omic technologies for the Biomedical Sciences: from Genomics to Metabolomics

Students will take this course OR Clinical Genomics OR Frontiers in Cancer Science.

Visit the website for further information

Career prospects

Research: About half of our graduates enter a research career and most of these graduates undertake and complete PhDs; the MSc in Medical Genetics and Genomics facilitates acquisition of skills relevant to a career in research in many different bio-molecular disciplines.

Diagnostics: Some of our graduates enter careers with clinical genetic diagnostic services, particularly in molecular genetics and cytogenetics.

Clinical genetics: Those of our graduates with a prior medical / nursing training often utilise their new skills in careers as clinical geneticists or genetic counsellors.

Other: Although the focus of teaching is on using the available technologies for the purpose of genetic diagnostics, many of these technologies are used in diverse areas of biomedical science research and in forensic DNA analysis. Some of our numerous graduates, who are now employed in many countries around the world, have entered careers in industry, scientific publishing, education and medicine.

Read less
Brunel was the first university in Europe to establish a Master's degree in Medical Anthropology. Since then we have continued to develop our programme to reflect the changing world in which we live. Read more

About the course

Brunel was the first university in Europe to establish a Master's degree in Medical Anthropology. Since then we have continued to develop our programme to reflect the changing world in which we live.

In short, Medical Anthropology can be described as the study of cultural beliefs and practices associated with the origin, recognition and management of health and illness in different social and cultural groups.

Literally hundreds of students – doctors, nurses, physiotherapists, social workers and other medical professionals among them – can testify to the quality of our programme, having used it either to enhance their professional practice, to change career or to develop their research interests for future studies.

Anthropology at Brunel is well-known for its focus on ethnographic fieldwork: as well as undertaking rigorous intellectual training, all our students are expected to get out of the library and undertake their own, original research – whether in the UK or overseas – and to present their findings in a dissertation. Students take this opportunity to travel to a wide variety of locations across the world – see “Special Features” for more details.

Attendance for lectures full-time: 2 days per week - for 24 weeks
Attendance for lectures part-time: 1 day per week - for 24 weeks (in each of 2 years)

Aims

The degree aims to equip students with a broad, general understanding of anthropology and how it might be applied to medical and health-related problems.

You will develop a deeper understanding of how people’s ideas about the world, as well as the structural constraints within which they find themselves, have an impact on their understanding and experience of health, sickness and disease.

You’ll achieve this through close study of key texts in medical anthropology, the original fieldwork experiences of your lecturers, and through designing and undertaking your own research project.

If you’ve wondered about some or all of the questions below – all of which are addressed in the degree – this could be the course for you:

How does poverty contribute to the profiles of diseases such as diabetes and tuberculosis?
Why are some diseases, such as leprosy or AIDS/HIV, feared and stigmatized?
Why do some biomedical interventions seeking to control infectious and non-infectious diseases work, and others fail?
What might stop some patients seeking conventional treatments for cancers and other conditions – even when they are offered for free – despite the apparent efficacy of the medicines available?
How does one make the distinction between the healthy and the pathological? Is being ‘disabled’, for example, always a negative state, or might some consider it just another, equally valid, way of being?
What are the effects of political, economic and other social conditions on people’s experiences of what, from a biomedical perspective, might be considered the same diseases?
How and why is it appropriate to combine insights emerging from clinical and epidemiological research with ethnographic understandings of health, illness and disease?

The Brunel Medical Anthropology MSc addresses these issues and more in a lively and challenging way, through a programme of lectures, class discussions, and your own – personally directed – final dissertation research project.

Course Content

The main objectives of the course are to provide a rigorous grounding in key topics and perspectives in medical anthropology, and to equip candidates with a range of research skills to enable them to complete research successfully.

The MSc consists of both compulsory and optional modules, a typical selection can be found below. Modules can vary from year to year, but these offer a good idea of what we teach.

