• University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Leeds Beckett University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"mechanical" AND "vibrati…×
0 miles

Masters Degrees (Mechanical Vibration)

  • "mechanical" AND "vibration" ×
  • clear all
Showing 1 to 15 of 27
Order by 
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
◾This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
◾The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
◾You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
◾This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

◾Advanced manufacture
◾Integrated engineering design project.

Optional courses

◾Advanced thermal engineering
◾Control
◾Desalination technology
◾Dynamics
◾Lasers
◾Materials engineering
◾Mechanics of solids and structures
◾Vibration.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechanical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechanical Engineering has been developed for students with different training backgrounds or from different educational origins; and it is particularly suitable if you currently work or intend to work in Mechanical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:
Technical Engineer at Bridon International Ltd
Mechanical Engineer in a university
Mechanical Engineer for Oil and Gas at AKER Solutions
Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
◾If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
◾You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
◾The programme is split into two semesters and a summer session. One semester will be based in the Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
◾In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
◾This programme has a September and January intake.

Aims of the programme:
◾To understand management principles and practices in an engineering environment.
◾To evaluate engineering information, and subsequent application of business and management.
◾To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

TThere are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course
◾Integrated systems design project.

Optional courses
◾Desalination technology
◾Dynamics
◾Materials engineering
◾Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and accountancy.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can either choose a topic from a list of MSc projects in Mechanical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾In addition to providing an in-depth area in engineering, the programme aims to give graduate engineers with little or no Management experience, the opportunity to develop the knowledge and skills needed for modern engineering or technology management.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in Mechanical Engineering industries.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:
Technology Engineer at Procter and Gamble
Quality Engineer at Worcester Bosch.

Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

Degree information

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules
-Advanced Computer Applications in Engineering
-Group Project
-Materials and Fatigue
-Vibrations, Acoustics and Control
-Project Management
-Power Transmission and Auxiliary Machinery Systems

Optional modules - one of the following subject to availability:
-Applied Thermodynamics and Turbomachinery
-Heat Transfer and Heat Systems
-New and Renewable Energy Systems

Dissertation/report
Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Top career destinations for this degree:
-Foreign Exchange Analyst, JP Morgan
-Mechanical Engineer, Lloyds Register
-PhD Mechanical Engineering, University College London (UCL)
-Graduate Trainee Engineer, Rolls-Royce
-Mechanical Engineer, Shanghai Electric

Employability
Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake.

Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of mechanical engineers in the UK, your skills will be in demand.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering a broad range of topics in mechanical design and analysis.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and choosing and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing materials to improve insulation and temperature control in pipelines and refineries • developing ultra-light solar and electric powered vehicles.

Course structure

Core modules

  • engineering principles
  • mechanical engineering principles
  • project and quality management
  • international product development (group project)

Options

  • equipment engineering and design
  • competitive design for manufacture
  • advanced CAD/CAM
  • industrial applications of finite element methods
  • advanced vibration and acoustics
  • competitive materials technology 

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

Mechanical engineering is an area with a high demand for skilled graduates. The government has identified this sector as key for driving growth, and the skills you learn on this course prepares you for a highly paid career.

Our graduates have gone on to roles including • design engineer, Rolls-Royce • engineer, GE Aviation • assistant engineer, Boeing • mechanical engineer, Mott Macdonald • design engineer, Siemens • sub-sea turbine engineer, E.ON.

As a mechanical engineer, you make a major contribution to the built environment, the economy and the quality of life of every member of society. Mechanical engineering is ever-changing and offers diverse career opportunities, with plenty of potential to transfer between career routes.

You can move into various industries including • aerospace • automotive • transport • building services • medical engineering • sport equipment design • power generation • alternative energy • product testing • project management.



Read less
This course is designed to provide an advanced level of knowledge and understanding in mechanics, materials selection, manufacturing, mechatronics, control, plus computer-aided design and engineering techniques to design and develop integrated mechanical systems. Read more
This course is designed to provide an advanced level of knowledge and understanding in mechanics, materials selection, manufacturing, mechatronics, control, plus computer-aided design and engineering techniques to design and develop integrated mechanical systems.

