• University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University College London Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Newcastle University Featured Masters Courses
"mechanical" AND "design"…×
0 miles

Masters Degrees (Mechanical Design)

We have 489 Masters Degrees (Mechanical Design)

  • "mechanical" AND "design" ×
  • clear all
Showing 1 to 15 of 489
Order by 
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in mechanical. engineering. Practical guidance and feedback from experts from around the world. Read more

WHAT YOU WILL GAIN:

• Skills and know-how in the latest and developing technologies in mechanical

engineering

• Practical guidance and feedback from experts from around the world

• Live knowledge from the extensive experience of expert lecturers, rather  than just theoretical information gained from books and College

• Credibility and respect as the local mechanical engineering expert in

            your firm

• Global networking contacts in the industry

• Improved career choices and income

• A valuable and accredited Master of Engineering (Mechanical) or Graduate

 Diploma of Engineering (Mechanical)

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Mechanical)

  To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Production Engineering

• Robotics

• Manufacturing and Management Systems

• Industrial Automation Engineering

• Instrumentation, Control and Automation

PROGRAM STRUCTURE

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 - 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. Read more

This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. The School is a vibrant environment to study, we have 200 years of expertise in teaching engineering, high calibre facilities, strong links with industry and a vision to provide a modern world-class education. Our course integrates advanced engineering techniques with hands-on-learning to provide a complementary blend of skills desired by employers.

The course has fundamental modules in the areas of analytical and conceptual design with a wider range of options enabling you to individually tailor the course to meet your specific needs or interests.

We are curiosity driven and industry inspired and foster an environment in which our highly sought after graduates have fulfilled their potential.

Teaching and learning

The Mechanical Engineering Design MSc  is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Mechanical Engineering Design that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

For further information about the course content, please see the example programme structure .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The Mechanical Engineering Design MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation. For example there are regular industrial guest lectures and optional short courses delivered by companies such as National Instruments and Maxon Motors.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how Top employers target Manchester graduates.

After graduating with a Mechanical Engineering Design MSc you will be in a strong position to seek employment with companies such as: BP, Rolls Royce, GE Aviation, Airbus, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, DePuy International, GE Healthcare, E-ON, EDF, Sellafield, Apple.

Alumni profiles

Mr Suwapatch Autamapanyanan : Design Engineer at Innovative limited, Thailand

Mr Kyriacos Makris : Plant Engineer at Joannou & Paraskevaides, Cyprus

Destination of Leavers Survey

Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A selection of these destinations since 2010 are highlighted below:

  • GE Aviation (Design Engineer)
  • GE Healthcare (Edison Engineering Development Programme)
  • SEPLAT Petroleum Development Company (Drilling Engineer)
  • BMP Europe Ltd (Design Engineer)
  • The University of Manchester (PhD Researcher)
  • Formosa Prosonic (Design Engineer)
  • Hitachi Home & Life Solutions (India) Ltd (Executive - Quality Management)
  • Indra Limited (Mechanical Design Engineer)
  • NNPC-NETCO (Mechanical Engineer)
  • Shell Petroleum Development company (SPDC) (Oil and Gas Operator)
  • Triton Valves Ltd (Senior Engineer, Design and Development)

Accrediting organisations

The  Institution of Mechanical Engineers has accredited the Mechanical Engineering Design MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Mechanical Engineering Design MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.



Read less
The programme created by the cooperation in the educational project of the disciplinary areas of Design (School of Design), Mechanical Engineering (School of Industrial Engineering) and Materials Engineering (School of Industrial Process Engineering), has the objective of specialist training in three fundamental areas. Read more

Mission and goals

The programme created by the cooperation in the educational project of the disciplinary areas of Design (School of Design), Mechanical Engineering (School of Industrial Engineering) and Materials Engineering (School of Industrial Process Engineering), has the objective of specialist training in three fundamental areas: Design, Process and Industrial Production; Design Materials; Representation and Prototyping.
This programme has the objective of preparing a design figure who integrates the Design and “engineering” cultures, a professional able to provide a complete project dossier comprising product concept, via final and working design, and preparation of the documents necessary to go into production; who has particular skills in the choice of materials, in design methodologies in a virtual environment and in the impact of the technological aspects of production systems on the project.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

Career opportunities

The Master of Science graduate in Design & Engineering is able to link design culture with the most advanced technological and manufacturing potential and thus is able to contribute to the growth and consolidation of the value of Italian and foreign companies.

