• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"mechatronic"×
0 miles

Masters Degrees (Mechatronic)

We have 35 Masters Degrees (Mechatronic)

  • "mechatronic" ×
  • clear all
Showing 1 to 15 of 35
Order by 
Areas of research include, but are not limited to. evaluation of spacial heterogeneity for the design and layout of experimental sites. Read more
Areas of research include, but are not limited to: evaluation of spacial heterogeneity for the design and layout of experimental sites.
The course

This course builds on the Engineering Department’s long history of working closely with industry teaching students how to apply engineering science to industrial product design. Mechatronics is a multi-disciplinary field of engineering that combines with mechanical, electronic, computer, software, control and systems design engineering in the design and manufacture of useful products. It is an increasingly important discipline as most modern vehicles and machinery incorporate multiple mechatronic systems.

Some of the technologies that mechatronics encompasses include: robotics, vision systems, satellite navigation systems, communications technology, and biometric and other new advanced sensors. Introduction of these new technologies means that engineers cannot rely upon prior knowledge when designing machinery. As a consequence it has become normal practice for new highly technical equipment to be developed by specialist manufacturers, either through subcontract subsystem devolution or commercial partnership.

When developing new products, much of the work of the engineer involves the recombination or reapplication of previously un-combined technologies to solve new problems or enable new functionalities. Engineers therefore need to develop the greatest possible body of knowledge as a resource to call upon during the resolution of novel challenges in new or different environments.

This postgraduate programme builds upon students’ existing engineering skills and knowledge developed through prior education and focuses them into a more specific and applied area of study. This approach is designed to allow students to expand their applied knowledge and develop the necessary powers of analysis required to solve complex design problems. Learning largely takes place through a series of individual and group engineering projects intended to enable students to apply their existing academic skills and knowledge to the design, fabrication and testing of new products or systems. Where applicable, projects will be sponsored and supported by engineering companies and will focus on the development of mechatronic systems, machinery and equipment.

How will it benefit me?

This programme is designed for students with a strong academic background but limited industrial experience. It is intended to expedite the experiential development of these engineers through a series of industrially linked projects. Students will complete the course with a view to taking leading positions in manufacturing companies designing innovative machinery and equipment by employing new and emerging technologies to develop mechatronic systems, machinery and solutions.

Careers

This course provides an understanding of the practical application of engineering science and mathematics to the development of mechatronic systems. It is designed to aid students with good engineering qualifications, but limited applied industrial experience, learn the skills to take leading positions in manufacturing companies designing innovative machinery and equipment by employing new and emerging technologies to develop mechatronic systems, machinery and solutions.

Read less
The international master on “Control for Green Mechatronics” (GREEM), within the “Robotics and Control” mention of the French Ministry of Education, promotes a high-quality educational offer in the area of design and control of mechatronic systems with a particular focus on two points. Read more

The international master on “Control for Green Mechatronics” (GREEM), within the “Robotics and Control” mention of the French Ministry of Education, promotes a high-quality educational offer in the area of design and control of mechatronic systems with a particular focus on two points: their functional performances and their energetic efficiency. The consideration of the energy efficiency makes the GREEM international master very singular and very innovative and makes it answer a real actual societal matter which is the effect of technological devices to the ecology. After graduation, the students will have mastered the area of green mechatronics where they will be able to design new or re-design existing mechatronic systems, to model and simulate them, to calculate controllers for their automation and their performances improvement, and to setup networks of mechatronic systems, all together with consideration of the energy efficiency. Furthermore, international experience possibility is offered to the students: exchanges with partner universities at the international level are possible with eventual dual-degree, internships at the international level are encouraged, a great part of the courses are given in English, and French language and culture courses are given for non-francophone students. 

Program structure

The master program lasts two years and includes a total of 120 ECTS. The two years are split into four semesters (S7, S8, S9 and S10) which include several features such as: two industrial certifications (Schneider and Siemens), in excess of 50% of the courses given in English, French course offered to non-francophone students, 3-days labs in another city (in Poligny which is a small and original city of the Jura department where winery is also well known), seminars by researchers, research labs visiting, students project in robotics for national competition, possibility of international exchange ...

The global content is given below.

