• University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Birmingham City University Featured Masters Courses
Swansea University Featured Masters Courses
"mechanical"×
0 miles

Masters Degrees (Mechanical)

We have 699 Masters Degrees (Mechanical)

  • "mechanical" ×
  • clear all
Showing 1 to 15 of 699
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Mechanical Engineering at Swansea maintains a high standard of teaching and research, set in a relaxed and sociable atmosphere. As a student on the Master's course in Mechanical Engineering, you will be provided with a high quality overview of the techniques of modern mechanical engineering, presenting examples of use from a wide range of disciplines and industries.

Key Features of MSc in Mechanical Engineering

The MSc Mechanical Engineering course is stimulating and our graduates are rewarded with excellent job prospects. It will equip you with the ability to make informed judgements on the most appropriate approach to a range of mechanical engineering problems.

The MSc Mechanical Engineering course covers the development of mechanical engineering tools, methods and techniques for problem solving, the ability to formulate an adequate representation of sets of experimental data, the use of these tools and techniques for real world applications, the ability to formulate an accurate representation of sets of experimental data, and business and management methods and their application in the field of engineering.

The research project undertaken as part of the MSc Mechanical Engineering course is industrially relevant and the topics of the course are of high industrial relevance.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc programmes are modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Modules

Modules on the MSc Mechanical Engineering course can vary each year but you could expect to study:

Strategic Project Planning

Additive Manufacturing

Entrepreneurship for Engineers

Optimisation

Composite Materials

Simulation Based Product Design

Advanced Thermo Fluid Mechanics

Advanced Solid Mechanics

Environmental Analysis and Legislation

Polymer Processing

Systems Monitoring, Control, Reliability, Survivability, Integrity and Maintenance

Process Metallurgy and Optimisation

Power Generation Systems

Accreditation

The MSc Mechanical Engineering course is accredited by the Institution of Mechanical Engineers (IMechE).

The MSc Mechanical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Links with Industry

Members of staff work closely with a range of industries through knowledge transfer projects, consultancy and strategic research, which informs the practical problems used in our teaching.

Within Wales we have close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises (SMEs). Across the UK there is or has been recent work with companies such as Astra-Zeneca, British Aerospace, Qinetiq, GKN and Rolls-Royce whilst further afield there is close working with companies such as SKF (Netherlands), Freeport (USA), One Steel (Australia), Barrick Gold (USA) to name a few.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quotes

“Every single day at the College of Engineering has been a learning process for me. The MSc in Mechanical Engineering involves leading world class professors, tutors and academics with whom we were lucky to be associated with. There is also a great peer group too.

I would like to pursue a PhD from Swansea University and become an entrepreneur. The College of Engineering has helped immensely with these ambitions.”

Arnab Dasgupta, MSc Mechanical Engineering



Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in mechanical. engineering. Practical guidance and feedback from experts from around the world. Read more

WHAT YOU WILL GAIN:

• Skills and know-how in the latest and developing technologies in mechanical

engineering

• Practical guidance and feedback from experts from around the world

• Live knowledge from the extensive experience of expert lecturers, rather  than just theoretical information gained from books and College

• Credibility and respect as the local mechanical engineering expert in

            your firm

• Global networking contacts in the industry

• Improved career choices and income

• A valuable and accredited Master of Engineering (Mechanical) or Graduate

 Diploma of Engineering (Mechanical)

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Mechanical)

  To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Production Engineering

• Robotics

• Manufacturing and Management Systems

• Industrial Automation Engineering

• Instrumentation, Control and Automation

PROGRAM STRUCTURE

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 - 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering

- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety

- Guidance from experts in the field of mechanical engineering technology

- Networking contacts in the industry

- Improved career prospects and income

- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for April 09, 2018. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies

- Applications of Mechanical Engineering Technologies

- Energy Systems

- Industrial Automation

- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel

- Design engineers

- Process technicians, technologists and engineers

- Process control engineers and supervisors

- Mechanical technicians, technologists and engineers

- Mechanical equipment sales engineers

- Pump and mechanical equipment operators

- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering

Structural Mechanics

Mechanical Drive Systems

A C Electrical Motors and Drives

Rotating Equipment Balancing, Alignment and Condition Monitoring

Hydraulics

Pneumatics

Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning

Process Plant Layout and Piping Design

Pipeline Systems

Pumps and Compressors

Mechanical Seals

Safe Lifting

Machinery Safety

ENERGY SYSTEMS

Energy Efficiency

Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation

Measurement and Control Systems

Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/mechanical-engineering-msc-ft-dtfmez6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