This study programme accepts applications to the 2nd semester only from candidates who have completed the following single courses during the 1st semester: Product Development Studio; I.C. Materials for Design

Applicants with a background in Engineering are not required to provide a portfolio. Applicants with a design background must upload a portfolio on their profile.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Design_Engineering_01.pdf
This programme results from the cooperation of three Schools: Design, Mechanical Engineering and Materials Engineering. It trains professionals who are able to provide a complete project: from the concept phase, through the development process up to the final product, including the making of the production drawings and documents. It trains designers who have particular skills in materials selection, design methodologies and assessment of the technological impact on item production. Graduates in Design & Engineering
will have all the means to link design culture with the most advanced technological and manufacturing potential, thus being able to contribute to the growth and consolidation of the value of Italian and foreign companies. Students can choose to apply in Product Development Studios that are more focused on product feasibility or product interaction. The programme is entirely taught in English; students may also choose courses that are taught in Italian.

Subjects

Among the available courses:
- Product Development Design Studio
- Mechanical Design
- Materials Selection Criteria In Design & Engineering
- Final Project Work
- Design For Manufacturing
- Reverse Modeling
- Virtual Prototyping
- Design Fundamentals
- Semiotics
- Cad - 3d
- Materials Experience
- Design History

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/design-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry. Read more

This MSc aims to build up your knowledge of the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Select from one of three specialist options and excel in a growing aerospace industry:

Who is it for?

This MSc course provides a taught engineering programme with a focus on the technical, business and management aspects that encompass aircraft design in the civil and military aerospace sectors.

Teaching integrates a range of disciplines required for modern aircraft design, for example:

  • Aircraft systems design
  • Avionic systems design
  • Design for manufacture
  • Initial aircraft design 
  • Operation and cost
  • Propulsion integration
  • Stability and performance 
  • Structural design and Airframe

Why this course?

Cranfield have been at the forefront of postgraduate education in aerospace engineering since 1946 with the Aerospace Vehicle Design being one of the original foundation courses of the College of Aeronautics. Graduates from this course also become members of the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

One unique feature of the course is that we have a range of external examiners, from industry and from academia who continually assess the quality of the course.

Cranfield University is very well located for students from all over the world, and offers a range of library, IT and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst achieving the right balance of work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes which are deemed desirable from graduates of the course. Panel members have included professionals from organisations such as:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

Accreditation

The MSc in Aerospace Vehicle Design, in part meets the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the required educational base for CEng registration.

Course details

The taught component of the Aerospace Vehicle Design masters is generally delivered from October to March (or March-August for the March intake). Modules for each option vary - please refer to MSc course option pages for descriptions of compulsory modules which must be undertaken. Students also have an extensive choice of optional modules to match their specific interests.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March (or March-August for the March intake), and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given the responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project progress a design from the conceptual phase through to the preliminary and detail design phases. Students will be required to run project meetings, produce engineering drawings and conduct detailed analyses of their design. Problem solving and project co-ordination must be undertaken on a team and individual basis. At the end of the project, the group is required to report and present findings to a panel of up to 200 senior engineers from industry and academia.

This element of the course is both realistic and engaging, and places the whole student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Students following the Structural Design option do not participate in the Group Design Project but instead undertake a more intensive individual project.

Watch past presentation videos to give you a taster of our innovative and exciting group projects

Individual project

The individual research project element aims to provide the training necessary for you to apply knowledge from the taught elements to research, and takes place from March to September (or October-February for the March intake). The project may be theoretical and/or experimental and can be selected from a range of topics related to the course as suggested by teaching staff, your employer or even focused on your own area of interest. 

Assessment

Refer to MSc course option pages for breakdown of assessment

Your career

The MSc in Aerospace Vehicle Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer roles. Graduates from the MSc in Aerospace Vehicle Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines. 

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Some example student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
To design modern efficient aircraft requires a complex combination of aerodynamic performance, lightweight durable structures and advanced systems engineering. This specialist . Read more

To design modern efficient aircraft requires a complex combination of aerodynamic performance, lightweight durable structures and advanced systems engineering. This specialist MSc Aerospace Vehicle Design option explores how different structural and systems elements can be designed and integrated using up-to-date methods and techniques.

Who is it for?

This option is suitable for those students wishing to gain an overview of the whole aircraft design process as well as the design of aircraft structures and systems. 

Why this course?