Master-1:

S7 semester (30 ECTS):

  • Digital signals, systems and control
  • Micromechatronics
  • Technologies in control
  • Systems engineering
  • Modeling of mechatronic systems
  • Siemens certification

S8 semester (30 ECTS):

  • Robotics
  • Industrial computing
  • Linear multivariable control
  • Methodologies tools
  • Optimization
  • French or foreigner languages
  • Energy microtransduction
  • Schneider certification

Master-2:

S9 semester (30 ECTS):

  • Numerical computation and simulation
  • Multiphysic microsystems and applications (biomed and accoustic)
  • Nonlinear and robust control
  • Energy based modeling and control
  • 3D design and manufacturing of mechatronic systems
  • Mechatronic systems network energy management

S10 semester (30 ECTS):

  • Microrobotics
  • Energy harvesting in mechatronic systems
  • INTERNSHIP (21 ECTS)

The master is also supported by the internationally renown research center FEMTO-ST (http://femto-st.fr/).

International partners and dual-degrees

Exchanges with international universities (Canada, Mexico, Peru, Qatar...) are possible during the curriculum. Dual-degree of Master is possible with some of the partner universities. 

After the GREEM master program

The career prospects of the students are very high because mechatronic systems are found and increasingly developed in a very wide range of applications. The fact that today’s problematic, like energy consumption in technological devices, is particularly tackled in this master will make the graduated students very attractive to industry at the international level. Furthermore, high skills and specialized students will have been educated making them the best candidates for research and PhD programs in the fields of mechatronics at large, of control, of robotics...

Site of training

The site of training is Besançon, a French old city that combines old stones buildings, French culture, various activities from sports to cultural, and students life. Approximately 10% of the population are students or interns in Besançon city and in its agglomeration. The center of applied languages (CLA, http://cla.univ-fcomte.fr/) which is a part of the university (UFC/UBFC) is one of the most important center for learning languages in France and hosts approximately 4000 interns per year coming from various countries for some days or for several months. Public transportation is very practical and the old-city is doable by walks.

Entry requirements (Students profiles)

The applicant should have a level of English and a background on “control systems” following the UFC/UBFC criterias. Additionally to these, the motivations and the professional project of the applicant are also examined carefully.

Several applications are possible.

- Entering directly in Master-1 at the UBFC: application is made through eCandidat (https://scolarite.univ-fcomte.fr/ecandidat/).

- Entering in Master-2: this is possible for those who have at least the level of Master-1 and who have very good tracks in the required background.

- Entering through a partner university: students from one of the partner universities who would like to enroll the GREEM master within a dual-degree track can be informed by the contact person at these universities.

For particular cases or for more information about the application, feel free to contact us, (Micky Rakotondrabe). 

Scholarships

Every year, a very limited number of UBFC scholarships could be offered on the basis of tracks and academic records. Application to such scholarships must be done no latter than the beginning of Master-1.



Read less
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. Read more
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. This hands-on course will help you develop the multidisciplinary knowledge that the fast-moving industrial, commercial and domestic sectors demand of their technical professionals.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Academic teaching is complemented by presentations from industry experts and by industrial trips, such as the UK annual NI Days conference, held in London.
-You will enjoy group assignments, supporting each other's learning and have opportunities to develop your ability to work in teams. You will also benefit from an industry-relevant final project. The presentation, which is part of the final project, will prepare you for your job interview.

What will you study?

Although mechatronics may be perceived in combination with robotics, as robots are indeed fast and precise mechanical systems, it also has wider applications, such as in hard-disk drives for computers, tracking cameras for surveillance applications, intelligent actuators in automotive systems and many other areas including devices used in the field of healthcare and rehabilitation, like intelligent prosthetic devices.

The hands-on approach on the course, using our state-of-the art multidisciplinary laboratories with equipment from National Instruments, Freescale, Agilent Technology and many more, adds value to this postgraduate degree. The course dovetails with research activities of the teaching staff, implementing the latest advances in our research. Utilising applied research, you have the opportunity to do your own research within an individual industry-relevant 'capstone' project. This includes preparation of a scientific paper, giving an opportunity for that first breakthrough into publishing your work.

Assessment

Coursework and/or exams, presentations, industrial or research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Control Systems with Embedded Implementation
-Mechatronic Design and Automation
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Advanced Control and Robotics
-Digital Signal Processing

Read less
New digital technologies are transforming the workplace as companies improve their operational efficiencies and grow using new hybrid business models. Read more
New digital technologies are transforming the workplace as companies improve their operational efficiencies and grow using new hybrid business models. This Master's degree develops your career with this in mind, giving you the knowledge and skills to develop and work with the next generation of smart technologies.

Read less
Why this course?. This course provides you with a broad introduction to the issues encountered and techniques required in developing advanced mechatronic products and automation systems. Read more

Why this course?