Module Overview
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. Read more

This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. It will also provide excellent preparation for those wishing to undertake a PhD. The MSc Advanced Mechanical Engineering is a broad-based programme covering an important and industrially-relevant portfolio of mechanical engineering modules, such as Biofuels and Combustion, Manufacturing Processes, MEMS, and Automation and Robotics. 

All the teaching is delivered by highly experienced and qualified members of academic staff who are at the cutting-edge of research in their respective fields. This programme will be attractive to graduates of mechanical engineering or related subjects.

With leading research into Advanced Mechanical Engineering, the University of Birmingham is the ideal location for bright graduates, looking for a solid and well-respected postgraduate qualification which will act as a springboard for a successful future. 

  • 120 credits of taught modules studied during October-April
  • 60 credits of project-based module carried out during June-September
  • Assessment methods include a range of examinations, assignments and projects

The MSc Advanced Mechanical Engineering is fully accredited by the Institution of Mechanical Engineers (IMechE) for both of its full-time and part-time modes of study.

Course details

The programme will include 9 subject-specific technical modules of 10 credits each covering vehicle engineering, mechanics, thermal systems, energy, computational geometry, manufacturing processes, robotics, biomechanics, and micro electro-mechanical systems. A 20-credit synoptic mechanical engineering module has been integrated into the programme and provides research-focused teaching of selected novel case studies from various research areas being carried out within the School in order to enhance the relevant knowledge base of the students. 

A further 10 credit module covering research skills, project management and business enterprise will provide the necessary training to enhance the competencies in professional skills that modern mechanical engineers are expected to possess. The latter part of the programme will include a 60 credit summer project module. The project can either be based at the University, or be carried out in industry.

Related links

Learning and teaching

The modules will be delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods, providing a well-rounded educational experience and an opportunity to further develop skills prized by employers.

There will be a strong emphasis on enquiry-based learning throughout, further enhancing students’ ability to think independently and creatively.

Employability

The graduates of this programme will be ideally placed to gain employment in a wide field of careers in mechanical and related engineering. The typical functional roles include design, consultancy, maintenance, operations, and R&D in a spectrum of industrial sectors such as manufacturing, aerospace, energy, automotive, micro/nano technology, nuclear and defence

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. Read more

Mission and goals

The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. The level of cultural education is raised during the first year by broadening the knowledge of advanced analysis methods, which in the second year are applied in specialisation subjects and a thesis. The first year is offered in the Milano Bovisa and Lecco campuses with the same study plan (the first year is not available in the Piacenza campus, which offers only the second year). Students can choose different previously approved study plans (PSPA) in the second year. Some are offered in the Milano Bovisa campus (“Impianti e Produzione” [Production Plants and Production], “Meccatronica e Robotica” [Mechatronics and Robotics], “Metodi e Tecniche di Prototipazione Virtuale” [Methods and Techniques for Virtual Prototyping], “Motori e Turbomacchine” [Engines and Turbomachinery], “Progettazione” [Design], “Materiali e Tecnologie Innovative” [Materials and Innovative Technologies] and “Veicoli Terrestri” [Ground Vehicles]). Others are offered in the Lecco campus (“Mechanical Systems Design” and “Industrial Production”) and one in the Piacenza campus (“Macchine Utensili e Sistemi di Produzione” [Machine Tools and Production Systems]).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Career opportunities

Graduates with a Laurea Magistrale (equivalent to a Master of Science) in Mechanical Engineering are technicians who can independently develop the functional, construction and energy-related aspects of innovative products, processes and systems in industry and in the advanced tertiary sector. On passing the State Professional Examination, Mechanical Engineering Graduates with a Laurea Magistrale (equivalent to a Master of Science) can ask to be included in the Register of Engineers (section A).