Full-time

Compulsory modules:

Compulsory Reading Module: Political and Economic Issues in Anthropology
Compulsory Reading Module: Contemporary Anthropological Theory
Dissertation in Medical Anthropology
Ethnographic Research Methods 1
Ethnographic Research Methods 2
The Anthropology of Global Health
Applied Medical Anthropology in the Arena of Global Health
Medical Anthropology in Clinical and Community Settings

Optional modules:

The Anthropology of the Body
Anthropology of the Person
Kinship, Sex and Gender
Anthropological Perspectives of Humanitarian Assistance
Anthropological Perspectives of War
Ethnicity, Culture and Identity

Part-time

Year 1

Medical Anthropology in Clinical and Community Settings
Compulsory Reading Module: Political and Economic Issues in Anthropology
Compulsory Reading Module: Contemporary Anthropological Theory
The Anthropology of Global Health
Applied Medical Anthropology in the Arena of Global Health

Year 2

Dissertation in Medical Anthropology
Ethnographic Research Methods 1
Ethnographic Research Methods 2
and optional modules

Assessment

Assessment is by essay, practical assignments (e.g. analysis of a short field exercise) and a dissertation of up to 15,000 words. This dissertation is based upon fieldwork undertaken by the candidate. There are no examinations.

Special Features

All our degrees (whether full- or part-time) combine intensive coursework, rigorous training in ethnographic research methods, and a period of fieldwork in the summer term (final summer term if part-time) leading to up to a 15,000 word dissertation.

Students are free to choose their own research topic and geographic area, in consultation with their academic supervisor. In all cases, the dissertation research project provides valuable experience and in many cases it leads to job contacts – forming a bridge to a future career or time out for career development.

In recent years, students have undertaken fieldwork in locations across the world, including India, Mexico, Bolivia, Papua New Guinea, China, Nepal, Peru, Morocco, and New Zealand as well as within the UK and the rest of Europe.

Special scholarships

Cecil Helman Scholarship Fund
Set up to honour the life and work of leading light in international medical anthropology Professor Cecil Helman (1944-2009), the Doctor Cecil Helman Scholarship Fund provides fieldwork support for between two and four students on our MSc Medical Anthropology course.

Dr Helman taught at Brunel University London from 1990, and became a Professor of Social Sciences in 2005. In 2004, he was awarded the American Anthropological Association’s career achievement award, and the following year he won the Royal Anthropological Institute's Lucy Mair medal.

As well as leading the way in Medical Anthropology, Dr Helman exercised his artistic talents through his paintings, poems, fables, and short fiction – all of which revolved around a theme of the human side of medicine and the narratives that surrounded the doctor-patient relationship.

Scholarship
The Cecil Helman Scholarship Fund offers between two and four students up to £1,000 to help them to complete field research for their dissertations.

Selection
The scholarship will be awarded to MSc Medical Anthropology students who demonstrate excellent academic performance and the ability to undertake an original field research project.

Read less
Our Medical Sciences MSc provides you with a broad education in medical sciences at Master's level. A major strength of the course is its clinical and translational nature. Read more
Our Medical Sciences MSc provides you with a broad education in medical sciences at Master's level. A major strength of the course is its clinical and translational nature. Expert scientists and clinicians from the Faculty of Medical Sciences deliver the taught modules.

The Medical Sciences MSc has a flexible modular structure that is designed to provide a broad-based training in current knowledge and research in medical sciences, medicine and dentistry. You are encouraged to tailor your course to suit your background, interests and career aspirations. This is done through selection of three taught modules in the first semester and your choice of dissertation research topic, upon which you will work full-time in the third semester. You will be supervised for your dissertation in a Research Institute or associated NHS department.

As a student on this course you will:
-Study diverse aspects of medical sciences, through structured, subject-based modules
-Acquire advanced knowledge and critical awareness in different areas of medical sciences and medicine
-Acquire knowledge and develop understanding of aspects of medical sciences research practice and of relevant legal, ethical and safety considerations
-Gain experience of hypothesis-led medical research endeavours through personal involvement in a dissertation
-Engage in research, analysis and presentation of research findings, and presentation of scientific hypotheses, data and interpretation in the context of current scientific and medical literature

Our graduates have progressed on to further postgraduate research in dentistry and medicine, and pursued careers in academia, medicine, dentistry, health sciences and the pharmaceutical industry.