This course provides you with a broad introduction to the issues encountered and techniques required in developing advanced mechatronic products and automation systems.

Mechatronics and automation is becoming an increasingly important discipline in today’s digital society. New products have been designed applying mechatronic principles. Consumers and society have benefited tremendously from these new intelligent products that include:

  • the latest mobile phones with mechatronic features
  • intelligent robotic vacuum cleaners
  • intelligent wheelchairs

This course trains you to:

  • lead mechatronic and automation product development
  • contribute as team members to future mechatronic product development
  • provide expertise as mechatronic “specialists”

The course is aimed at:

  • graduates from relevant courses, who wish to study mechatronics and automation as their chosen career
  • those currently working in mechatronics and automation who wish to enhance their theoretical grounding and practical skills

You’ll study

You'll take a number of compulsory and optional modules. The postgraduate group project provides you with industry-related training.

Major projects

Haptic Sensing & Display for Telepresence, VR and Design

This project consists of an investigation and design of simple haptic sensing and display system.

Periscopic & Flexible Camera Extension

This project involves the design and building of a camera or camera extension. 

Facilities

The course is supported by a state-of-the art digital design and manufacture studio and prototype workshops. They provide:

  • the latest 3D visualisation technology
  • digital modelling
  • a computer-aided engineering systems development environment
  • digital model rapid prototyping machines

Accreditation

Accreditation is being sought for this programme from the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Accreditation is being sought for this programme from the Institution of Engineering Designers (IED) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Accreditation has been awarded for this programme from the Institution of Mechanical Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Learning & teaching

Teaching methods include:

  • lectures
  • tutorials
  • practical laboratories

Assessment

Assessment is by written assignments and examinations.



Read less
The programme provides and cultivates interdisciplinary engineering skills, which are based on the systematic combination of knowledge and methods within… Read more

The programme provides and cultivates interdisciplinary engineering skills, which are based on the systematic combination of knowledge and methods within the fields of mechanical, control and computer engineering, thereby enabling the graduates to effectively solve complex technical problems related to design, analysis, quality assurance, maintenance, monitoring and diagnostics of macro and micro mechatronic systems.

Studies

Mechatronics – engineering „decathlon“

Studies in Mechatronics occupy the crossroads of several engineering sciences and allow to gain and selectively deepen the knowledge and practical skills in mechanics, control systems, electronics and information technology through application of systems approach. The programme encompasses a wide range of elective courses, which provide favorable conditions for students to specialize in the preferred domain of mechatronics: from structural design to adaptive control, from product development to maintenance, from macro to micro mechatronics systems. The accumulated multidisciplinary background enables the graduates to opt for a research-oriented carrier by pursuing PhD degree in mechanical engineering or other fields related to mechatronics.

Knowledge and skills

Multidisciplinary competences for creative problem solving

Modern industry faces an increasing shortage of versatile professionals, who possess a wide-ranging engineering skillset. In this programme students gain knowledge in technical project management, integrated product development, computer-aided design and manufacturing. The syllabus focuses on methods and tools applied for design and analysis of electromechanical, automated, robotic, control and embedded systems as well as introduces to the methods and tools used in production information systems, nanoengineering, machine monitoring and diagnostics. These multidisciplinary courses provide a solid foundation for a graduate to become effective in design, development, installation and maintenance of a wide range of complex machinery and devices. It is not uncommon that experts in mechatronics take a leading role in the process of innovative product development.

Career

Mechatronic qualifications meet the needs of modern industry

The engineering industry is among the largest employers, therefore the students in Mechatronics have an ample selection when planning their carrier path. In Lithuania alone there are about 2000 companies, where many job positions are related to mechatronics to some extent. Therefore, the graduates are successfully employed in nearly all manufacturing and service sectors, where they pursue carriers as CAD designers and product developers, research analysts, automation and operation engineers, instrumentation and quality control engineers, maintenance and support engineers as well as sales engineers, technical consultants or project managers. Alternatively, the graduates may embark on a research path within the academia and R&D organizations or establish start-ups in order to develop and commercialize high added-value mechatronic products.

Demand

Competitive advantage in the job market of today and tomorrow

Due to interdisciplinary knowledge and skills the graduates of Mechatronics are valued by employers as being able to more rapidly adapt to specific requirements of a particular engineering-oriented job position. This professional flexibility facilitates pursuit of various carrier paths within different manufacturing industries as well as within technical service sector. Experts in mechatronics are crucial in highly innovative and internationally competing manufacturing companies, where process automation is inevitably based on mechatronic technologies. Mechatronics engineers are particularly welcome in industrial and R&D sectors of the developed countries, where smart macro/micro-mechatronic systems are continually developed and implemented in advanced technological machinery, robotics, medical and testing devices, aerospace and automotive equipment.