Professional Accreditation

This course is accredited by the Institution of Mechanical Engineers.

Why Bradford?

-This course is accredited by the Institution of Mechanical Engineers
-The course is carefully designed to ensure all-round growth of the student – developing intellectual knowledge and understanding, discipline-specific expertise, as well as personal and transferable skills. Graduates gain technical depth, and broadening in terms of the ability to innovate, exposure to other branches of engineering, and enhanced research skills. In addition, leadership and managerial strengths are cultivated that can lead to Chartered Engineer (CEng) status.
-Participants benefit from learning advanced principles of the design and control of mechanical systems along with computational and simulation methods to ensure reliability and robustness of mechanical systems. They will gain knowledge in vibration, computational fluid dynamics, and manufacturing simulation. Students will learn to use industry-standard computational tools and analysis packages in the advanced analysis, design and evaluation of complex mechanical systems and numerical methods for modelling and analysing engineering problems.

[[Modules
-Interdisciplinary Competitive Design
-Engineering Vibration
-Design Optimisation
-Materials & Manufacturing Processes
-Advanced Manufacturing Technology
-Computational Fluid Dynamics
-Research Skills
-Advanced Solid Mechanics
-Polymer Engineering
-Supply Chain Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Our graduates find employment in a very wide range of engineering and manufacturing environments, from the aerospace, transportation and automotive sectors to process industries such as oil and gas, utility companies (e.g. water and electricity), as well as research and development. Employers of recent graduates include Ford Motor Company, Cummins, Jaguar Land Rover, Rolls-Royce and Cameron.

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
This course is for practicing engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. Read more

This course is for practicing engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies.

It increases your career potential by improving your

  • knowledge and experience of mechanical engineering
  • technical and problem solving skills
  • management skills
  • ability to take on greater responsibility

You also develop your understanding of current best practice in the theory and application of leading edge technologies, processes and systems in mechanical engineering.

You study

  • two management modules
  • five technical modules
  • one optional module

Option modules include • advanced manufacturing technology • competitive design for manufacture • computational flow dynamics (CFD) • sustainability, energy and environmental management.

The international product development module involves working in multidisciplinary teams to develop a new product in a global market. This develops much sought after advanced technical and business skills. The project provides a supported environment to develop your ability in an area of your interest.

Professional recognition

This course is accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council and will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

Course structure

Core management modules

  • finance and marketing
  • project and quality management

Core technical modules

  • advanced vibration and acoustics
  • CAD/CAM
  • equipment engineering and design
  • group project – international product development

Option modules

One from

  • competitive design for manufacture
  • sustainability, energy and environmental management

MSc

  • project and dissertation (60 credits)

Assessment

  • examination
  • coursework
  • project reports

Employability

If you are a new graduate, this course gives you the knowledge and skills to begin a career as a technical specialist in mechanical engineering. If you are already employed in mechanical engineering, it improves your career potential and can lead to leadership roles with greater responsibility. It can also help towards a career in engineering research or teaching.



Read less
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. Read more
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. UNB’s mechanical engineering program offers students exciting and diverse program options including: biomedical engineering, instrumentation and control, manufacturing engineering, materials characterization and processing, and mechatronics.

Students have access to various labs, and the department is linked with various research groups and institutes, for example, the Advanced Manufacturing Lab (High performance machining, manufacturing and materials characterization), Robotics and Mechanisms Laboratory, Silicon Hall (research lab for micro & nano fabrication and bionanotechnology), Bioenergy and Bioproducts Research Lab, Institute of Biomedical Engineering.