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mechanical_Engineering_04.pdf
The MSc Programme in Mechanical Engineering – Ingegneria Meccanica provides an academically challenging exposure to modern issues in advanced Mechanical Engineering.
The educational goal of the MSc Programme is to train highly qualified engineers, capable of playing different roles in the job market, by providing them with sound scientific, economic and technical competences, together with broad practical and professional skills needed for a successful career in a technologically advanced and rapidly evolving society.
The specialist in Mechanical Engineering, being involved in the design, production process and operation of products and systems, needs to develop a strong interdisciplinary background in machine design, with respect to functional requirements, dynamic and structural analysis, propulsion and engine systems, fluid mechanics, material properties and selection, manufacturing processes and production systems, operation and management of industrial plants, experimental techniques, mechatronics and industrial automation. The programme is taught in English. http://www.ccsmecc.polimi.it/en

Subjects

The 1st year is organised in the following compulsory modules: Control and Actuating Devices for Mechanical Systems, Applied Metallurgy, Energy Systems, Nonconventional Machining Processes, Machine Design, Mechanical System Dynamics, Mechanical Measurements, Configuration and Management of Production Systems.

In the 2nd year students will have the possibility to specialize the training, by choosing among the following tracks:
Milano Bovisa Campus: Production Systems, Mechatronics and robotics, Virtual prototyping, Internal Combustion Engines and Turbomachinery, Advanced Mechanical Design, Advanced Materials and Technology, Ground Vehicles.
Lecco Campus: Mechanical Systems Design, Industrial Production.
Piacenza Campus: Machine Tools and Manufacturing Systems.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Why this course?. This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer status. Read more

Why this course?

This course is accredited by the Institution of Mechanical Engineers (IMechE) and provides a route for you to achieve Chartered Engineer status. It focuses on the areas of aerospace, energy, materials and power plant technologies.

Mechanical engineers are currently in demand in all types of industry. The MSc in Advanced Mechanical Engineering has been developed to provide high-calibre mechanical engineering graduates with an in-depth technical understanding of advanced mechanical topics, together with generic skills that will allow them to contribute effectively in developing company capabilities.

This course will help you to gain expert knowledge in advanced mechanical engineering topics. You'll also have the opportunity to take modules in general skills such as project management and risk analysis. These are necessary skills for any professional engineer.

Specialist pathways

In addition to the Advanced Mechanical Engineering programme, the following specialist pathways are offered:

You’ll study

You can take up to nine technical modules and three generic modules. MSc students also undertake an individual project.

If you're taking the Advanced Mechanical Engineering (without specialisms) you’re free to select from any of the classes below.

  • Energy Systems Compulsory modules
  • Materials Compulsory modules
  • Aerospace Optional modules
  • Energy Systems Optional modules
  • Materials Optional modules
  • Power Plant Optional modules
  • Generic modules

If you’re on a specialist programme, you must include the three compulsory modules from your area of specialism, which you'll find in the 'course content' tab.

MSc students take on an individual project which allows study of a selected topic in-depth. This may be an industry-themed project or one aligned to engineering research at Strathclyde.

Facilities

Our facilities include many laboratories and research centres including:

We have local-access to a 3500 node region supercomputer.

Accreditation

This course, on full-time study, is accredited by the Institution of Mechanical Engineers and meets requirements for Chartered Engineer.

Learning & teaching

Students select from a combination of specialist and generic modules. The specialist modules focus on different technical aspects allowing tailored learning to suit individual needs. The generic modules provide other skills which are considered necessary for professional engineers.

To qualify for the MSc, students undertake an individual project which allows study of a selected topic in depth, normally industry-themed or aligned to engineering research at Strathclyde.

Assessment

The course is assessed through written assignments, exams and the individual project.