The Faculty of Medical Sciences is a recognised national centre of excellence. It brings together internationally acknowledged research in clinical care, medicine, dentistry, pure science and engineering to tackle challenges in health and healthcare. Key research areas include:
-Ageing
-Stem cells
-Cancer
-Cell biology
-Genetics
-Drug development
-Medicine in society
-Neuroscience
-Oral health.

Personal tutors

You will be given a personal tutor shortly after registration. The role of your personal tutor is to support you during your time at Newcastle. Your personal tutor will discuss your academic progress, career intentions and any issues that concern you. They will also act as your academic referee. You should arrange to meet your personal tutor in the orientation and induction week, or as early as possible.

Delivery

The Medical Sciences MSc is an intensive taught course delivered by the Faculty of Medical Sciences and is based on the Newcastle University campus.

In semester one, you will follow three 20-credit subject-focused optional modules. Most modules are taught in either the morning or afternoon of one day each week. There are in-course assessments and you are expected to engage in self-directed study. Lectures, seminars, and tutorials are led by Newcastle University academics or clinicians based in associated NHS Foundation Trusts.

In semester two, you will follow additional two 20-credit subject-focused and compulsory modules.

Alongside the subject-focussed modules, you will also be enrolled in a compulsory research skills module. This explores the basic principles of good practice in relation to experimental design, statistical analysis and ethics that underlie all aspects of research in the biosciences.

In semester three, you work full-time within a research group. This experience provides an excellent opportunity to work in a professional environment. You will benefit from interactions with research students, junior and senior research scientists, established academics and healthcare professionals. In the third semester you work exclusively on your selected dissertation. You will experience
•hypothesis-led medical research and analysis
•presentation of research findings and scientific hypotheses
•data interpretation in the context of current scientific literature.

Read less
This is a part-time, modular based programme for health professionals who wish to strengthen their statistical skills and ability to analyse data. Read more
This is a part-time, modular based programme for health professionals who wish to strengthen their statistical skills and ability to analyse data.

Students will gain the confidence in carrying out the methods that are widely used in medical statistics, and interpreting the results for the practice of evidence-based health care. The flexible modular structure has been devised for busy professionals and to fit with the structure of specialist training. The regulations allow students to take up to four years to complete the MSc.

This is a joint programme between the Nuffield Department of Primary Care Health Sciences and the Department for Continuing Education's Continuing Professional Development Centre. The Programme works in collaboration with the renowned Centre for Evidence-Based Medicine in Oxford.

This course is designed for doctors, nurses, pharmacists, midwives and other healthcare professionals, seeking to consolidate their understanding and ability in medical statistics. Core modules introduce the students to methods for observational and clinical trials research. Optional modules offer the students skills in growth areas such as systematic review, meta-analysis, and big data epidemiology, or specialist areas such as statistical computing, diagnosis and screening research and others. Teaching is tailored to non-statisticians and delivered by an experienced team of tutors from University of Oxford who bridge the disciplines of medical statistics and evidence-based health care.

This programme guides students through core and optional modules and a dissertation to a qualification in the application of medical statistics to evidence-based health care. Compared to the main EBHC programme, this will suit those with basic statistical understanding who seek training who now seek deeper understanding on a broader base of statistical methods.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-ebhc-medical-statistics

Course aims

The course aims to give healthcare professionals high competence in the concepts, methods, terminology and interpretation of medical statistics; and hence, enhance their ability to carry out their own research and to interpret published evidence.

• Gain competence in execution and interpretation of core statistical techniques used by medical statisticians (outside the context of clinical trials), particularly those used in multivariable analyses: multiple linear regression, logistic regression, and survival modelling; statistical analysis plans and statistical reporting.
• Gain competence in execution and interpretation of core statistical techniques used by medical statisticians in clinical trials.
• Gain competence in execution and interpretation of four other areas, selected by the student from the following options: meta-analysis; systematic review; big data epidemiology; statistical computing; diagnosis and screening; study design and research methods.
• Gain hands-on experience, supervised by a senior member of our medical statistics team, of the analysis or meta-analysis of healthcare data, in order to address a question in evidence-based health care.

Programme details

The MSc in EBHC Medical Statistics is a part-time course.

There are two compulsory modules, four option modules (two from group 1 and two more either from either group 1 or 2) and a dissertation.