Research Areas

-Acoustics & Vibration
-Advanced Process Controls
-Advanced Manufacturing and Materials Processing
-Biofuels and Biomass Processing
-Biomedical Engineering and Biomaterials
-Composites
-High-performance machining
-Laser machining micro/nano processing
-Material Characterization
-Multiscale modeling in solid and fluid mechanics
-Mechatronics & Design
-Nanostructured Coatings
-Renewable Energy Systems
-Robotics & Applied Mechanics
-Smart Sensors
-Solid Mechanics
-Thermofluids & Aerodynamics

Read less
The IOA Diploma in Acoustics and Noise Control is widely recognised as the educational qualification of choice for professional practitioners in acoustics, noise and vibration. Read more
The IOA Diploma in Acoustics and Noise Control is widely recognised as the educational qualification of choice for professional practitioners in acoustics, noise and vibration. It can help you securing a career in related disciplines including environmental health, mechanical engineering, building services engineering, architecture, urban planning, health and safety and the music industry.

The Diploma provides sufficient specialist academic training to satisfy the educational requirements for membership of the Institute of Acoustics, the most highly regarded professional membership in the acoustics, noise and vibration industry. The Diploma has been taught since 1975 and is well-known for providing a high level training in acoustics and noise control.

This is a professionally focused qualification and practical work is an essential part of the course, giving you direct experience of modern practices and measurement equipment.

The course runs part-time (one day a week) over one year, so you can manage your studies around existing work commitments. You'll have access to our extensive on-site and electronic library and Learning Resource Centre to support your learning.

LSBU has been offering courses in Acoustics for over 35 years, and houses the only centre for study in the South-East with full-size reverberant and anechoic chambers as well as an exceptionally well equipped and staffed laboratory, with access to the very latest instrumentation and technology.

Members of the teaching team are all highly-experienced and award-winning. In addition, all are actively involved in research and consultancy, which enables staff to draw on the latest industry developments in both lectures and practical work.

Successful completion of IOA Diploma exempts you from five out of eight modules of the LSBU MSc Environmental and Architectural Acoustics, if you decide to continue studying onto Masters-level.

Modules

General Principles of Acoustics (GPA)
Laboratory
Building Acoustics
Noise and Vibration control
Project

The GPA Module involves around 120 study hours including coursework and tutorials and each Specialist Module about half of this study time.

Teaching and learning

Students learn through a combination of tutorials, lectures, and off-site visits. The Laboratory module consists entirely of hands-on experiments, and the Project module is practical investigative work, conducted under the supervision of a tutor where necessary.

Members of the teaching team are all highly-experienced and award-winning lecturers. Senior IOA Diploma teacher Bob Peters is a member of the IOA education committee and author of book Acoustics and Noise Control (3rd edition), widely used by students studying the Diploma.

Professional links

This course meets the educational requirements for membership of the Institute of Acoustics (IOA). Membership of this professional body can provide you with contacts and networking opportunities, and it's a good platform on which to build your career.

The department has extensive links with industry. This means students have the opportunity to go on site visits, receive guest lectures, take part in research initiatives, go to networking events and collaborate on projects with professionals working in the field.

Teaching makes extensive use of industry case studies, consultancy and research to demonstrate theory and best practice. Some of our industrial links include:

• Sharpsredmore Partnership
• Brookfield Europe
• Anne Kyyro Quinn Design
• Peter Mapp Associates
• Vanguardia Consultants
• RBA Acoustics
• Capita Symonds
• London Philharmonic Orchestra
• Royal Academy of Music
• Sound Research Labs
• Telent Technical Services

Employability

This course provides the specialist academic training needed to satisfy the educational requirements for corporate membership of the Institute of Acoustics (IOA) and it is recognised as a valid qualification towards achievement a Chartered Engineer status (CEng).

The Diploma is well regarded in other countries including the USA, Canada and Australia.

