• Aberystwyth University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Cambridge Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Ulster University Featured Masters Courses
University of Glasgow Featured Masters Courses
"mechatronics" AND "engin…×
0 miles

Masters Degrees (Mechatronics Engineering)

We have 76 Masters Degrees (Mechatronics Engineering)

  • "mechatronics" AND "engineering" ×
  • clear all
Showing 1 to 15 of 76
Order by 
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering. Read more
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering.

The 18 month, three semester course can be undertaken as either a single award or a dual award. The single award is studied entirely at the University of Bolton. In the dual award mode, you will normally study at the University of Bolton in semester 1 (October to February) and at South Westphalia University of Applied Sciences, Soest, Germany, in semester 2 (March to July). The third semester (October to February) will be assigned to a project, and this will normally be undertaken at the University of Bolton.

Entry to the course is also available in semester 2 (February) in the case of the dual award scheme, the second semester (to be spent at South Westphalia University of Applied Sciences, Soest Germany) will be undertaken during October to January.

In the dual award mode the successful student will obtain two separate MSc awards, one from each university. In the single award mode the student will receive the award of an MSc from the University of Bolton only.

What you will study

You are required to successfully complete 180 credits of study to gain the MSc. The course comprises eight taught modules, each with a credit value of 15, making a total of 120 taught credits. In each of the two taught semesters, you will study four modules. The third semester is dedicated to a 60 credit individual project. Where possible, the project will involve a work placement or an industrially-related project, based at one of the two universities. During the project phase it is the intention to find, where possible, some form of work experience for all of the students enrolled on the MSc.

Mechatronic pathway modules

Control Engineering: Intelligent Systems (EEM4010); Advanced Control Technology (EEM4015).

Engineering Management: Business in Engineering (EEM4013); Technical Publications and Presentations (EEM4014); Project Management (EEM4017); Integrated Management (EEM4020).

Electronic Engineering: Microprocessor-based Systems (EEM4016) or Microcontrollers (AMI4655).

Mechanical Engineering: Advanced Production Engineering (EEM4019).

Project (EEM5001).

For more information please visit http://www.bolton.ac.uk/postgrad

Read less
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering. Read more
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering.

The 18 month, three semester course can be undertaken as either a single award or a dual award. The single award is studied entirely at the University of Bolton. In the dual award mode, you will normally study at the University of Bolton in semester 1 (October to February) and at South Westphalia University of Applied Sciences, Soest, Germany, in semester 2 (March to July). The third semester (October to February) will be assigned to a project, and this will normally be undertaken at the University of Bolton.

Entry to the course is also available in semester 2 (February) in the case of the dual award scheme, the second semester (to be spent at South Westphalia University of Applied Sciences, Soest Germany) will be undertaken during October to January.

In the dual award mode the successful student will obtain two separate MSc awards, one from each university. In the single award mode the student will receive the award of an MSc from the University of Bolton only.

What you will study

You are required to successfully complete 180 credits of study to gain the MSc. The course comprises eight taught modules, each with a credit value of 15, making a total of 120 taught credits. In each of the two taught semesters, you will study four modules. The third semester is dedicated to a 60 credit individual project. Where possible, the project will involve a work placement or an industrially-related project, based at one of the two universities. During the project phase it is the intention to find, where possible, some form of work experience for all of the students enrolled on the MSc.

Mechatronic pathway modules

Control Engineering: Intelligent Systems (EEM4010); Advanced Control Technology (EEM4015).

Engineering Management: Business in Engineering (EEM4013); Technical Publications and Presentations (EEM4014); Project Management (EEM4017); Integrated Management (EEM4020).

Electronic Engineering: Microprocessor-based Systems (EEM4016) or Microcontrollers (AMI4655).

Mechanical Engineering: Advanced Production Engineering (EEM4019).

Project (EEM5001).