Compulsory Modules

• Essential Medical Statistics
• Statistics for Clinical Trials

Optional Modules – 1

• Meta-analysis
• Big Data Epidemiology
• Statistical Computing with R and Stata (online)

Optional Modules – 2

• Introduction to Study Design and Research Methods
• Systematic Reviews
• Evidence-based Diagnosis and Screening

A module is run over an eight-week cycle where the first week is spent working on introductory activities using a Virtual Learning Environment, the second week is spent in Oxford for the face-to-face teaching week, there are then four post-Oxford activities (delivered through the VLE) which are designed to help you write your assignment. You then have a week of personal study and you will be required to submit your assignment electronically the following week.

Online modules are delivered entirely through a Virtual Learning Environment with the first week allocated to introductory activities. There are ten units to work through which are released week-by-week, you then have five weeks of personal study with use of a revision forum and then you will be required to submit your assignment electronically the following week.

Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs:



Read less
Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management. Read more

Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management.

It is also a key tool in medical research and it is becoming increasingly possible to relate imaging studies to genetic traits in individuals and populations. Novel imaging biomarkers of disease can enable more rapid and precise diagnosis and inform decision making in drug discovery programmes.

As medical imaging involves knowledge of anatomy, physiology, pathology, physics, mathematics and computation, our course is suitable if you want to expand your disciplinary horizons and pursue a career in an image-related field in clinical medicine, medical research, or technological research or development.

You will cover the basic science and technology behind the principal imaging modalities currently used in medicine and medical research, as well as advanced imaging methods, clinical and research applications, imaging biomarkers and computational methods.

You will learn how advanced imaging techniques are applied in medical research and drug discovery with an emphasis on magnetic resonance (MR) and positron emission tomography (PET) imaging. You will also receive training in computational and quantitative methods of image analysis or in the interpretation of clinical images from different imaging modalities.

This course comprises both a taught component and a research project, giving you the skills and knowledge required for a career in an image-related field in clinical practice, clinical or scientific research, or technical development.

Aims

We aim to provide you with:

  • with a systematic understanding of the scientific basis of the major medical imaging modalities;
  • a broad understanding of the principal clinical applications of medical imaging and its role in diagnosis, monitoring and therapy;
  • an understanding of the capabilities and limitations of medical imaging for deriving quantitative anatomical and physiological data;
  • knowledge of how advanced imaging techniques are applied in medical research and drug discovery;
  • the experience to plan, implement and complete a research project;
  • generic transferrable skills required in a multidisciplinary scientific or clinical research environment;
  • the knowledge and skills required for a career in an image-related field in clinical practice, clinical research, scientific research or technical development.

Special features

Excellent facilities

Benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Learn from experts

Manchester has an imaging and image computing research group with a strong international reputation. Our research groups and facilities are staffed by scientists conducting research in novel imaging and image analysis methods, and clinicians who apply these methods in clinical practice.

Flexible learning

Learn when it suits you thanks to options for either full-time or part-time study.

Multidisciplinary learning

Study alongside physicists, engineers, mathematicians, computer scientists, chemists, biologists and clinicians working in hospitals and research-dedicated imaging facilities.

Teaching and learning

As this course aims to produce graduates equipped to pursue either clinically or technically-focused careers in imaging, it is important to provide an adequate knowledge base. For this reason, much of the teaching takes the form of lectures.

However, in most course units, this is supplemented by group discussions and practical exercises. Other than the introductory units, most course units provide you with an understanding of research methods by requiring submission of a critical review of appropriate research literature or clinical material, either as a report or presentation.

Where appropriate, practical imaging exercises are provided, requiring you to cooperate in acquiring images and analysing results.

All units require a considerable component of independent research and study.

Coursework and assessment

Assessment will occur in a variety of forms.

Summative assessment takes the form of written assignments, examinations, oral presentations and online quizzes. Written assignments and presentations, as well as contributing to summative assessment, have a formative role in providing feedback, particularly in the early stages of course units.

Online quizzes provide a useful method of regular testing, ensuring that you engage actively with the taught material. As accumulation of a knowledge base is a key aim of the course, examinations (both open-book and closed-book) form an important element of summative assessment.

In addition, formal assessment of your research and written communication skills is achieved via the dissertation. This is a 10,000 to 15,000-word report, written and organised to appropriate scientific standards, describing the design, execution and results of the research project.