Careers

This course is designed to meet industrial demand for qualified staff in the area of Mechanical Engineering. It is particularly suitable for graduate engineers in the following sectors:

  • chemical & process engineering
  • design engineering
  • power generation
  • manufacturing
  • oil & gas
  • renewable energy


Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more

The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

About this degree

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules

  • Advanced Computer Applications in Engineering
  • Group Project
  • Materials and Fatigue
  • Vibrations, Acoustics and Control
  • Project Management
  • Power Transmission and Auxiliary Machinery Systems

Optional modules

One of the following subject to availability:

  • Applied Thermodynamics and Turbomachinery
  • Heat Transfer and Heat Systems
  • New and Renewable Energy Systems

Dissertation/report

Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Further information on modules and degree structure is available on the department website: Mechanical Engineering MSc

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Recent career destinations for this degree

  • Graduate Mechanical Engineer, Babcock
  • Graduate Trainee, Jaguar Land Rover
  • Petroleum Engineer, Total
  • Facility Engineer, Nigerian Agip Oil Company (NAOC)
  • PhD in Mechanical Engineering, UCL

Employability

Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2017 student cohort intake.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Mechanical engineers are both generalists and specialists, bringing broad expertise and specialised mastery to their roles as project managers, leaders and innovators. Read more

Mechanical engineers are both generalists and specialists, bringing broad expertise and specialised mastery to their roles as project managers, leaders and innovators. As a student of GCU's MSc Mechanical Engineering, you'll continue in this tradition. The programme is designed to expand your core knowledge of the discipline while enhancing your skills as a specialist in either design or manufacture.

The programme was developed according to the UK Engineering Council's benchmark requirements for professional engineering, ensuring you'll enter the workforce with the relevant capabilities that employers value. It is also accredited by the Institution of Mechanical Engineers (IMechE). Furthermore, our industrial advisory board offers strong connections to industry.

GCU's mechanical engineering department contributes to important research in the discipline, investigating topics like materials and manufacturing, finite element analysis, computer-aided design and manufacture, and machine condition monitoring.

The MSc Mechanical Engineering curriculum encourages you to develop as a professional as well as an engineer.

  • Build your interpersonal skills to succeed as a team member and manager
  • Explore topics such as project planning and methodology, strategy and innovation, and computer-aided engineering
  • Practise managing resources and meeting project objectives
  • Choose from two options for specialisation: Design or Manufacture

When you study engineering at GCU, you'll join a welcoming community of learners and professionals. You'll find classmates and colleagues who are creative and entrepreneurial, committed to using their expertise to make a positive impact and advance the common good.

What you will study

The programme offers two specialist study options; Design and Manufacture. These options share a number of common modules that directly reflect the activities of a professional mechanical engineer. Students complete eight taught modules - four in trimester A and four in trimester B; and an MSc dissertation in trimester C.

  • Project Planning and Methodology
  • Strategy and Innovation
  • Advanced Computer-Aided Engineering
  • Condition Monitoring
  • Project
  • Specialist Modules (Design)
  • Specialist Modules (Manufacture)

Assessment methods

The taught modules are either assessed by coursework only or a combination of coursework and examination. In the later case the final mark is determined by weighted average of the two elements. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Professional accreditation

The development of these Masters options is in direct response to the specification of benchmark requirements for professional competence by the UK's Engineering Council (UK-SPEC). This programme is accredited by the Institution of Mechanical Engineers (IMechE).

Why choose this programme?

The MSc in Mechanical Engineering has very strong industrial links through its industry advisory board. The school participates in many research activities within the area of mechanical engineering. This includes; advanced materials and manufacturing processes, finite element analysts, computer-aided design and manufacture and machine condition monitoring.

HM Forces

In partnership with HM Forces, GCU has identified this programme is being particularly suited to military and ex-military men and women. Visit the HM Forces Careers Zone for more information on the services we provide.

Graduate prospects

Our graduates are appreciated by employers for their career-focused attitudes and socially driven perspectives. With skilled engineers in high demand, you can expect excellent job prospects in the field.

Graduates of the MSc Mechanical Engineering find employment in the oil and gas industry, defence, computer-aided engineering and building. They also work in mechanical design engineering, project engineering, manufacturing engineering and engineering sales.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises, Swansea University provides an excellent base for your research as a MSc by Research student in Mechanical Engineering.

Key Features of MSc by Research in Mechanical Engineering

Across the UK and overseas in Mechanical Engineering, there is or has been recent work at Swansea University with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Mechanical Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within the Mechanical Engineering discipline.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Mechanical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with industry

Mechanical Engineering at Swansea University has a close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises. Across the UK and overseas, there is or has been recent work with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Read more

A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Students will learn project management, design, computer-aided engineering, operation and optimisation of machinery, structural mechanics and integrity.

