• Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Sussex Featured Masters Courses
Cass Business School Featured Masters Courses
Coventry University Featured Masters Courses
"mathematical" AND "biolo…×
0 miles

Masters Degrees (Mathematical Biology)

  • "mathematical" AND "biology" ×
  • clear all
Showing 1 to 15 of 132
Order by 
The University of Dundee has a long history of mathematical biology, going back to Professor Sir D'Arcy Wentworth Thompson, Chair of Natural History, 1884-1917. Read more

Mathematical Biology at Dundee

The University of Dundee has a long history of mathematical biology, going back to Professor Sir D'Arcy Wentworth Thompson, Chair of Natural History, 1884-1917. In his famous book On Growth and Form (where he applied geometric principles to morphological problems) Thompson declares:

"Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in obedience to the laws of physics that their particles have been moved, molded and conformed. They are no exceptions to the rule that God always geometrizes. Their problems of form are in the first instance mathematical problems, their problems of growth are essentially physical problems, and the morphologist is, ipso facto, a student of physical science."

Current mathematical biology research in Dundee continues in the spirit of D'Arcy Thompson with the application of modern applied mathematics and computational modelling to a range of biological processes involving many different but inter-connected phenomena that occur at different spatial and temporal scales. Specific areas of application are to cancer growth and treatment, ecological models, fungal growth and biofilms. The overall common theme of all the mathematical biology research may be termed"multi-scale mathematical modelling" or, from a biological perspective, "quantitative systems biology" or"quantitative integrative biology".

The Mathematical Biology Research Group currently consists of Professor Mark Chaplain, Dr. Fordyce Davidson and Dr. Paul Macklin along with post-doctoral research assistants and PhD students. Professor Ping Lin provides expertise in the area of computational numerical analysis. The group will shortly be augmented by the arrival of a new Chair in Mathematical Biology (a joint Mathematics/Life Sciences appointment).

As a result, the students will benefit directly not only from the scientific expertise of the above internationally recognized researchers, but also through a wide-range of research activities such as journal clubs and research seminars.

Aims of the programme

1. To provide a Masters-level postgraduate education in the knowledge, skills and understanding of mathematical biology.
2. To enhance analytical and critical abilities and competence in the application of mathematical modeling techniques to problems in biomedicine.

Prramme Content

This one year course involves taking four taught modules in semester 1 (September-December), followed by a further 4 taught modules in semester 2 (January-May), and undertaking a project over the Summer (May-August).

A typical selection of taught modules would be:

Dynamical Systems
Computational Modelling
Statistics & Stochastic Models
Inverse Problems
Mathematical Oncology
Mathematical Ecology & Epidemiology
Mathematical Physiology
Personal Transferable Skills

Finally, all students will undertake a Personal Research Project under the supervision of a member of staff in the Mathematical Biology Research Group.

Methods of Teaching

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, journal clubs, case studies, coursework, and an individual research project.

Taught sessions will be supported by individual reading and study.

Students will be guided to prepare their research project plan and to develop skills and competence in research including project management, critical thinking and problem solving, project reporting and presentation.

Career Prospects

The Biomedical Sciences are now recognizing the need for quantitative, predictive approaches to their traditional qualitative subject areas. Healthcare and Biotechnology are still fast-growing industries in UK, Europe and Worldwide. New start-up companies and large-scale government investment are also opening up employment prospects in emerging economies such as Singapore, China and India.

Students graduating from this programme would be very well placed to take advantage of these global opportunities.

Read less
An interdisciplinary masters course covering the breadth of mathematical applications in biology. Read more
An interdisciplinary masters course covering the breadth of mathematical applications in biology.

Are you a biologically inclined mathematician or physicist, or a biologist with an keen interest in modelling and analysis? Do you want to know how to model fish population dynamics and harvests, to decipher the mathematics of viruses, or understand of the swimming behaviour of microrganisms? The new MSc in Advanced Mathematical Biology aims to provide answers to all of these questions, and more.

The MSc will provide insight into processes over a wide range of scales; from highly symmetric capsids (the cases that surround viruses) to the interactions of entire communities in oceans. Advanced statistical methods, systems biology and biological fluid dynamics will be covered, and there will be emphasis on applications to policy and industry throughout. This programme aspires to fill the language gap between technical mathematical concepts and real world applications in the biological and life sciences. Students will gain a comprehensive grounding in cutting edge theory coupled to training in the subtleties of application.

Biological concepts and mechanisms will be discussed during bespoke sessions in “Issues in modern biology,” and developed during interdisciplinary group projects. There will also be a range of challenging elective modules.

The MSc in Advanced Mathematical Biology is an intensive one year taught programme that will prepare students either for a career in industry in the quantitative life sciences or for further academic research in Mathematical Biology.

Placements

An important part of the programme is a summer work-based placement. At the end of the spring term, students will select a placement from a list of academic and industrial institutions across the sector. Students will spend a period of three months working closely with their chosen institution with a placement supervisor. Students will write a dissertation towards the end of the placement, and will be assessed by their academic supervisor who will also consult with the placement supervisor.