Course unit details

The MSc requires students to pass 180 credits composed of eight course units of 15 credits each and a 60-credit research project.

We provide course units in Human Biology and Introductory Mathematics and Physics to bring students up to the required level in these topics.

Semester 1: Compulsory units

  • Scientific Skills
  • Mathematical Foundations of Imaging
  • Radioisotope Imaging (PET/SPET)
  • Non-radioisotope Imaging (MRI, CT, US)

Semester 2: Compulsory units

  • Advanced MR Imaging
  • Advanced PET Imaging
  • Quantitative Imaging into Practice (Imaging Biomarkers for Healthcare and Research)

Semester 2: Elective units (select one)

  • Imaging in Clinical Diagnosis
  • Medical Image Analysis and Mathematical Computing

Semester 3:

  • Research project

Facilities

You will benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Each student will have an identified personal tutor who can provide advice and assistance throughout the course. During the research project, you will be in regular contact with your research supervisor.You will also be able to access a range of other library and e-learning facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Graduates will be in an excellent position to pursue careers in image-related fields in healthcare and research. This MSc will also form a sound basis for students who wish to proceed to PhD research in any aspect of medical imaging.

Intercalating medical students may use this qualification as a platform to pursue a clinical career in radiology.

Physical science/engineering graduates may see this as a route to imaging research or development in an academic or commercial environment.



Read less
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science (MIRS) is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill

  • ​To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
  • To develop specialists in their respective professional disciplines and enhance their career paths;
  • To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
  • To provide a laboratory environment for testing problems encountered at work;
  • To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong Kong; and
  • To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development

  • ​To provide channels through which practising professionals can continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.

Characteristics

The Medical Imaging and Radiation Science award offers channels for specialisation and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

To be eligible for the MSc in Medical Imaging and Radiation Science (MScMIRS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • 3 Core Subjects (9 credits)
  • 5 Elective Subjects (15 credits)

Apart from the award of MScMIRS, students can choose to graduate with one of the following specialisms:

  • MSc in Medical Imaging and Radiation Science (Computed Tomography)
  • MSc in Medical Imaging and Radiation Science (Magnetic Resonance Imaging)
  • MSc in Medical Imaging and Radiation Science (Ultrasonography)

To be eligible for the specialism concerned, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to that specialism, a specialism-related Specialty Subject (3 credits), a Clinical Practicum (3 credits) and 3 Elective Subjects (9 credits).

 Compulsory Subjects

  • Research Methods & Biostatistics
  • ​Multiplanar Anatomy

Core Subjects

  • Advanced Radiotherapy Planning & Dosimetry
  • Advanced Radiation Protection
  • Advanced Technology & Clinical Application in Computed Tomography *
  • Advanced Technology & Clinical Application in Magnetic Resonance Imaging *
  • Advanced Technology & Clinical Application in Nuclear Medicine Imaging
  • Advanced Topics in Health Technology
  • Advanced Ultrasonography *
  • Clinical Practicum (CT/MRI/US)
  • Dissertation
  • Digital Imaging & PACS
  • Imaging Pathology

 * Specialty Subject

Elective Subjects

  • Bioinformatics in Health Sciences
  • Professional Development in Infection Control Practice


Read less
Your programme of study. If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Read more

Your programme of study

If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Did you know researchers at Aberdeen invented the first MRI scanner (Magnetic Resonance Imaging) for instance? Since this time much has been done to further work on the MRI scanner and deliver some of the most advanced forms of body visualisation tools available to the health area. If you have ever wondered how X rays work or you are interested in the latest radiotherapy techniques to provide therapeutic tools from radiographic equipment and advances this programme not only gives you the theory and practice in applying imaging in a health setting, it also gives you opportunities to think about the technologies involved and the applications. There is a lot of Physics and Maths required behind the different technologies involved in medical imaging so if you have these subjects and a life science background plus engineering or similar science disciplines this will make the programme more accessible.