For more information please visit http://www.bolton.ac.uk/postgrad

Read less
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
Mechatronics is a modern fusion of electrical and electronic, mechanical and software engineering.  . The interface between electrical and mechanical environments is the role of a Mechatronics engineer. Read more

Mechatronics is a modern fusion of electrical and electronic, mechanical and software engineering.

 

The interface between electrical and mechanical environments is the role of a Mechatronics engineer. It combines precision engineering, automatic control and real-time computing to produce innovative products, such as smartphones, the manufacture of semiconductors, electron microscopes and medical equipment. Robotic manufacturing processes, automatic vision based and vehicle navigation systems also use Mechatronics principles.

There is increasing industry demand for graduates who can work in this interdisciplinary engineering environment. International companies such as Siemens, Volkswagen, and Micron Semiconductors etc. all recruit graduates with a Mechatronics profile.

To develop Mechatronics graduate skills, the programme covers design and modelling of electromechanical systems such as positioning of robotic arms, pick and place technology using vision, recognition and feedback sensing.

The programme also includes real time control system modelling and embedded systems design, development and implementation. Programming includes both high and low level languages such as Python, C or C++, and VHDL for FPGA applications.

Key Course Features

  • There is increasing industry demand for graduates who can work in this interdisciplinary engineering environment. International companies such as Siemens, Volkswagen, and Micron Semiconductors etc all recruit graduates with a Mechatronics profile.

What Will You Study?

FULL-TIME MODE (SEPTEMER INTAKE)

The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.The six taught modules will have lectures and tutorials/practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE

The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:

  • Engineering Research Methods
  • Sustainable Design & Innovation
  • Engineering Systems Modelling & Simulation
  • Control Systems Engineering
  • Mechatronic System Design
  • Microprocessor System Integration
  • Dissertation

 The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Teaching methods include lectures, laboratory sessions, student-led seminars and guided research. Independent learning is an important aspect of all modules, as it enables students to develop both their subject specific and key skills. Independent learning is promoted through guided study or feedbacks given to students.

Career Prospects

The course equips you with a thorough knowledge and skills in engineering at the forefront of new and emerging technologies. Graduates will be well placed to become subject specialists within industry or to pursue research careers within academia.



Read less
The course provides an academically challenging exposure to modern issues in Advanced Mechanical Engineering Science giving you the opportunity to specialise in Mechatronics. Read more

The course provides an academically challenging exposure to modern issues in Advanced Mechanical Engineering Science giving you the opportunity to specialise in Mechatronics. It is suitable for engineering, mathematics or physical sciences graduates who wish to specialise in advanced mechanical engineering science or to support continued professional development. It offers a sound understanding of the relevant fundamental science, methods, analysis and engineering applications.

Introducing your degree

This masters course could see you designing robots and building machines with the power to change modern life. Mechatronics is an exciting branch of engineering, uniting the principles of electrical, mechanical and computer engineering.

Overview

This course will feature the expertise and guidance of our cutting-edge Electro-Mechanical Engineering Research Group. You will learn to confidently use advanced electrical systems and understand both the impact and use of control systems, instrumentation and sensors.

The year is divided into two semesters. Each semester, you will have the chance to broaden your engineering education by selecting specialist modules as well as completing core modules. Core modules focus on mechanical engineering, electrical systems and control. Specialist modules include Robotics and Automotive Propulsion.

The final four months will focus on applying research. You will engage in experimental and practical study and apply computer simulations to complete a research project and dissertation.

The course will equip you with the specialist knowledge and practical skills to pursue a professional career or further research in mechatronics.

View the specification document for this course



Read less
What's the Master of Mechanical Engineering all about? . The Master of Science in Engineering. Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. Read more

What's the Master of Mechanical Engineering all about? 

The Master of Science in Engineering: Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. An essential element of the mechanical engineering curriculum at KU Leuven is the direct training of each student in a real-life industrial or research setting. Following up on the design assignment in the Bachelor's programme, the Master's programme brings the student in close contact with the industrial reality.

