• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Ulster University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bath Spa University Featured Masters Courses
"mathematical" AND "physi…×
0 miles

Masters Degrees (Mathematical Physics)

  • "mathematical" AND "physics" ×
  • clear all
Showing 1 to 15 of 264
Order by 
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more
Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.
- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.
- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.
- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:
1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.
2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Read less
Programme description. This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts. Read more

Programme description

This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The MSc programme is a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the centre’s activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we attempt to build abstract constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

Programme structure

Taught courses

You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science. For the MSc in Mathematical Physics, mathematics courses can account for up to half of the taught course element.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project, which leads to a dissertation.

Learning outcomes

By engaging with and completing the MSc in Mathematical Physics, graduates will acquire core knowledge of theoretical physics subjects and the research methodologies of modern theoretical and mathematical physics.

The programme aims to develop research skills and problem solving skills, especially in mathematics. It also aims to develop an attitude of mind conductive to critical questioning and creative thinking and the capacity to formulate ideas mathematically.

Career opportunities

These degrees are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.



Read less
MSc by research in Mathematical Physics. The objective of the structured research programme in Mathematical Physics is to provide. Read more

Overview

MSc by research in Mathematical Physics:
The objective of the structured research programme in Mathematical Physics is to provide:

- A high quality research experience and training
- Enhanced arrangements for supervision and mentorship
- Structured arrangements for the development of generic and transferable skills
- Advanced discipline-specific taught courses
- Regular monitoring of progress

Closing date
Research applications are generally accepted at any time.

Course Structure

Typically the MSc by research takes two years and the student must write a thesis under the supervision of a member of the academic staff. In addition students must take a minimum of 10 credits in taught modules (at least 5 in generic/transferable modules and at least 5 in subject specific/advanced specialist modules) from the Structured PhD programme.

Career Options

Mathematical physicists are in high demand in the job market thanks to their skills in numeracy, analytical and abstract thinking and the application of these skills to solving problems in the real world. Graduates can consider a wide range of careers, including research and teaching in a university, research in a research institute or industrial setting; public sector agencies, the scientific civil service; banking and stock market analysis; business and actuarial work, telecommunications and in all sections of the computer industry. They lead and are at the forefront of scientific discovery and in understanding the universe from the microscopic to the macroscopic, the origin of space-time, quarks, black holes and to astrophysical processes on the scale of the entire universe.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code

MHQ06 MSc Full-time
MHQ07 MSc Part-time


The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Master of Science in Mathematical Science. Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics). Read more

Overview

Master of Science in Mathematical Science
Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics). The remaining credits may be made up at levels 4, 5 or 6.

Course Structure

All module choices are subject to the approval of the Head of Department. Level 6 choices for Mathematical Physics are listed below. For other choices see the Mathematics Department modules at level 5 (see MSc in Mathematics MHR52) and Mathematical Physics Department modules at level 4. One of the Masters level modules may be replaced by a minor thesis subject to the approval of the Head of Department. Total credits 60. Modules include Groups, Geometry and Topology for Physics, Quantum Field Theory, Differential Geometry, General Relativity, and advanced special topics in Applied Mathematics and Theoretical Physics.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics/Pure Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation. Students who perform well may go on to the PhD programme.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ52

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics). Read more

Overview

Students take modules in Mathematical Physics and Mathematics. At least 4 of the modules (at least 45 ECTS) must be taken at the Masters level (level 6 in Mathematical Physics and level 5 in Mathematics). The remaining credits may be made up at levels 4, 5 or 6.

See the website https://www.maynoothuniversity.ie/mathematical-physics/our-courses/msc-mathematical-science-pt

Course Structure

All module choices are subject to the approval of the Head of Department. Level 6 choices for Mathematical Physics are listed below. For other choices see the Mathematics Department modules at level 5 (see MSc in Mathematics MHR52) and Mathematical Physics Department modules at level 4. One of the Masters level modules may be replaced by a minor thesis subject to the approval of the Head of Department. Total credits 60. Modules include Groups, Geometry and Topology for Physics, Quantum Field Theory, Differential Geometry, General Relativity, and advanced special topics in Applied Mathematics and Theoretical Physics.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics/Pure Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation. Students who perform well may go on to the PhD programme.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ53

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-grad-dip.aspx

Course detail

- Description -

Students will undertake a total of 120 credits, from the following modules:

- Mathematical Methods in Physics III
- Statistical Mechanics
- Spectroscopy and Quantum Mechanics
- Particle Physics
- Optics
- Solid State Physics
- General Relatvity and Cosmology
- Fundamentals of Biophysics and Nanotechnology
- Introduction to Medical Imaging
- Laboratory Physics II
- Computational Lab
- Nuclear Physics
- Quantum Mechanics for Physics I
- Mathematical methods in Physics
- Symmetry in Physics
- Electromagnetism
- Astrophysics