By the end of the MSc programme you will have received a thorough academic grounding in Medical Imaging, been exposed to the practice of Medical Imaging in a hospital Department, and carried out a short research project. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. There are wide ranging career possibilities after graduation. You may wish to go straight into clinic settings to apply your skills within diagnostics or you may wish to study further for a PhD towards teaching or researching. There have also been spin out companies as a result of understanding and applying imaging technologies towards innovative applications. This subject also aligns with some major innovations in Photonics and other areas of medical science which you may like to explore further if you are interested in invention and innovation at the Scottish Innovation Centres: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

  • Radiation in Imaging
  • Introduction to Computing and Image Processing
  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Generic Skills

Semester 2

  • Nuclear Medicine and Positron Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Image Processing and Analysis
  • Diagnostic and Radiation Protection

Semester 3

  • MSc Project for Programme in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You have the opportunity to contribute research within the department, expanding the knowledge of medical imaging technology within the largest teaching hospital and Medical School in Europe
  • You have access to a PET-CT scanner, new radiotherapy centre and linac treatment machines.
  • The university won the Queens Anniversary Prize in recognition of achievements in new medical imaging techniques
  • The MRI scanner was invented at the University over 30 years ago - a major innovation which has been global in impact

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs



Read less
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/medical-physics-bioengineering-mres

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Standard
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the 2nd year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules and a research project.

- Core Modules
There are no core modules for this programme.

- Options
Students choose four optional modules from the following:
Ionising Radiation Physics: Interactions and Dosimetry
Medical Imaging
Clinical Practice
Treatment with Ionising Radiation
Medical Electronics and Control
Bioengineering
Optics in Medicine
Computing in Medicine
Medical Devices and Applications
Foundations and Anatomy and Scientific Computing
Image Processing
Computational Modelling in Biomedical Imaging
Programming Foundations for Medical Image Analysis
Information Processing in Medical Imaging
Image-Directed Analysis and Therapy

- Dissertation/report
All students undertake a research project.

Further information on modules and degree structure available on the department web site Medical Physics and Bioengineering MRes http://www.ucl.ac.uk/medphys/prospective-students/phd/dtp

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

Our graduates typically find work in academia, the NHS, and in industry

Why study this degree at UCL?

The department is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Student / staff ratios › 144 staff including 110 postdocs › 107 taught students › 135 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is suitable either for students wishing to study for a stand-alone MRes in Medical Physics & Bioengineering or for students planning progression to a Doctoral Training Programme.

What are we looking for?
When we assess your application we would like to learn:
- why you want to study Medical Physics and Bioengineering at graduate level
- why you want to study Medical Physics and Bioengineering at UCL
- what particularly attracts you to this programme
- how your personal, academic and professional background meets the demands of a challenging programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

For more information see the Applications page http://www.ucl.ac.uk/prospective-students/graduate/apply .

Read less
Study in depth the legal questions raised in the context of medicine including genetics; assisted reproduction; abortion; assisted suicide and euthanasia; advance decisions; autism; psychiatric ethics and mental health law; medical research; organ donations and the allocation of scarce resources. Read more

Study in depth the legal questions raised in the context of medicine including genetics; assisted reproduction; abortion; assisted suicide and euthanasia; advance decisions; autism; psychiatric ethics and mental health law; medical research; organ donations and the allocation of scarce resources.

Key benefits

  • The most up-to-date legal scholarship applied to a very wide range of medical issues.
  • The programme discusses controversial issues such as euthanasia and abortion with a balanced approach.
  • Supported by the UK's first Centre of Medical Law and Ethics and its distinguished team of academic staff members, teaching is conducted in small seminar groups of less than 30 to encourage active student participation.

Description

Examines in depth the legal questions raised by medical practice and science. The Medical Law pathway forms a part of the MA Medical Law & Ethics programme, which was founded in 1978, and is an important part of the Centre of Medical Law and Ethics, the first of its kind in the UK.

This is a time of great interest in medical ethics and law. Huge questions are raised by advances in fields such as genetics and assisted reproduction. In a changing moral climate, debates about conflicts between mother and fetus, or about physician-assisted suicide, are very much alive. There are challenging questions about psychiatry, about the allocation of scarce medical resources, about the boundaries of the market in medicine, and about the law and ethics of medical research.