Graduates are particularly sought after in the acoustics, noise and vibration control related industries. Other industry sectors such as Architectural, Building Services Engineering, Sound Engineering, Health and Safety, Environmental Health and Civil Engineering seek this qualification for some of their employees and projects.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
This MSc programme builds on the success of our undergraduate Engineering with Business Finance programme and is designed to give graduates with a first degree in a relevant numerate subject the engineering, management and finance knowledge and skills necessary to work on engineering projects, and in business and finance. Read more
This MSc programme builds on the success of our undergraduate Engineering with Business Finance programme and is designed to give graduates with a first degree in a relevant numerate subject the engineering, management and finance knowledge and skills necessary to work on engineering projects, and in business and finance.

Degree information

Core engineering content concentrates on areas of new and emerging technologies and materials combined with modules in project management and financial markets and institutions. Students undertake two engineering projects (a group design project and an individual project) which integrate the knowledge acquired through the taught modules.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), a group design project (30 credits) and the individual research project (60 credits).

Core modules
-Materials and Fatigue
-Project Management
-Financial Institutions and Markets
-New and Renewable Energy Systems

Optional modules
-Advanced Computer Applications in Engineering
-Vibration, Acoustics and Control
-Compliance, Risk and Regulation
-Entrepreneurial Finance
-Numerical Analysis for Finance

Dissertation/report
All students undertake a group design project and an individual research project. Both culminating in a substantial dissertation. The group project focuses on creativity and design, teamwork, project management and business planning and feasibility. The research project evolves around student research interests; it often has industry input and develops high-level presentation, critical thinking and research skills.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, tutorials, seminars, laboratory and project work, workshops and problem classes, all of which frequently draw upon real-life industrial case studies. Assessment is through examinations, coursework, laboratory reports, presentations, the group design project and the individual research project.

Careers

Graduates of this programme will be well placed for a future career within engineering, project management, finance, investment banking or IT sector. For example, as part of the programme you will complete modules in project management and finance, utilise the UCL’s virtual trading room that uses Reuters’ electronic platform and receive guidance on how to work toward recognised certifications for the financial industries.

The first cohort of students on the Engineering with Finance MSc graduated in 2013. Their career destinations were a mixture of engineering and finance-related jobs with a small number pursuing a research degree.

Top career destinations for this degree:
-Advisory Service Supervisor, EnerTech Holding Company
-Analyst, Unspecified Investment Bank
-Statistics and Economics, University College London (UCL)
-Support Consultant Associate, Unspecified Financial Software Company and studying MSc Engineering with Finance, Unspecified Institution

Employability
The programme is delivered by leading researchers from across UCL, and students have plenty of opportunity to network and keep themselves informed about employment opportunities and skills required. Students are encouraged to participate in the UCL Financial Industry Series which organises high-impact conferences, debates and talks on financial topics, to pursue projects in industry and attend events organised by the UCL Finance community. Students also develop networks through the programme itself and through the department’s careers programme which includes employer-led events and individual coaching. This carefully designed programme is equipping our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

UCL Mechanical Engineering is a dynamic and vibrant place to study and do research. Located in central London it was the first mechanical engineering department in the UK. It has a long reputation for internationally leading research funded by numerous organisations and industry, and quality teaching.

The department benefits from state-of-the-art facilities and close links with industry, and has access to expertise in other disciplines, including engineering and management sciences within UCL.

The Engineering with Finance MSc has been accredited by the Institute of Mechanical Engineers (IMechE).

Read less
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding. This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. Read more

Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding.

This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. It is ideal for continuing professional development and updating technical skills.

You study eight taught modules drawn from a wide choice of technical and management modules. This gives you advanced tuition in areas of engineering tailored to your career needs such as design, manufacturing, materials, networking or electronics and telecommunications.

We emphasise applying knowledge to relevant workplace skills in areas such as

  • design, manufacture, electronics, telecommunications and information technology, networking and materials
  • core management disciplines of quality, finance and marketing and others

The international product development module involves working in multidisciplinary teams to design and develop a product in the global market.

This flexible course helps you to develop your career based your needs, and helps you on your path towards Chartered Engineer status.