Infrastructure

The most advanced mechatronics laboratories in Lithuania

KTU pioneered the studies in mechatronics in Lithuania and has the long-standing experience in the field as well as provides open access to a wide range of the state-of-the-art educational and research facilities. As part of their curriculum, the students acquire useful hands-on experience in various mechatronics, robotics and clean-room laboratories.



Read less
About the course. Mechatronics MSc at DMU is one of the longest established specialist courses of its kind in the UK. Read more

About the course

Mechatronics MSc at DMU is one of the longest established specialist courses of its kind in the UK. The Mechatronics MSc is accredited by the Institution of Engineering and Technology (IET), and focuses on enabling you to become proficient in communicating across a range of different disciplines, and delivering optimised engineering solutions using an integrated multidisciplinary mechatronics approach. You will be exposed to a broad range of engineering disciplines, learn to solve multidisciplinary mechatronics problems and develop the skills to apply a mechatronic approach to the solution of technical problems. All course content is relevant to modern day practise as our research informs our teaching, ensuring the course content covers current industry topics and issues. You also have the option to undertake a year-long work placement as part of this course, gaining valuable experience to apply for and enhance your practical and professional skills further.

Reasons to Study

• Accredited by the Institution of Engineering and Technology (IET)

ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Graduate employability

Mechatronic engineers are in high demand as more industries seek to apply advances across a range of engineering disciplines

• Enjoy access to state-of-the-art facilities

including dedicated mechanical, electrical and electronic laboratories especially suited for mechatronics, as well as an for the manufacture of student designs

• Industry placement opportunity

you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Work with leading research groups

you will be offered opportunities to work on projects with research groups within the faculty, including the Centre for Advanced Manufacturing Processes and Mechatronics, that are engaged in high-class, research and industrial collaboration and consultancy

• Course content relevant to modern day practice

our research informs our teaching, ensuring the course content covers current industry topics and issues

• Excellent graduate prospects

graduates enjoy exciting career opportunities in a range of fields such as robotics and automation, manufacturing, aerospace, material processing, energy and power.

Modules

First semester (September to January)

• Electromechanics

• Mechatronic Systems - Engineering and Design

• Engineering Business Environment and Energy Studies

• Programming and Software Engineering

Second semester (February to May)

• Machine Vision, Robotics and Flexible Automation

• Engineering Systems: Dynamics and Control

• Microprocessor Applications and Digital Signal Processing

• Research Methods

Individual Project (Stage three)

This research can be industrially-based or linked to an industrial partner, attached to one of the mechatronic-related research teams within the faculty or in other collaborating institutions. The research project should be in an area relevant to Mechatronics, where clear evidence of the ability to solve a real multidisciplinary problem is demonstrated. The project assessment involves a formal presentation, production of a technical paper and a thesis.

Optional placement

We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

Teaching is delivered through a variety of methods including lectures, tutorials and laboratories. You will be expected to undertake self-directed study.

Contact and learning hours

For taught sessions you will attend eight modules with a total of 48 hours (four hours per week for 12 weeks each), with eight hours per module per week of average additional self-directed study. For the individual project you normally will spend 13 weeks working five days (eight hours per day) a week to complete it, and have one hour per week contact time with your supervisor.

Academic expertise

Research is carried out by the Mechatronics Research Centre, which holds a considerable number of UK and EU research project grants and has collaborative research links with more than 100 national and international organisations. The group is internationally regarded and specialises in machine design, control and simulation, fluid power systems and motion control.

As part of your studies, you will be offered opportunities to work on projects with research groups within the faculty that are engaged in high-class, leading-edge research and industrial collaboration and consultancy.

During the project element of the course, the Intelligent Machines and Automation Systems (IMAS) Research Laboratory provides access to dedicated research facilities

To find out more

To learn more about this course and DMU, visit our website:

Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:

http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students

http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx



Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Why this course?. Modern manufacturing engineers not only need to be experts in the latest classic manufacturing technologies – they need to know how to exploit the power of Digital Manufacturing to stay competitive in an increasingly global digital market. Read more

Why this course?