- Course purpose -

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

- Course format and assessment -

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career prospects

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena. Read more
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:
-Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
-Have good analytical, deductive and computational skills.
-Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
-Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
-Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

Selection of the Major

The Master’s programme includes two study tracks:
-Particle physics and cosmology
-Astrophysical sciences

Courses in the programme have been compiled into modules. Both study tracks contain a mandatory core module that includes a research seminar. The study tracks are divided into specialisations that focus on astronomy, space physics, particle physics or cosmology. Courses typically include lectures, exercises, group work and research literature and end in examinations and/or final assignments. In addition, some studies can be completed as book examinations.

Programme Structure

The scope of the Master’s programme is 120 credits (ECTS), which can be completed in two years. The degree consists of:
-90 credits of Master’s studies, including a Master’s thesis (30 credits).
-30 credits of other studies from the Master’s programme or other degree programmes.

In addition, your studies include a personal study plan as well as career orientation and planning. You might also take part in a traineeship, elective studies offered by the Master’s Programme in Particle Physics and Astrophysical Sciences, or studies offered by other degree programmes.

Career Prospects

A Master’s degree in elementary particle physics or astrophysical sciences provides you with excellent qualifications for postgraduate education in research or for a career in diverse positions both in Finland and abroad. As a Master’s graduate you could begin a career in research and development in industry as well as in universities and other research institutes that enable you to conduct independent research on a topic that interests you.

Potential employers and career opportunities include:
-Research institutes in Finland and abroad (basic scientific research).
-Universities and universities of applied sciences (teaching).
-Industry, particularly high technology companies (applied research and development, managerial duties).
-Software production, e.g., the game sector.
-Diverse planning and consulting positions.

Master’s graduates from equivalent study tracks under the previous degree system have embarked on careers in:
-Research and teaching positions in Finnish universities and research institutes.
-Research and teaching positions abroad, for example at CERN (the European Organization for Nuclear Research), ESA (the European Space Agency), ESO (the European Southern Observatory), and NASA (the National Aeronautics and Space Administration).
-Administrative positions, for example at the Academy of Finland or the Finnish Funding Agency for Innovation (Tekes).
-The business sector.

The strong theoretical and analytical skills you will acquire in the programme are in great demand in fields such as:
-Data analysis (industry, media companies, game companies, financing).
-Industrial research, development and consulting (at, e.g., Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo -Research and Trading, Planmeca, Reaktor, Comptel, and Goldman Sachs).

Internationalization

Our multilingual Master’s programme is highly international. The Department hosts a large number of international students and staff members. In addition, the University of Helsinki and the Faculty of Science provide many opportunities for international engagement:
-Student exchange at one of the destinations available through the Faculty or the University.
-International traineeships.
-English-language teaching offered by the Faculty.
-Master’s thesis project as a member of one of the international research groups operating under the programme.
-Cooperation with international students enrolled in the programme.
-International duties in subject-specific student organisations or the Student Union of the University of Helsinki.
-Language courses organised by the Language Centre of the University of Helsinki.

The Faculty of Science is a top research institute in its fields among European universities. Its partners include many leading international research institutes, such as the European Organization for Nuclear Research (CERN), the European Space Agency (ESA) and the European Southern Observatory (ESO).

As a student at the Faculty of Science, you will have the opportunity to complete a research traineeship period at, for example, CERN in Geneva. By completing a traineeship at one of the internationally active research groups on campus you will be able to acquaint yourself and network with the international scientific community during your Master’s studies. The international student exchange programmes available at the University provide numerous opportunities to complete part of your degree at a university abroad.

Read less
This programme is aimed at graduates whose level of mathematical training is high, but below that of the BSc Degree Honours in Mathematics or Mathematical Physics, and who have demonstrated mathematical flair. Read more
This programme is aimed at graduates whose level of mathematical training is high, but below that of the BSc Degree Honours in Mathematics or Mathematical Physics, and who have demonstrated mathematical flair. It enables them to reach in one year a level of mathematical knowledge equivalent to that of BSc Honours graduates and thus, in particular, qualifies them to enter the MSc degree in Mathematics, Mathematical Physics or Mathematical Sciences.

Students in the programme choose one of two streams:

The Applied and Computational Mathematics Stream
The Mathematics Stream

The programme extends over two semesters and involves 60 credits of taught modules.