This Aircraft Design option aims to provide a comprehensive overview of whole aircraft configuration design as well as, structures and systems. A holistic teaching approach is taken to explore how the individual elements of an aircraft can be designed and integrated using up-to-date methods and techniques. You will learn to understand how to select and integrate specific systems such as fuel systems, and their effect on the aircraft as a whole.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes that are desirable for graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS) & Institution of Mechanical Engineers (IMechE) as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The Aircraft Design option consists of a number of mandatory modules and a minimum of 60 hours of optional modules, which are selected from optional modules. You are also required to complete a group design project and an individual research project.

A unique feature of the course is that we have four external examiners, two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Students are given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, landing gear, environmental control system, wing. The project will progress from the conceptual phase through to the preliminary and detail design phases. You will be required to run project meetings, produce engineering drawings and detailed analyses of your design. Problem solving and project co-ordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a large panel of senior engineers from industry.

This element of the course is both realistic and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation videos (YouTube) to give you a taster of our innovative and exciting group projects:

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest. It provides the opportunity for you to deepen your knowledge of an area that is of particular interest, and is often associated with a real-world problem that one of our industry partners is looking to resolve.

Previous Individual Research Projects include:

  • Ultra Long Range Science UAV Structure / Systems Development
  • Conceptual Design of a Hypersonic Space Launcher and Global Transportation System
  • Effect of Aerodynamics on the Conceptual Design of Blended Wing Body Aircraft
  • Review, Evaluation and Development of a Microlight Aircraft
  • Feasibility of the Application of Low Cost Scaled Aircraft Demonstrators.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

This MSc is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from this option have gone on to pursue engineering careers in disciplines such as structural design, stress analysis or systems design.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. Read more

Mission and goals

The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. The level of cultural education is raised during the first year by broadening the knowledge of advanced analysis methods, which in the second year are applied in specialisation subjects and a thesis. The first year is offered in the Milano Bovisa and Lecco campuses with the same study plan (the first year is not available in the Piacenza campus, which offers only the second year). Students can choose different previously approved study plans (PSPA) in the second year. Some are offered in the Milano Bovisa campus (“Impianti e Produzione” [Production Plants and Production], “Meccatronica e Robotica” [Mechatronics and Robotics], “Metodi e Tecniche di Prototipazione Virtuale” [Methods and Techniques for Virtual Prototyping], “Motori e Turbomacchine” [Engines and Turbomachinery], “Progettazione” [Design], “Materiali e Tecnologie Innovative” [Materials and Innovative Technologies] and “Veicoli Terrestri” [Ground Vehicles]). Others are offered in the Lecco campus (“Mechanical Systems Design” and “Industrial Production”) and one in the Piacenza campus (“Macchine Utensili e Sistemi di Produzione” [Machine Tools and Production Systems]).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Career opportunities

Graduates with a Laurea Magistrale (equivalent to a Master of Science) in Mechanical Engineering are technicians who can independently develop the functional, construction and energy-related aspects of innovative products, processes and systems in industry and in the advanced tertiary sector. On passing the State Professional Examination, Mechanical Engineering Graduates with a Laurea Magistrale (equivalent to a Master of Science) can ask to be included in the Register of Engineers (section A).

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mechanical_Engineering_04.pdf
The MSc Programme in Mechanical Engineering – Ingegneria Meccanica provides an academically challenging exposure to modern issues in advanced Mechanical Engineering.
The educational goal of the MSc Programme is to train highly qualified engineers, capable of playing different roles in the job market, by providing them with sound scientific, economic and technical competences, together with broad practical and professional skills needed for a successful career in a technologically advanced and rapidly evolving society.
The specialist in Mechanical Engineering, being involved in the design, production process and operation of products and systems, needs to develop a strong interdisciplinary background in machine design, with respect to functional requirements, dynamic and structural analysis, propulsion and engine systems, fluid mechanics, material properties and selection, manufacturing processes and production systems, operation and management of industrial plants, experimental techniques, mechatronics and industrial automation. The programme is taught in English. http://www.ccsmecc.polimi.it/en

Subjects

The 1st year is organised in the following compulsory modules: Control and Actuating Devices for Mechanical Systems, Applied Metallurgy, Energy Systems, Nonconventional Machining Processes, Machine Design, Mechanical System Dynamics, Mechanical Measurements, Configuration and Management of Production Systems.

In the 2nd year students will have the possibility to specialize the training, by choosing among the following tracks:
Milano Bovisa Campus: Production Systems, Mechatronics and robotics, Virtual prototyping, Internal Combustion Engines and Turbomachinery, Advanced Mechanical Design, Advanced Materials and Technology, Ground Vehicles.
Lecco Campus: Mechanical Systems Design, Industrial Production.
Piacenza Campus: Machine Tools and Manufacturing Systems.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
With the ever increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. . Read more

With the ever increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. 