Modern manufacturing engineers not only need to be experts in the latest classic manufacturing technologies – they need to know how to exploit the power of Digital Manufacturing to stay competitive in an increasingly global digital market. This course helps you to get a deeper insight into the necessary cyber-physical technologies and new developing business models.

This course is ideal for graduates wishing to transfer smoothly and effectively to a career in the digital, creative and business services oriented sector of the manufacturing industry.

Digital Manufacturing is technology-enabled manufacturing that uses the latest developments in Information and Communication Technologies (ICT) to transform, augment and boost traditional manufacturing through new digital technologies and thinking.

Industry 4.0 concepts are revolutionising the world and modern industry is adopting rapidly and at a vast scale, creating new business models and digital technologies. Products are becoming increasingly customisable and interactive.

The power of digital manufacturing also allows creating agile and autonomous production processes that can deliver at scale through smart global digital communication technologies. Industry business models are also shifting significantly; extensive mass customisation is augmented by direct prosumer engagement and services become instantaneous and ubiquitous.

Digital Manufacturing utilises Industry 4.0 technologies such as Cyber Physical Systems, Industrial Internet of Things, Additive Manufacturing and Autonomous Mechatronic Systems. Digital Manufacturing also feeds into new business models such as Through-Life Engineering and Cloud Manufacturing – all extremely hot topics with vast industrial as well as academic potential.

Students will develop specialist skills in:

  • digital manufacturing concepts
  • manufacturing automation
  • mechatronic system design
  • Design for Industry 4.0 and smart products
  • knowledge & information management for engineers

Major projects

During the programme, you'll undertake an individual project and a group project.

For group projects, you'll have the opportunity to work with fellow students and an industrial client to address a practical problem. You'll gain direct industry experience, develop skills and manage a project through to completion. Previous students have worked with major organisations such as Rolls Royce or BAE Systems, as well as local Scottish SMEs.

For individual projects, you'll have the opportunity to combine the skills learned in other course modules and apply them to an industry-involved or funded project within a specific area of manufacturing.

Facilities

This unique and brand new MSc programme is based within the Department of Design, Manufacture & Engineering Management (DMEM), the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

The Advanced Forming Research Centre (AFRC) near Glasgow Airport is hosted by DMEM. The AFRC is a powerful platform with very strong links into industry and host to the latest manufacturing technologies. This gives students direct access to the latest high-tech equipment. The AFRC has invested £35M in equipment for the development of forming and forging technologies.

Our facilities provide you with a large range of rapid prototyping and manufacturing tools and machinery.

The brand new Advanced Digital Manufacturing Facility gives you hands-on access to latest IoT devices that are used in class and that you can also use in your projects. This will help you to design, prototype, and manufacture as well as perform research on a broad range of items.

Careers

Digital Manufacturing is at the top of all international agendas and experts in this field are highly sought after. According to the UK Commission’s Employer Skills Survey, students with an evidenced advanced knowledge in Digital Manufacturing have a very high chance of getting lucrative positions in industry after their studies.

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade. Digital Manufacturing is the digital motor that can significant boost UK business. This course introduces latest state-of-the-art knowledge and practical hands-on insight into:

  • Digital manufacturing concepts
  • Manufacturing automation
  • Mechatronic systems design techniques
  • Design for Industry 4.0 and Smart Products


Read less
The Masters in Mechatronics is a fusion of mechanical, electrical, electronic and control engineering. Modern industry depends for its success in global markets on its ability to integrate these subjects into both the manufacturing process and innovative products and systems. Read more

The Masters in Mechatronics is a fusion of mechanical, electrical, electronic and control engineering. Modern industry depends for its success in global markets on its ability to integrate these subjects into both the manufacturing process and innovative products and systems.

Why this programme

  • Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
  • You will learn how to apply design synthesis and analysis techniques within a coherent range of subjects in mechatronic engineering.
  • You will learn how to utilise specific software tools to support mechatronic system synthesis and analysis activity, and professionally plan, report and present the results of multidisciplinary project activity.
  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people such as James Watt.
  • This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Mechatronics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses normally offered include

  • Data signal processing
  • Integrated system design project.

Optional courses

  • Advanced manufacture
  • Auto vehicle guidance systems
  • Computer communications
  • Control
  • Fault detection, isolation and reconfiguration
  • Lasers
  • Power electronics and drives
  • Real-time embedded programming
  • Robotics 4.

Career prospects

Career opportunities include manufacturing production systems; system design and manufacture; product engineering and manufacture.

Graduates of this programme have gone on to positions such as:

Senior Software Engineer at Wipro Technologies.