Who is it for?

Advanced Mechanical Engineering at Cranfield is unique in that it offers you a broad range of mechanical engineering projects with the added component of a management flavour. This provides the opportunity for you to enhance your mechanical engineering skill with a view to developing your career in the management of large engineering projects.

In addition to management, communication, team work and research skills, you will attain at least the following learning outcomes from this degree course:

  • Demonstrate knowledge, fundamental understanding and critical awareness of advanced mechanical engineering techniques necessary for solutions in the transport and energy sectors
  • Demonstrate systematic knowledge across appropriate advanced technologies and management issues to provide solutions for international industries and/or research organisations
  • Demonstrate the ability to acquire, critically assess the relative merits, and effectively use appropriate information from a variety of sources.

Why this course?

The MSc in Advanced Mechanical Engineering is differentiated from other courses available primarily by its industrial context through the strong links we have with national and international industry. We build our industrial links through research and consultancy, which allows us to provide practical and current examples to help illustrate learning throughout the course.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. We are very well located for visiting part-time students from all over the world, and offer a range of library and support facilities to support your studies. This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

This degree is particularly industrially focused; although the course does not at present have an industrial advisory board, the course staff are heavily involved in industrially funded and oriented research and development.

The Head of Department, for example, sits on the IMechE Offshore Engineering committee, two BSI committees, the Engineering Integrity Society and is Chairman of the International Ship and Offshore Structures Congress Offshore, Renewable Energy Committee. Course content is reviewed annually by the course team and project/group work is by and large related to the Department's industrially funded research.

Accreditation

This MSc degree is accredited by the Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the Advanced Mechanical Engineering masters is generally delivered from October until March and is comprised of eight compulsory taught modules. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The group project undertaken between October and April enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. You will put in to practice analytical and numerical skills developed in the compulsory modules.

The aim of the group project is to provide you with direct experience of applying knowledge to an industrially relevant problem that requires a team-based multidisciplinary solution. You will develop a fundamental range of skills required to work in a team including team member roles and responsibilities, project management, delivering technical presentations and exploiting the variety of expertise of each individual member. Each group will be given an industrially relevant assignment to perform. Industry involvement is an integral component for the group project, to give you first-hand experience at working within real life challenging situations. 

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups submit a written report and deliver a presentation to the industry partner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The aim of the individual research project is to provide you with direct experience in undertaking a research/development project in a relevant industrial or research area. You will make a formal presentation of your findings to a panel of academics and industry experts and submit a research thesis.

The individual research project component takes place from March to August.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work and supported by academic supervision.

Assessment

Taught modules 40% Group Project 20% Individual Research Project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment. The MSc in Advanced Mechanical Engineering takes you onto a challenging career in industry, government or research. The course reflects the strengths and reputation of Cranfield particularly in the energy, transport and management sectors. Graduates of this course have been successful in gaining employment in the following roles:

  • Mechanical Design Engineer at Siemens
  • Production Line Supervisor & Lean Implementer at GKN Land Systems
  • Staff Engineer at BPP Technical Services Ltd working on offshore oil and gas engineering.
  • Engineer at Det Norske Veritas
  • Management Associate at BMW Group UK Limited
  • Project Engineer at BASF Coatings S.A.


Read less
This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. Read more

This MSc provides a state-of-the-art introduction to technical design within mechanical engineering. The School is a vibrant environment to study, we have 200 years of expertise in teaching engineering, high calibre facilities, strong links with industry and a vision to provide a modern world-class education. Our course integrates advanced engineering techniques with hands-on-learning to provide a complementary blend of skills desired by employers.

The course has fundamental modules in the areas of analytical and conceptual design with a wider range of options enabling you to individually tailor the course to meet your specific needs or interests.

We are curiosity driven and industry inspired and foster an environment in which our highly sought after graduates have fulfilled their potential.

Teaching and learning

The Mechanical Engineering Design MSc  is a full time course which is studied over 12 months and there is one start date each year in September. You will develop advanced technical skills in Mechanical Engineering Design that will enable you to pursue a career in both general and specialised engineering industries or develop an in depth knowledge for a career in research in industry or academia.