This programme runs full time for one academic year - September to May (2 semesters)
This programme runs part time for two academic years - September to May (4 semesters)

Read less
The MSc in Mathematical Sciences is a one-year (12 months) full-time programme which allows a student to combine graduate-level modules in one or more of the disciplines of the school (Actuarial Science and Statistics, Mathematics, Applied Mathematics/Mathematical Physics). Read more
The MSc in Mathematical Sciences is a one-year (12 months) full-time programme which allows a student to combine graduate-level modules in one or more of the disciplines of the school (Actuarial Science and Statistics, Mathematics, Applied Mathematics/Mathematical Physics). It consists of 60 credits of taught modules in Mathematics, Statistics, Mathematical Physics or Applied Mathematics, and 30 credits assigned to the writing of a dissertation as well as active participation in a research seminar.

September to August (full time) - 1 year or 3 semesters
September to August (part time) - 2 years or 6 semesters

Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. Read more
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. As well as the modules offered by the Department of Physics, many optional modules are available from across the University of London, such as Queen Mary University of London, Royal Holloway University of London and University College London. You will undertake an extended research project supervised by one of our academic staff.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-msc.aspx

Course detail

- Description -

The programme consists of taught components combining specialised taught material in current areas of Physics and related disciplines, general research techniques, transferable skills and specialised research techniques together with a major research project. The project starts in January carrying through to the end of the programme. Experts in the chosen field will act as project supervisors.

The programme is run by the Department of Physics with some modules provided by the Department of Mathematics, the Randall Division of Cell and Molecular Biophysics and other University of London Colleges.

Topics include: nanotechnology, biophysics, photonics, cosmology and particle physics.

- Course purpose -

The MSc programme provides experience of research in rapidly developing areas of physics and related disciplines. Provides experience of the planning, administration, execution and dissemination of research, and equips students with the background knowledge and transferable and generic skills required to become an effective researcher.

- Course format and assessment -

From October to March you will study specialised taught material, attend lectures and seminars, carry out related assessed tasks, prepare an assessed research proposal, select your project topic and plan how your project will be performed. Lecture courses attended between October and March will be assessed by examination in May. Other assessments include a project plan and a patent draft. You will carry out your project full-time from April with a mid-project review and submission and oral presentation in September. Your project will contribute 50 per cent of the marks for your degree and you must also achieve at least 50 per cent in each module. The taught material is also assessed by essays and exercises.

Career prospects

Many students go on to do a PhD in Physics, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The University of Dundee has a long history of mathematical biology, going back to Professor Sir D'Arcy Wentworth Thompson, Chair of Natural History, 1884-1917. Read more

Mathematical Biology at Dundee

The University of Dundee has a long history of mathematical biology, going back to Professor Sir D'Arcy Wentworth Thompson, Chair of Natural History, 1884-1917. In his famous book On Growth and Form (where he applied geometric principles to morphological problems) Thompson declares:

"Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in obedience to the laws of physics that their particles have been moved, molded and conformed. They are no exceptions to the rule that God always geometrizes. Their problems of form are in the first instance mathematical problems, their problems of growth are essentially physical problems, and the morphologist is, ipso facto, a student of physical science."

Current mathematical biology research in Dundee continues in the spirit of D'Arcy Thompson with the application of modern applied mathematics and computational modelling to a range of biological processes involving many different but inter-connected phenomena that occur at different spatial and temporal scales. Specific areas of application are to cancer growth and treatment, ecological models, fungal growth and biofilms. The overall common theme of all the mathematical biology research may be termed"multi-scale mathematical modelling" or, from a biological perspective, "quantitative systems biology" or"quantitative integrative biology".

The Mathematical Biology Research Group currently consists of Professor Mark Chaplain, Dr. Fordyce Davidson and Dr. Paul Macklin along with post-doctoral research assistants and PhD students. Professor Ping Lin provides expertise in the area of computational numerical analysis. The group will shortly be augmented by the arrival of a new Chair in Mathematical Biology (a joint Mathematics/Life Sciences appointment).

As a result, the students will benefit directly not only from the scientific expertise of the above internationally recognized researchers, but also through a wide-range of research activities such as journal clubs and research seminars.

Aims of the programme

1. To provide a Masters-level postgraduate education in the knowledge, skills and understanding of mathematical biology.
2. To enhance analytical and critical abilities and competence in the application of mathematical modeling techniques to problems in biomedicine.

Prramme Content

This one year course involves taking four taught modules in semester 1 (September-December), followed by a further 4 taught modules in semester 2 (January-May), and undertaking a project over the Summer (May-August).

A typical selection of taught modules would be:

Dynamical Systems
Computational Modelling
Statistics & Stochastic Models
Inverse Problems
Mathematical Oncology
Mathematical Ecology & Epidemiology
Mathematical Physiology
Personal Transferable Skills

Finally, all students will undertake a Personal Research Project under the supervision of a member of staff in the Mathematical Biology Research Group.