Structure 

Three versions

The Master's programme in Mechanical Engineering has three versions:

  • A Dutch-language version for students who have already obtained a Master's degree of Engineering Technology: Electromechanical Engineering
  • A Dutch-language version for students who have completed their Bachelor's training at our Faculty or at another university with Mechanical Engineering either as a major or as minor.
  • An English-language version which mainly addresses foreign students, and to which admission is granted after evaluation of the application file.

Five modules 

The programme consists of five modules.

  • The first major component is the core module in mechanical engineering.
  • The second major component is one out of five options, which have been put together in a complementary way.

Three generic options 

  • Manufacturing and Management: modern techniques for the design and production of discrete components, CAD and computer integration in production, management techniques, maintenance and logistics of a production company.
  • Mechatronics and Robotics: mechatronics is the discipline in which the synergy of construction, sensing, actuation and control of machinery are concurrently defined and tuned for optimum integration
  • Thermo-technical Sciences: physical principles and analysis, design, construction and operation of combustion engines and thermal and flow machines, cooling machines, power plants, etc.

Two application oriented options

  • Aerospace technology: physical principles, analysis, design, construction, exploitation and operation of aircraft and space systems;
  • Vehicle technology: physical principles, design, analysis and production of cars and ground vehicles and of systems for ground transportation.

Elective courses 

The third and fourth components in the programme structure concern a set of elective courses, to be chosen from a list of technical coursesand from a list of general interest courses.

Master's thesis

The final component is the Master's thesis, which represents 20% of the credits of the entire curriculum.

Strengths

  • The department has a large experimental research laboratory with advanced equipment, to which Master's students have access. FabLab (a "Fabrication Laboratory") is also directly accessible for students.
  • The department has built up an extensive network of companies which recruit a large number of our alumni since many years already, from whom we receive lots of informal feedback on the programme.
  • In addition to their academic teaching and research assignments, several members of the teaching staff also have other responsibilities in advisory boards, in external companies, science & technology committees, etc. and they share that expertise with students.
  • The programme attracts a large number of students.
  • The programme offers students the choice between application oriented options and generic methodology oriented options.
  • Many courses are dealing with contents in which the R&D of the Department has created spin-off companies, and hence can offer very relevant and innovation driven contents.
  • The programme has a clearly structured, extensive and transparent evaluation procedure for Master's theses, involving several complementary assessment views on every single thesis.
  • Several courses are closely linked to top-level research of the lecturers, and they can hence offer up-to-date and advanced contents to the students.

International experience

The Erasmus+ programme gives students the opportunity to complete one or two semesters of their degree at a participating European university. Student exchange agreements are also in place with Japanese and American universities.

Students are also encouraged to learn more about industrial and research internships abroad by contacting our Internship Coordinator. Internships are scheduled in between two course phases of the Master’s programme (in the summer period after the second semester and before the third semester).

These studying abroad opportunities and internships are complemented by the short summer courses offered via the Board of European Students of Technology (BEST) network. This student organisation allows students to follow short courses in the summer period between the second and the third semester. The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and T.I.M.E.

You can find more information on this topic on the website of the Faculty

Career perspectives

The field of mechanical engineering is very wide. Mechanical engineers find employment in many industrial sectors thanks to our broad training programme. Demand for this engineering degree on the labour market is very strong and constant. A study by the Royal Flemish Engineers Association, identifies the specific sectors in which graduated mechanical engineers are employed.