This specialist option of the MSc Aerospace Vehicle Design provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

The course extent also covers future ATM systems which have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. 

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project.

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS). Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This option is comprised of a number of mandatory modules and a minimum of 60 hours of optional modules, selected from a list of options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, flight control system, or navigation system. The project will progress the design of the aircraft and avionic systems from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce system schematics and conduct detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of up to 200 senior engineers from industry. 

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines. 

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc.



Read less
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more

This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
  • This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
  • The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
  • You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
  • This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

  • Advanced manufacture
  • Integrated engineering design project.

Optional courses

  • Advanced thermal engineering
  • Control
  • Desalination technology
  • Dynamics
  • Lasers
  • Materials engineering
  • Mechanics of solids and structures
  • Vibration.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:

Technical Engineer at Bridon International Ltd

Mechanical Engineer in a university

Mechanical Engineer for Oil and Gas at AKER Solutions

Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.



Read less
Mechanical engineers are both generalists and specialists, bringing broad expertise and specialised mastery to their roles as project managers, leaders and innovators. Read more

Mechanical engineers are both generalists and specialists, bringing broad expertise and specialised mastery to their roles as project managers, leaders and innovators. As a student of GCU's MSc Mechanical Engineering, you'll continue in this tradition. The programme is designed to expand your core knowledge of the discipline while enhancing your skills as a specialist in either design or manufacture.

The programme was developed according to the UK Engineering Council's benchmark requirements for professional engineering, ensuring you'll enter the workforce with the relevant capabilities that employers value. It is also accredited by the Institution of Mechanical Engineers (IMechE). Furthermore, our industrial advisory board offers strong connections to industry.

GCU's mechanical engineering department contributes to important research in the discipline, investigating topics like materials and manufacturing, finite element analysis, computer-aided design and manufacture, and machine condition monitoring.

The MSc Mechanical Engineering curriculum encourages you to develop as a professional as well as an engineer.

  • Build your interpersonal skills to succeed as a team member and manager
  • Explore topics such as project planning and methodology, strategy and innovation, and computer-aided engineering
  • Practise managing resources and meeting project objectives
  • Choose from two options for specialisation: Design or Manufacture

When you study engineering at GCU, you'll join a welcoming community of learners and professionals. You'll find classmates and colleagues who are creative and entrepreneurial, committed to using their expertise to make a positive impact and advance the common good.

What you will study

The programme offers two specialist study options; Design and Manufacture. These options share a number of common modules that directly reflect the activities of a professional mechanical engineer. Students complete eight taught modules - four in trimester A and four in trimester B; and an MSc dissertation in trimester C.

  • Project Planning and Methodology
  • Strategy and Innovation
  • Advanced Computer-Aided Engineering
  • Condition Monitoring
  • Project
  • Specialist Modules (Design)
  • Specialist Modules (Manufacture)

Assessment methods

The taught modules are either assessed by coursework only or a combination of coursework and examination. In the later case the final mark is determined by weighted average of the two elements. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Professional accreditation

The development of these Masters options is in direct response to the specification of benchmark requirements for professional competence by the UK's Engineering Council (UK-SPEC). This programme is accredited by the Institution of Mechanical Engineers (IMechE).

Why choose this programme?

The MSc in Mechanical Engineering has very strong industrial links through its industry advisory board. The school participates in many research activities within the area of mechanical engineering. This includes; advanced materials and manufacturing processes, finite element analysts, computer-aided design and manufacture and machine condition monitoring.

HM Forces

In partnership with HM Forces, GCU has identified this programme is being particularly suited to military and ex-military men and women. Visit the HM Forces Careers Zone for more information on the services we provide.

Graduate prospects

Our graduates are appreciated by employers for their career-focused attitudes and socially driven perspectives. With skilled engineers in high demand, you can expect excellent job prospects in the field.

Graduates of the MSc Mechanical Engineering find employment in the oil and gas industry, defence, computer-aided engineering and building. They also work in mechanical design engineering, project engineering, manufacturing engineering and engineering sales.



Read less
A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Read more

A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Students will learn project management, design, computer-aided engineering, operation and optimisation of machinery, structural mechanics and integrity.

Who is it for?

Advanced Mechanical Engineering at Cranfield is unique in that it offers you a broad range of mechanical engineering projects with the added component of a management flavour. This provides the opportunity for you to enhance your mechanical engineering skill with a view to developing your career in the management of large engineering projects.