Course purpose

For medical/legal professionals, graduates of a relevant discipline, those going on to research and for anyone wanting to think about and discuss some of the hardest human decisions. To study the methods of reasoning and analysis in law and to examine selected areas of health care and medical practice from a further perspective of medical law.

Course format and assessment

Full-time students are required to complete the programme over one academic year and to write the examinations for each module in January or May of that year. Coursework will be required for some modules and Dissertations are due by late August the same year. Part-time students are required to complete the programme over two academic years, with Dissertations due by late August of the second/final year of study.



Read less
The course trains students from a variety of academic backgrounds to work as statisticians in various sectors including higher education, research institutions, the pharmaceutical industry, central government and national health services. Read more
The course trains students from a variety of academic backgrounds to work as statisticians in various sectors including higher education, research institutions, the pharmaceutical industry, central government and national health services. It provides training in the theory and practice of statistics with special reference to clinical trials, epidemiology and clinical or laboratory research.

The PSI Andrew Hewett Prize is founded in memory of Andrew Hewett, an alumnus of the School and awarded by the PSI (Statisticians in the Pharmaceutical Industry) to the best student on the course.
Duration: one year full-time or part-time over two years. Modes of study explained.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/ms_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/msms.html

For the MSc Medical Statistics it is preferred that students should normally have obtained a mathematically-based first degree which includes some statistics. Graduates from other fields who have quantitative skills and some familiarity with statistical ideas may also apply.

Any student who does not meet the minimum entry requirement above but who has relevant professional experience may still be eligible for admission. Qualifications and experience will be assessed from the application.

Intercalating this course

(http://www.lshtm.ac.uk/study/intercalate)

Undergraduate medical students can take a year out either to pursue related studies or work. The School welcomes applications from medical students wishing to intercalate after their third year of study from any recognised university in the world.

Why intercalate with us?:
Reputation: The School has an outstanding international reputation in public health & tropical medicine and is at the forefront of global health research. It is highly rated in a number of world rankings including:

- World’s leading research-focused graduate school (Times Higher Education World Rankings, 2013)
- Third in the world for social science and public health (US News Best Global Universities Ranking, 2014)
- Second in UK for research impact (Research Exercise Framework 2014)
- Top in Europe for impact (Leiden Ranking, 2015)

Highly recognised qualification: possessing a Master's from the School will give you a focused understanding of health and disease, broaden your career prospects and allow you to be immersed in research in a field of your choice.

Valuable skills: you will undertake an independent research project (summer project) in your chosen topic, equipping you with research skills that will distinguish you in a clinical environment. While your medical qualification will give you a breadth of knowledge; undertaking an intercalated degree will allow you to explore your main area of interest in greater depth.

Alumni network: the School has a strong international and diverse alumni community, with more than 20,000 alumni in over 180 countries.

MSc vs. BSc: undertaking an MSc is an excellent opportunity to develop in-depth specialist knowledge in your chosen topic and enhance your skills in scientific research. Postgraduate qualifications are increasingly sought after by clinicians and possessing a Masters qualification can assist you in your future career progression.

Objectives

By the end of this course students should be able to:

- select appropriate study designs to address questions of medical relevance

- select and apply appropriate statistical techniques for managing common types of medical data

- use various software packages for statistical analysis and data management

- interpret the results of statistical analyses and critically evaluate the use of statistics in the medical literature

- communicate effectively with statisticians and the wider medical community, in writing and orally through presentation of results of statistical analyses

- explore current and anticipated developments in medical statistics

Structure

Term 1:
All students take five compulsory modules:
- Foundations of Medical Statistics
- Introduction to Statistical Computing (Stata/SAS/R)
- Clinical Trials
- Basic Epidemiology
- Robust Statistical Methods

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which can only be taken after consultation with the course director.