Read less
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
In today's uncertain global competition platform and economy, manufacturing and engineering are two of the most important pinnacles for a sustainable growth of any country. Read more
In today's uncertain global competition platform and economy, manufacturing and engineering are two of the most important pinnacles for a sustainable growth of any country. Many engineering companies require graduates who can demonstrate not only technological, but also managerial and entrepreneurial skill sets. You will be taught how to select advanced manufacturing processes and materials when making new products, and how to turn innovative ideas into real products quickly, timely and within the constraints of available resources, enhancing your employability.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features

-A balanced syllabus blends aspects of technology and management to create a unique skill set, which is much sought after in industry.
-Academic teaching is also complemented by expert speakers from industry, keeping you up to date with the challenges and developments in the real world.
-Many modules are supported by practical workshops using the latest equipment and software. Such practical skills can easily be transferred into the working environment.

What will you study?

You will learn how to analyse complex technical problems and challenges faced by many real-world engineering companies of different sizes. You will also study the operational issues experienced by these companies through real case studies, and how to implement logical solutions under different scenarios. In addition, you will be able to measure the potentials of an engineering company not just through its technological adaptation but also from the entrepreneur viewpoint.

Throughout the course, you will have many hands-on sessions to practise what you have learned in the classroom. These practical skills will be obtained through using specialist software and hardware in engineering functions analysis, CAD/CAM, finite element modelling, operation management, quality analysis, business decision modelling, supply chain management and resources simulation. The project dissertation will allow you to develop a chosen field of knowledge which will complement your career ambition. Teamwork, group presentations, case studies and industrial speakers are other highlights of the course, enhancing your learning experience and employability.

Assessment

Coursework, group presentation, research project and exam.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Advanced CAD/CAM Systems
-Mechatronic Design and Automation
-Engineering Individual Project

Option modules (choose one)
-Advanced Stress Analysis and Materials
-Industrial Operation Management and Resources Simulation
-E-engineering Systems
-Green Engineering and Energy Efficiency

Read less
This course, accredited by the Institution of Mechanical Engineers (IMechE), provides an excellent opportunity to improve your current technical portfolio with a spectrum of engineering operations and project management skills. Read more
This course, accredited by the Institution of Mechanical Engineers (IMechE), provides an excellent opportunity to improve your current technical portfolio with a spectrum of engineering operations and project management skills. As a result, you will enhance your employment prospects and your ability to apply for senior engineering management roles.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The course is designed to complement your engineering degree with a rich spectrum of engineering and project management skills.
-Academic teaching is supported by specialist speakers from industry, keeping you up to date with the challenges and developments in the real world.
-Skills learnt in hands-on practical sessions using the latest software are easily transferred into any working environment.

What will you study?

You will learn how to apply advanced project management and resource optimisation skills, and will be able to identify, evaluate and recommend solutions to critical engineering management problems that need improvement. You will study the important ingredients of running a successful business, and how to improve its operations, productivity and competitiveness by using different management techniques specific to engineering companies. You will be able to develop and manage new projects more effectively and within the given constraints in functions, cost and time. You will also learn how to expand your business through deploying the latest e-commerce and IT techniques.

Throughout the course you will have many hands-on sessions to practise what you have learned in the classroom. These practical skills will be obtained through using specialist software in operation management, quality analysis, business decision modelling, supply chain management and resources simulation. The project dissertation will allow you to develop a chosen field of knowledge which will complement your career ambition. Teamwork, group presentations, case studies and industrial speakers are other highlights of the course, enhancing your learning experience and employability.

Assessment

Coursework, software session reports, group presentation, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Projects and Risk Management
-Industrial Operation Management and Resources Simulation
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Engineering Individual Project

Option modules (choose one)
-E-engineering Systems
-Green Engineering and Energy Efficiency
-Mechatronic Design and Automation

Read less
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies. Read more

This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies.

This one year course is intended for honours (or international equivalent) graduates in mechatronics, mechanical or mechanical related engineering (eg automotive, aeronautical or design), physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major mechatronic engineering themes such as:

-Mechatronics

-Robotics

-Industrial automation

-Embedded systems

-Instrumentation and drives

You have the opportunity to undertake in-depth studies through research projects. Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of mechatronics to practical design, make and test investigations.

General areas for project work include:

-Mechatronics

-Mobile robotics

-Industrial robotics

-Microelectronic-mechanical systems

-Computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The course has been accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.



Read less

Show 10 15 30 per page



Cookie Policy    X