In addition to management, communication, team work and research skills, you will attain at least the following learning outcomes from this degree course:

  • Demonstrate knowledge, fundamental understanding and critical awareness of advanced mechanical engineering techniques necessary for solutions in the transport and energy sectors
  • Demonstrate systematic knowledge across appropriate advanced technologies and management issues to provide solutions for international industries and/or research organisations
  • Demonstrate the ability to acquire, critically assess the relative merits, and effectively use appropriate information from a variety of sources.

Why this course?

The MSc in Advanced Mechanical Engineering is differentiated from other courses available primarily by its industrial context through the strong links we have with national and international industry. We build our industrial links through research and consultancy, which allows us to provide practical and current examples to help illustrate learning throughout the course.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. We are very well located for visiting part-time students from all over the world, and offer a range of library and support facilities to support your studies. This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

This degree is particularly industrially focused; although the course does not at present have an industrial advisory board, the course staff are heavily involved in industrially funded and oriented research and development.

The Head of Department, for example, sits on the IMechE Offshore Engineering committee, two BSI committees, the Engineering Integrity Society and is Chairman of the International Ship and Offshore Structures Congress Offshore, Renewable Energy Committee. Course content is reviewed annually by the course team and project/group work is by and large related to the Department's industrially funded research.

Accreditation

This MSc degree is accredited by the Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the Advanced Mechanical Engineering masters is generally delivered from October until March and is comprised of eight compulsory taught modules. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The group project undertaken between October and April enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. You will put in to practice analytical and numerical skills developed in the compulsory modules.

The aim of the group project is to provide you with direct experience of applying knowledge to an industrially relevant problem that requires a team-based multidisciplinary solution. You will develop a fundamental range of skills required to work in a team including team member roles and responsibilities, project management, delivering technical presentations and exploiting the variety of expertise of each individual member. Each group will be given an industrially relevant assignment to perform. Industry involvement is an integral component for the group project, to give you first-hand experience at working within real life challenging situations. 

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups submit a written report and deliver a presentation to the industry partner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The aim of the individual research project is to provide you with direct experience in undertaking a research/development project in a relevant industrial or research area. You will make a formal presentation of your findings to a panel of academics and industry experts and submit a research thesis.

The individual research project component takes place from March to August.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work and supported by academic supervision.

Assessment

Taught modules 40% Group Project 20% Individual Research Project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment. The MSc in Advanced Mechanical Engineering takes you onto a challenging career in industry, government or research. The course reflects the strengths and reputation of Cranfield particularly in the energy, transport and management sectors. Graduates of this course have been successful in gaining employment in the following roles:

  • Mechanical Design Engineer at Siemens
  • Production Line Supervisor & Lean Implementer at GKN Land Systems
  • Staff Engineer at BPP Technical Services Ltd working on offshore oil and gas engineering.
  • Engineer at Det Norske Veritas
  • Management Associate at BMW Group UK Limited
  • Project Engineer at BASF Coatings S.A.


Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design. Read more
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design.

Based on research expertise within the Department of Mechanical Engineering, the programme covers an extensive range of innovative design techniques and approaches, reflecting how design impacts across all sectors of industry, and broadening your career opportunities as much as possible.

It will not only help prepare you for an exciting career in the industry, but also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Engineering Design you will:

- understand the issues associated with creativity and innovation
- develop knowledge and experience of the global commercial environment
- gain the expertise needed to manage engineering design projects and teams.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/design/index.html

Collaborative working

Our course includes traditionally taught subject-specific units and business and group-orientated modular work.

These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/TEME-AFM10.html) for more detail on individual units.

Semester 1 (October-January):
The first semester introduces the fundamental principles of new product design and development, advanced design and innovation techniques, and computer aid packages for design.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students.

Subjects covered

- Professional skills for engineering practice
- Advanced computer-aided design
- Engineering systems simulation
- Innovation & advanced design
- Materials in engineering design
- Product design & development

Career Options

Previous graduates of the University of Bath MSc in Engineering Dynamics and Control have gone on to careers in the UK and overseas in areas such as environmental design and design consultancies.