Professional recognition

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), on behalf of the Engineering Council, for the purposes of partly meeting the academic requirement for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

This course is also accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council and will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

You choose a combination of management, technical and optional modules from a choice of 36. Your choice must total eight 15-credit modules and be agreed with your course leader. At least four must be technical modules.

Optional management modules

  • finance and marketing
  • project and quality management
  • management of strategy, change and innovation
  • lean operations and six sigma
  • manufacturing systems

Optional technical modules

• group project - international product development • competitive materials technology • advanced CAD/CAM • competitive design for manufacture • advanced manufacturing technology • advanced metallic materials • sustainability, energy and environmental management • computer networks • communication media • network applications • communication engineering • digital signal processing • applicable artificial intelligence • microprocessor engineering • software engineering • operating systems • object oriented methods • digital electronic system design • VLSI design • industrial applications of finite element methods • industrial automation • robotics • machine vision • equipment engineering and design • control of linear systems • advanced investigatory techniques for materials engineers • advanced control methods • advanced vibration and acoustics

MSc

  • project and dissertation (60 credits)

Assessment

By final examination, coursework and project reports    

Employability

Graduates in technical subjects can broaden their experience in mechanical manufacturing, electronics and information technology, networking, materials and management areas.

The flexible choice of modules allows you to tailor the course to your particular needs and this can enhance career prospects in the engineering industry, research, teaching and public service.

   



Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
This new degree programme is designed to equip graduates with a first degree in a relevant numerate subject with the technical, managerial and entrepreneurial skills and knowledge required to develop innovative engineering products and solutions and turn them to financial advantage. Read more
This new degree programme is designed to equip graduates with a first degree in a relevant numerate subject with the technical, managerial and entrepreneurial skills and knowledge required to develop innovative engineering products and solutions and turn them to financial advantage.

Degree information

The programme combines a first-rate engineering education in areas that are key to developing new technologies (namely, advanced materials, renewable energy and biomedical engineering) with modules on project management and entrepreneurship to equip students with the fundamentals and skills required to manage innovation. Students undertake a group and an individual project with a focus on innovation.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), an optional module (15 credits), an individual research project (60 credits), and an innovation and Group Design Project (30 credits).

Core modules
-Materials and Fatigue
-Project Management
-Mastering Entrepreneurship
-New and Renewable Energy Systems
-Applications of Biomedical Engineering

Optional modules - students choose one of the following:
-Advanced Computer Applications in Engineering
-Vibration, Acoustics and Control
-Entrepreneurial Finance

Dissertation/report
All students undertake an Innovation and Group Design Project and an individual research project, both of which culminate in a substantial dissertation. The Group Project focuses on creativity and design, teamwork, project management and entrepreneurial skills. The research project revolves around student research interest; it often has industry input and develops high-level presentation, critical thinking and research skills.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, tutorials, seminars, laboratory and project work, workshops and problem classes, all of which frequently draw upon real-life industrial case studies. Assessment is through examinations, coursework, lab reports, presentations, the group design project and the individual research project.

Careers

Graduates will be well placed to understand new technologies, develop and use their creativity to identify needs and opportunities and generate innovative solutions, thus preparing them for successful careers in today's competitive, technology and knowledge-based economy.

Employability
This programme is delivered by leading researchers from across UCL, and students have plenty of opportunity to network and keep themselves informed about transforming ideas to business. For example, students will participate in the Entrepreneurship Lecture Series and are encouraged to attend an Enterprise Bootcamp workshop and also enter entrepreneurship competitions to pursue their innovative business ideas. Students also build up employer networks through the department’s careers programme which includes employer-led events and individual coaching. This carefully designed new programme will equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

UCL Mechanical Engineering is a dynamic and vibrant place to study and do research. Located in central London it was the first mechanical engineering department in the UK. It has a long reputation for internationally leading research, funded by numerous organisations, and industry and quality teaching.

The department benefits from state-of-the-art facilities and close links with industry and has access to expertise in other disciplines, including engineering and management science within UCL.

Read less

Show 10 15 30 per page



Cookie Policy    X