  • mechanical engineering: e.g. production machinery, compressed air systems, agricultural machinery
  • metal and non-metal products: a very wide range of products e.g. pressure vessels, piping, suit cases,...
  • off-shore and maritime engineering
  • automation industry
  • vehicle components, such as exhaust systems, drivetrain components and windshield wipers,...
  • development and production of bicycles
  • aircraft components, such as high lift devices, aircraft engines and cockpit display systems
  • building, textile, plastic, paper sector
  • electrical industry
  • chemical industry
  • environmental engineering and waste management
  • energy sector
  • financial, banking and insurance sector
  • communications sector
  • transportation sector: infrastructure and exploitation and maintenance of rolling stock
  • software development and vendors
  • technical and management consulting: large companies and small offices
  • education and research
  • technical and management functions in the public sector


Read less
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. Read more
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. On completion of the course, you will be able to:

- show a thorough understanding of the principles and theoretical bases of modern manufacturing techniques, automation, and production processes
- identify appropriate manufacturing systems for different production requirements and analyse their performance
- apply appropriate technology, quality tools and manufacturing methodology to design, re-design and continuously improve the manufacturing operations of engineering companies
- plan, research, execute and oversee experiments and research projects, critically analyse and interpret data, and effectively disseminate results
- work effectively as a member of a multidisciplinary team, be self-motivated, able to work independently and demonstrate leadership

Visit the website: http://www.ucc.ie/en/ckr27/

Course Details

The course is 12 months in duration starting in September and consists of 60 credits in Part I from September to March, and 30 credits in Part II from June to September. You take 10 taught modules from the list below to the value of 50 credits and also undertake a preliminary research project (ME6019) worth 10 credits in Part I. If you obtain a minimum of 50% in the taught modules and the preliminary project, you will be eligible to progress to Part II and undertake a major four-month research project (ME6020) worth 30 credits, and submit a dissertation leading to the award of the MEngSc degree.

ME6001 Manufacturing Systems (5 credits)
ME6002 CAD/CAM (5 credits)
ME6003 Production Management (5 credits)
ME6004 Operations Research and Project Economics (5 credits)
ME6007 Mechanical Systems (5 credits)
ME6008 Mechatronics and Robotics (5 credits)
ME6009 Industrial Automation and Control (5 credits)
ME6010 Technology of Materials (5 credits)
ME6012 Advanced Robotics (5 credits)
PE6002 Process Automation and Optimisation (5 credits)
PE6003 Process Validation and Quality (5 credits)
PE6007 Mechanical Design of Process Equipment (5 credits)
PE6009 Pharmaceutical Engineering (5 credits)
CE3010 Energy in Buildings (5 credits)
CE4016 Energy Systems in Buildings (5 credits)
CE6024 Finite Element Analysis (5 credits)
EE4012 Biomedical Design (5 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page05.html

Format

Each module typically consists of 24 lectures, 12 hours of continuous assessment, plus additional supplemental reading and study, carried out over one of two 12-week semesters from September to December (Semester 1), or January to March (Semester 2). The exact workload in each teaching period will depend on the choice of modules. In addition, a substantial weekly commitment to the project module ME6019 is expected over both semesters.

Assessment

Individual modules have different methods of assessment but this typically consists of a single end-of-semester examination in December or April/May, plus continuous assessment throughout the relevant semester. This continuous assessment may consist of a combination of in-class tests, formal laboratories or practicals, design exercises, project work, written reports and presentations. Any repeat examinations are held in August.

Students who pass but fail to achieve an average mark of at least 50% across the taught modules excluding the Preliminary Research Project (ME6019) or do not achieve a mark of at least 50% in the Preliminary Research Project (ME6019) will be eligible for the award of a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems). Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems).

Careers

In response to increasing demand for highly skilled graduates in the field of mechanical engineering applied to the manufacturing and pharma-chem industries, this course will produce mechanical engineering postgraduates who are proficient in the development and realisation of modern manufacturing, process and automation systems. This is achieved through developing an understanding of the concepts of manufacturing systems, and the skills to analyse, design and implement manufacturing systems in practice. This is combined with an understanding of process automation and operational management. The course will equip you with an-up-to date knowledge of manufacturing techniques and processes.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. Read more
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. The result is mechatronics, a synergistic combination of mechanical components with electronic and IT systems. This technological integration forms new areas of application like electrical and digital technology in machine communication and control.