Recent graduates have secured jobs at:

Garrad Hassan
ABB Research
Dyson

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. Read more
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. On completion of the course, you will be able to:

- show a thorough understanding of the principles and theoretical bases of modern manufacturing techniques, automation, and production processes
- identify appropriate manufacturing systems for different production requirements and analyse their performance
- apply appropriate technology, quality tools and manufacturing methodology to design, re-design and continuously improve the manufacturing operations of engineering companies
- plan, research, execute and oversee experiments and research projects, critically analyse and interpret data, and effectively disseminate results
- work effectively as a member of a multidisciplinary team, be self-motivated, able to work independently and demonstrate leadership

Visit the website: http://www.ucc.ie/en/ckr27/

Course Details

The course is 12 months in duration starting in September and consists of 60 credits in Part I from September to March, and 30 credits in Part II from June to September. You take 10 taught modules from the list below to the value of 50 credits and also undertake a preliminary research project (ME6019) worth 10 credits in Part I. If you obtain a minimum of 50% in the taught modules and the preliminary project, you will be eligible to progress to Part II and undertake a major four-month research project (ME6020) worth 30 credits, and submit a dissertation leading to the award of the MEngSc degree.

ME6001 Manufacturing Systems (5 credits)
ME6002 CAD/CAM (5 credits)
ME6003 Production Management (5 credits)
ME6004 Operations Research and Project Economics (5 credits)
ME6007 Mechanical Systems (5 credits)
ME6008 Mechatronics and Robotics (5 credits)
ME6009 Industrial Automation and Control (5 credits)
ME6010 Technology of Materials (5 credits)
ME6012 Advanced Robotics (5 credits)
PE6002 Process Automation and Optimisation (5 credits)
PE6003 Process Validation and Quality (5 credits)
PE6007 Mechanical Design of Process Equipment (5 credits)
PE6009 Pharmaceutical Engineering (5 credits)
CE3010 Energy in Buildings (5 credits)
CE4016 Energy Systems in Buildings (5 credits)
CE6024 Finite Element Analysis (5 credits)
EE4012 Biomedical Design (5 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page05.html

Format

Each module typically consists of 24 lectures, 12 hours of continuous assessment, plus additional supplemental reading and study, carried out over one of two 12-week semesters from September to December (Semester 1), or January to March (Semester 2). The exact workload in each teaching period will depend on the choice of modules. In addition, a substantial weekly commitment to the project module ME6019 is expected over both semesters.

Assessment

Individual modules have different methods of assessment but this typically consists of a single end-of-semester examination in December or April/May, plus continuous assessment throughout the relevant semester. This continuous assessment may consist of a combination of in-class tests, formal laboratories or practicals, design exercises, project work, written reports and presentations. Any repeat examinations are held in August.

Students who pass but fail to achieve an average mark of at least 50% across the taught modules excluding the Preliminary Research Project (ME6019) or do not achieve a mark of at least 50% in the Preliminary Research Project (ME6019) will be eligible for the award of a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems). Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems).

Careers

In response to increasing demand for highly skilled graduates in the field of mechanical engineering applied to the manufacturing and pharma-chem industries, this course will produce mechanical engineering postgraduates who are proficient in the development and realisation of modern manufacturing, process and automation systems. This is achieved through developing an understanding of the concepts of manufacturing systems, and the skills to analyse, design and implement manufacturing systems in practice. This is combined with an understanding of process automation and operational management. The course will equip you with an-up-to date knowledge of manufacturing techniques and processes.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of mechanical engineers in the UK, your skills will be in demand.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering a broad range of topics in mechanical design and analysis.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and choosing and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing materials to improve insulation and temperature control in pipelines and refineries • developing ultra-light solar and electric powered vehicles.

Course structure

Core modules

  • engineering principles
  • mechanical engineering principles
  • project and quality management
  • international product development (group project)

Options

  • equipment engineering and design
  • competitive design for manufacture
  • advanced CAD/CAM
  • industrial applications of finite element methods
  • advanced vibration and acoustics
  • competitive materials technology 

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

Mechanical engineering is an area with a high demand for skilled graduates. The government has identified this sector as key for driving growth, and the skills you learn on this course prepares you for a highly paid career.

Our graduates have gone on to roles including • design engineer, Rolls-Royce • engineer, GE Aviation • assistant engineer, Boeing • mechanical engineer, Mott Macdonald • design engineer, Siemens • sub-sea turbine engineer, E.ON.

As a mechanical engineer, you make a major contribution to the built environment, the economy and the quality of life of every member of society. Mechanical engineering is ever-changing and offers diverse career opportunities, with plenty of potential to transfer between career routes.

You can move into various industries including • aerospace • automotive • transport • building services • medical engineering • sport equipment design • power generation • alternative energy • product testing • project management.



Read less

Show 10 15 30 per page



Cookie Policy    X