*Recommended modules

- Slot 1:
Generalised Linear Models (compulsory)

- Slot 2:
Statistical Methods in Epidemiology (compulsory)

- Slot 3:
Analysis of Hierarchical & Other Dependent Data*
Epidemiology of Non-Communicable Diseases
Modelling & the Dynamics of Infectious Diseases
Social Epidemiology

- Slot 4:
Survival Analysis and Bayesian Statistics (compulsory)

- Slot 5:
Advanced Statistical Modelling*
Advanced Statistical Methods in Epidemiology*

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmst.html

Project Report

During the summer months (July - August), students complete a research project, for submission by early September. This usually consists of analysing a set of data and writing a report, but methodological research can also be undertaken.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msms.html#sixth

Read less
Our Medical Ethics & Law MA programme focuses on the ethical and legal questions raised by medical practice and science. Read more

Our Medical Ethics & Law MA programme focuses on the ethical and legal questions raised by medical practice and science. These include debates about conflicts between mother and foetus, physician-assisted suicide, psychiatry, the allocation of scarce medical resources, the boundaries of the market in medicine and the law and ethics of medical research. The programme was established in 1978 and constitutes an important part of the Centre of Medical Law and Ethics, which is the first of its kind in the UK.

Key benefits

  • In-depth philosophical analysis and the most up-to-date legal scholarship applied to a very wide range of medical issues.
  • The programme discusses controversial issues such as euthanasia and abortion with a balanced approach.
  • Supported by the UK's first centre of Medical Law and Ethics and its distinguished team of academic staff members.

Description

Our Medical Ethics & Law programme is designed for medical/legal professionals, graduates of a relevant discipline, those going on to research and for anyone wanting to think about some of the hardest human decisions.

You will study the ethical and legal questions raised in the context of medicine, which include genetics, assisted reproduction, abortion, assisted suicide and euthanasia, autism, psychiatric ethics and mental health law, medical research, organ donations and the allocation of scarce resources.

Course format and assessment

You will be taught through a combination of lectures and seminars.

Full time students have an average of 6 seminar hours per week. However, this will vary depending on which modules you choose to take and in which semester they are taught. Full time students are expected to spend 32-34 hours engaged in self-study per week.

Part time students have an average of 2-4 hours of seminars per week. They are expected to engage in 14-16 hours of self-study a week.

Contact time is based on 24 academic weeks (typically there is 1 reading week per semester), whereas self-study time is based on 31 academic weeks.

The total notional study hours for the MA are 1800 (10 hours per 1 credit). Notional study hours comprise formal teaching and learning activities, such as lectures and tutorials, as well as assessments and independent research and study.

Assessment

Many modules are assessed by coursework, i.e. one essay, usually of a maximum of 3500 words. Some modules are assessed by one 2-hour exam.

Career destinations

Many alumni go on to work in policy-related positions, which include the Human Fertilisation and Embryology Authority, the Human Tissue Authority, the Nuffield Council on Bioethics and the Department of Health. We also have a number of alumni who have worked or are working in the BMA Ethics Department, for the GMC, Progress Educational Trust, the British Pregnancy Advisory Service, the King's Fund, and medical defence societies. A number of alumni are teaching ethics and/or law in medical schools. Students who go on to doctoral-level study also find academic positions in law schools and research centres.



Read less
The Medical Physics and Biomedical Engineering MRes provides structured training in this diverse and multidisciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more

The Medical Physics and Biomedical Engineering MRes provides structured training in this diverse and multidisciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

About this degree

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's-level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the second year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules (15 credits each) and a research project (120 credits).

Core modules

  • There are no core modules for this programme.

Optional modules

Students choose four optional modules from the following:

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Medical Imaging
  • Clinical Practice
  • Treatment with Ionising Radiation
  • Medical Electronics and Control
  • Bioengineering
  • Optics in Medicine
  • Computing in Medicine
  • Medical Devices and Applications
  • Foundations and Anatomy and Scientific Computing
  • Image Processing
  • Computational Modelling in Biomedical Imaging
  • Programming Foundations for Medical Image Analysis
  • Information Processing in Medical Imaging
  • Image-Directed Analysis and Therapy

Dissertation/report

All students undertake a research project.

Teaching and learning

Further information on modules and degree structure is available on the department website: Medical Physics and Biomedical Engineering MRes

Careers

Our graduates typically find work in academia, the NHS, and in industry

Employability

This programme gives students a good grounding in basic research training in a focused topic. Graduates will be ideally suited to enter PhD programmes in a variety of subject areas or enter professions requiring a postgraduate Master's qualification.

Why study this degree at UCL?

UCL Medical Physics & Biomedical Engineering is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Medical Physics & Biomedical Engineering

95% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X