For further information about the course content, please see the example programme structure .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The Mechanical Engineering Design MSc has a strong focus on employability to support you to take control of your future and give yourself the best chance of securing your ideal job after graduation. For example there are regular industrial guest lectures and optional short courses delivered by companies such as National Instruments and Maxon Motors.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how Top employers target Manchester graduates.

After graduating with a Mechanical Engineering Design MSc you will be in a strong position to seek employment with companies such as: BP, Rolls Royce, GE Aviation, Airbus, Siemens, Jaguar Land Rover, Bentley Motors, Nissan Motor Company, Bombardier Transportation, DePuy International, GE Healthcare, E-ON, EDF, Sellafield, Apple.

Alumni profiles

Mr Suwapatch Autamapanyanan : Design Engineer at Innovative limited, Thailand

Mr Kyriacos Makris : Plant Engineer at Joannou & Paraskevaides, Cyprus

Destination of Leavers Survey

Every year our The University of Manchester conducts a destination of leavers survey with students six months after they have graduated. A selection of these destinations since 2010 are highlighted below:

  • GE Aviation (Design Engineer)
  • GE Healthcare (Edison Engineering Development Programme)
  • SEPLAT Petroleum Development Company (Drilling Engineer)
  • BMP Europe Ltd (Design Engineer)
  • The University of Manchester (PhD Researcher)
  • Formosa Prosonic (Design Engineer)
  • Hitachi Home & Life Solutions (India) Ltd (Executive - Quality Management)
  • Indra Limited (Mechanical Design Engineer)
  • NNPC-NETCO (Mechanical Engineer)
  • Shell Petroleum Development company (SPDC) (Oil and Gas Operator)
  • Triton Valves Ltd (Senior Engineer, Design and Development)

Accrediting organisations

The  Institution of Mechanical Engineers has accredited the Mechanical Engineering Design MSc course under license from the UK regulator, the Engineering Council. This allows satisfactory completion of the Mechanical Engineering Design MSc to contribute towards the academic requirements for registration with the Institution as a Chartered Engineer.



Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. Read more
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. And with many high-tech engineering companies now operating pan-European and globally, Master's level qualifications are often considered essential for career development.

Key benefits

This course is accredited by the Institution of Mechanical Engineers (IMechE) , which confirms it meets standards set by the Engineering Council for Professional Engineering Competence (UK-SPEC).

Course detail

The MSc Mechanical Engineering is designed to allow BEng and BSc (Hons) Mechanical Engineering graduates, and those from related disciplines, to top up qualifications through the MSc-route equivalent of an MEng Mechanical Engineering. The Department of Engineering Design and Mathematics has a longstanding reputation for offering IMechE-accredited BEng (Hons) and MEng Mechanical Engineering degrees, alongside a range of MSc programmes in related specialised subjects.

Graduates with an in-depth understanding of engineering design and analysis, and the ability to appreciate the challenges of managing complex operations, are in high demand. This course is designed to meet that demand, and to bridge the skills and knowledge gaps for BEng or BSc graduates, and make them more employable. With its foundations in mechanical engineering, this course is a great opportunity to learn how to develop advanced solutions to engineering problems using the latest computer tools and simulations. It also addresses a need for people who work well in project teams, and an extended piece of independent research is a significant part of the course.

Modules

Core modules include:

• Modelling and Simulation
• Computer Vision and Modern Control
• Innovations in Operations Management
• Masters Group Project

Optional modules include:

• Design of Fluid Systems
• Structural Integrity in Design
• Industrial Applications of Vision and Automation
• Robotics Fundamentals
• Intelligent and Adaptive Systems

Assessment

Assessment is through a combination of examinations and coursework, and your dissertation project.

Careers / Further study

An accredited Master's degree in Mechanical Engineering provides an essential stepping stone for any mechanical engineer aspiring to take their career to the highest level. Mechanical engineers are vital to society and the economy. For example, they're often involved in making maximum use of high-capital plants and operations such as power stations, oil refineries, chemical plants and hospitals.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less

Show 10 15 30 per page



Cookie Policy    X