With the introduction of the Master program in Mechatronics & Smart Technologies, MCI has filled a gap in the educational offering in the west of Austria. With its international orientation and a consistent focus on practical relevance, the program makes a significant contribution to the goal of establishing the Tyrol as a high-tech location with the ability to compete at the international level and defy the fluctuations of the business cycle. With the implementation of the majors in mechanical and electrical engineering and the specialization in computational mechanics at our partner campus in Paris, MCI continues its way as spear head of the Tyrolean technology offensive.

The goal of the Master program in particular is to equip graduates with a competence in mechatronics that is more than the sum of its parts, i.e. mechanical engineering, electronics and IT. Integration of these three pillars is the key to smart technologies as robotics, automated code generation, multi-physical simulation, systems in systems and smart automation, and their application in electro mobility, industry 4.0 and energy efficiency.

With supporting classes in Leadership, Strategic Management, Marketing and Entrepreneurship, this study program opens up perspectives for knowledge-based careers in the manufacturing and service industries worldwide.

Major Mechanical Engineering

The specialization in Mechanical Engineering prepares graduates for the challenges of modern mechanical engineering. The focus here is on simulation, hydraulics, pneumatics and material sciences, and also on mechanics, machine dynamics and handling technology.

Contents

The Master program in Mechatronics & Smart Technologies lasts four semesters comprising 915 hours of classes.

A semester of the full-time program comprises 15 weeks of lectures. The winter semester starts at the beginning of October until the end of January and the summer semester starts in March and lasts until the end of June.
Classes are entirely taught in English, attendance is required from Monday to Friday with additional block classes as well as project and laboratory work.

For the part-time program, the semesters last 20 weeks, from the beginning of September until the middle of February for the winter semester, and from the end of February until the middle of July for the summer semester. Classes are mainly taught in German but also partly in English. Attendance is required on Fridays from 1.30 to 10 p.m. and on Saturdays from 8 a.m. to 5 p.m., and there are additional block classes as well as project and laboratory work, etc.

Read less
This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. Read more

This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. You study develop knowledge and key skills in CAD/CAM and Product Development, Finite Element Methods and Machine Design and options available include Automotive Engineering and Vehicle Design, Manufacturing Systems, Project Management and Enterprise, Supply Chain Management and Applied Continuum Mechanics.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Mechanical Engineering – one year full time
  • MSc Mechanical Engineering – two years part time
  • MSc Mechanical Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

Professional accreditation

Our one-year MSc Mechanical Engineering is accredited to CEng level by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). [include Engineering Council logo, Institution of Mechanical Engineers logo]

The accredited Masters-level award will provide you with the underpinning knowledge, understanding and skills in preparation for your registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

The two-year MSc Mechanical Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title. 

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • CAD/CAM and Product Developments
  • Finite Element Methods
  • Machine Design
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)

and two optional modules

  • Applied Continuum Mechanics
  • Automotive Engineering and Vehicle Design
  • Manufacturing Systems
  • Supply Chain Management

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Mechanical engineers typically work in structural engineering, research and development, automotive engineering and design, the aerospace industry, manufacturing, processing and chemical industries as well as management positions.



Read less
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies. Read more
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies.

This one year course is intended for honours (or international equivalent) graduates in mechatronics, mechanical or mechanical related engineering (eg automotive, aeronautical or design), physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major mechatronic engineering themes such as:
-Mechatronics
-Robotics
-Industrial automation
-Embedded systems
-Instrumentation and drives

You have the opportunity to undertake in-depth studies through research projects. Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of mechatronics to practical design, make and test investigations.

General areas for project work include:
-Mechatronics
-Mobile robotics
-Industrial robotics
-Microelectronic-mechanical systems
-Computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institute of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place. Read more

Biomedical engineers work at the interface of engineering, biology, and medicine, combining their engineering expertise with an understanding of human biology and medical needs to make the world a healthier place.

This masters course will equip you with the specialist knowledge, expertise and skills to integrate biology and medicine with engineering to solve problems related to living systems.