Methods of Teaching

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, journal clubs, case studies, coursework, and an individual research project.

Taught sessions will be supported by individual reading and study.

Students will be guided to prepare their research project plan and to develop skills and competence in research including project management, critical thinking and problem solving, project reporting and presentation.

Career Prospects

The Biomedical Sciences are now recognizing the need for quantitative, predictive approaches to their traditional qualitative subject areas. Healthcare and Biotechnology are still fast-growing industries in UK, Europe and Worldwide. New start-up companies and large-scale government investment are also opening up employment prospects in emerging economies such as Singapore, China and India.

Students graduating from this programme would be very well placed to take advantage of these global opportunities.

Read less
The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. Read more

Mission and goals

The objective of this programme of study is to prepare professionals able to deal with complex systems using sophisticated mathematical tools, yet with an engineering attitude. It harmonises a solid scientific background with a command of advanced methodologies and technologies. The programme is characterised by a continuous synergy between Applied Mathematics and Engineering disciplines- The students may choose among three specialisations:
- Computational Science and Engineering
- Applied Statistics
- Quantitative Finance

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Career opportunities

The professional opportunities offered by this course are rather ample and varied: engineering consultancy companies that deal with complex computational problems; manufacturing or civil engineering companies where analyses based on the use of advanced mathematical tools are needed; banks, insurance companies and financial institutions making use of quantitative finance for risk analysis or forecast; companies that require statistical interpretation and the processing of complex data, or the simulation of different scenarios; public and private research institutes and laboratories.

Eligible students

Students holding a Bachelor degree in Mathematical Engineering, or in a related area with a solid background in the core disciplines of the programme, i.e. Applied Mathematics, Computer Science, Applied Physics or other Engineering disciplines are eligible for application. In particular, eligible students' past studies must include courses in different areas of Engineering (among Informatics, Economics & Business Organization, Electrotechnics, Automation, Electronics, Applied Physics, Civil Engineering) for at least 25% of the overall courses, as well as courses in different areas of Mathematics (Mathematical Analysis, Linear Algebra, Geometry, Probability, Statistics, Numerical Analysis, Optimization) for at least 33% of the overall courses.
The following tracks are available:
1. Computational Science and Engineering
2. Applied Statistics
3. Quantitative Finance

Eligible students must clearly specify the track they are applying for in their motivation letter.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mathematical_Engineering.pdf
The Master of Science in Mathematical Engineering (MSME) aims to form an innovative and flexible professional profile, endowed with a wide spectrum of basic scientific notions and engineering principles, together with a deep knowledge of modern pure and applied mathematical techniques. MSME is characterized by a continuous synergy between Mathematics and Engineering methods, oriented to the modelling, analysis and solution of complex planning, control and management problems, and provides the students with the possibility to face problems from various scientific, financial and/or technological areas. The MSME graduates can find employment in Engineering companies specialized in handling complex computational problems, requiring a multidisciplinary knowledge; in companies manufacturing industrial goods for which design analysis based on the use of advanced mathematical procedures are required; in service societies, banks, insurance companies, finance or consultant agencies for the statistical interpretation and the simulation of complex situations related to the analysis of large number of data (e.g. management and optimization of services, data mining, information retrieval) or for handling financial products and risk management; in public and private institutions. The programme is taught in English.

Subjects

Three main tracks available:
1. Computational Science for Engineering
Real and functional analysis; algorithms and parallel programming; numerical and theoretical analysis for partial differential equations; fluid mechanics; computational fluid dynamics advanced programming techniques for scientific computing;

2. Statistics
Real and functional analysis; algorithms and parallel programming; stochastic dynamical models; applied statistics, model identification and data analysis; Bayesian statistics

3. Mathematical Finance
Real and functional analysis; algorithms and parallel programming; stochastic differential equations; mathematical finance; financial engineering; model identification and data analysis.

In the motivation letter the student must clearly specify the track he/she is applying for.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mathematical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course will provide you with the opportunity to learn a core of advanced pure and applied mathematics, together with a range of more specialised options. Read more
This course will provide you with the opportunity to learn a core of advanced pure and applied mathematics, together with a range of more specialised options.

These will equip you with a range of mathematical skills in problem solving, project work and presentation. This will enable you to take a prominent role in a wide spectrum of employment and research.

The very broad choice of modules available on this course will introduce you to a wide range of applications of mathematics.

They cover all areas of applied mathematics and mathematical physics, reflecting the research interests of the Applied Mathematics and Mathematical Physics section of the Department of Mathematics.

Read less

Show 10 15 30 per page



Cookie Policy    X