Introducing your degree

The MSc Biomedical Engineering is designed for engineering, and physical science graduates who want to specialise in this vibrant area of engineering. There is high demand for biomedical engineers, and this masters has been developed with our graduates’ employability in mind.

Overview

During this course, you will learn the fundamental scientific and technical aspects of biomedical engineering, alongside developing your knowledge of the relevant aspects of human biology in health and disease. This interdisciplinary course draws on expertise from leading departments within the University of Southampton, brought together through the Institute for Life SciencesEngineering and the EnvironmentMedicineHealth SciencesNatural and Environmental Sciences, and Electronics and Computer Science.

If you choose to, you will be able to specialise in your chosen area of biomedical engineering through themed areas of application: musculoskeletal, cardiovascular, imaging, diagnostic systems and audiology.

The course will enable you to thrive in an environment where teams from range of disciplines have work together efficiently. To help you succeed as biomedical engineer, the course features ‘problem-driven’ seminars, site and hospital visits, workshops and training sessions by experts from industry and national laboratories. This combination of advanced engineering, industrial experience and research enables our graduates to make a significant contribution to the development and translation of biomedical technology in both industry and academia.

You will develop the skills to apply advanced engineering in an interdisciplinary environment working in teams of physicians, scientists, engineers, business people and other professionals to monitor, restore and enhance normal body function, abilities and outcomes. You will also enhance your understanding of the ethical, safety and societal implications of developing medical technologies. 

Through your research project you have a further opportunity to integrate your engineering skills with an understanding of the complexity of biological systems, enabling you to work successfully at the intersection of science, medicine and mathematics to solve biological and medical problems. Example research projects may include the design and performance evaluation of new devices to replace joints, or the development of new imaging methods to study bone or lung diseases.

View the specification document for this course

Career Opportunities

Many biomedical engineers work in research, either in academia or industry, along with medical scientists, to develop and evaluate systems and products such as artificial organs, prostheses, instrumentation, and diagnostic, health management and care delivery systems.

Biomedical engineers may design devices used in various medical procedures and develop imaging systems and devices for observing and controlling body functions.

Biomedical engineers therefore make careers in academia, industry, healthcare and clinical medicine, as well as government.



Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

Modules

In each of the semesters 1 and 2 you will be required to take two core and one optional module from the lists below:

Semester 1:

•Robotics (20 credits)
• Microprocessors and Control (20 credits)

Optional modules (Semester 1):

• Pattern recognition and machine learning (20 credits)
• Technical, research and professional skills (20 credits)
• Advanced Instrumentation and Design (20 credits)
• Electrical Energy Converters and Drives (20 credits)

Semester 2:

• Digital Signal Processing and Real Time Systems (20 credits)
• Mechatronics and Embedded System Design (20 credits)

Optional modules (Semester 2):

• Electromechanical systems and manufacturing technology (20 credits)
• Technology evaluation and commercialisation (20 credits)
• Cloud Computing (20 credits)
• E-Business Applications (20 credits)

Semester 3

•MSc project (60 credits)

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more

The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

About this degree

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules

  • Power Transmission and Auxiliary Machinery Systems
  • Electrical Machines and Power Electronic Drives
  • Electrical Power Systems and Electrical Propulsion
  • New and Renewable Energy Systems
  • Project Management
  • Group Project

Optional modules

  • Applied Thermodynamics and Turbomachinery
  • Vibrations, Acoustics and Control
  • Advanced Computer Applications in Engineering

Dissertation/report

All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Further information on modules and degree structure is available on the department website: Power Systems Engineering MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Recent career destinations for this degree

  • PhD Research Assistant in Electromagnetic Engineering, Forschungszentrum J゚lich (J゚lich Research Centre)
  • Business Development Associate, Enviromena Power Systems
  • Graduate Electrical Engineer, Mott MacDonald
  • Graduate Project Manager, EDF Energy
  • Power Engineer, General Electric (GE)

Employability

Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.



Read less

Show 10 15 30 per page



Cookie Policy    X