Read less
Mathematics is the language that underpins the rest of science. Our Department of Mathematical Sciences has an international reputation in many areas like such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology. Read more
Mathematics is the language that underpins the rest of science. Our Department of Mathematical Sciences has an international reputation in many areas like such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

Graduate Diplomas last for six to nine months (full-time) and include the modules and assessed work of a Masters, without a dissertation. Our Graduate Diploma in Mathematics gives you training in basic mathematics techniques if your first degree contained only a modest amount of mathematics, so that you can proceed to a Masters in mathematics.

At Essex, Mathematics has truly broad reach; we are working on projects ranging from the economic impact of the behaviour of dairy cows, to understanding crowd behaviour through modelling a zombie apocalypse, to circular Sudoku and other puzzles. Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

You therefore gain an exceptional range of knowledge and skills that are currently in demand in mathematically oriented employment; in business, commerce, industry, government service, education and in the wider economy.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Our graduates are highly sought after by a range of employers and find employment in financial services, scientific computation, decision making support and government, risk assessment, statistics, education and other sectors.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Applied Statistics (optional)
-Bayesian Computational Statistics (optional)
-Combinatorial Optimisation (optional)
-Complex Variables and Applications (optional)
-Contingencies I
-Contingencies II
-Cryptography and Codes
-Finance and Financial Reporting (optional)
-Financial Derivatives (optional)
-Graph Theory (optional)
-Introduction to Numerical Methods (optional)
-Linear Algebra (optional)
-Mathematical Biology (optional)
-Mathematical Methods (optional)
-Mathematics of Portfolios (optional)
-Modelling Experimental Data (optional)
-Nonlinear Programming (optional)
-Ordinary Differential Equations (optional)
-Partial Differential Equations (optional)
-Project: Mathematics (optional)
-Quantum Mechanics (optional)
-Real Analysis (optional)
-Statistical Methods (optional)
-Statistics II (optional)
-Stochastic Processes (optional)
-Survival Analysis (optional)
-The Laws of Physics (optional)
-Vector Calculus (optional)

Read less
The MSc Mathematical Medicine and Biology will provide you with skills suitable for a research career in the exciting and growing field of mathematical medicine and biology. Read more

Overview

The MSc Mathematical Medicine and Biology will provide you with skills suitable for a research career in the exciting and growing field of mathematical medicine and biology.

You will take core modules in biology and the application of mathematics to medicine and biology. More advanced modules will introduce research topics in biomedical mathematics, including options in Computational Biology and Theoretical Neuroscience.

The taught training programme will be followed by a substantial individual project leading to a dissertation.

Throughout the course, the exceptional strength of the Centre for Mathematical Medicine and Biology will facilitate your hands-on experience of interdisciplinary biomedical research.

Some teaching activities will take place at the Sutton Bonington campus. The University provides a regular free hopper bus between University Park and Sutton Bonington.

Key facts:

- This course is informed by the work being carried out in the Centre for Mathematical Medicine and Biology.

- The School of Mathematical Sciences is one of the largest and strongest mathematics departments in the UK, with over 50 full-time academic staff.

- In the latest independent Research Assessment Exercise, the school ranked eighth in the UK in terms of research power across the three subject areas within the School of Mathematical Sciences (pure mathematics, applied mathematics, statistics and operational research).

Module details

Biomolecular Data and Networks

Cell Structure and Function for Engineers

Computational and Systems Biology

Mathematical Medicine and Biology

Mathematical Medicine and Biology Dissertation

Practical Biomedical Modelling

Theoretical Neuroscience

Topics in Biomedical Mathematics

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
Discrete mathematics underlies some vital situations in practical life. Game theory, with roots in mathematics, statistics and economics, is routinely applied to understanding and predicting human behaviour. Read more
Discrete mathematics underlies some vital situations in practical life.

Game theory, with roots in mathematics, statistics and economics, is routinely applied to understanding and predicting human behaviour. Problems of protection of digital information against piracy are closely related to aspects of set systems. And the RSA cryptosystem, used on computers all over the world, depends on classical results of number theory.

Our MSc Discrete Mathematics and its Applications covers many aspects of discrete mathematics and their potential use in practice, and provides you with options in:
-Optimisation
-Machine learning
-Data mining
-Statistics

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00538&subgroup=2

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Key employability skills you gain from this course include analytic reasoning, problem solving, techniques of discrete mathematics and an understanding of application areas of these techniques, algorithm design and implementation, and data analysis.

Our graduates are highly sought after by a range of employers and find employment in financial services, scientific computation, decision making support and government, risk assessment, statistics, education and other sectors.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Read less
In recent years, finance has been one of the areas where high-calibre mathematicians have been in great demand. Read more
In recent years, finance has been one of the areas where high-calibre mathematicians have been in great demand. With the advent of powerful and yet economically accessible computing, online trading has become a common activity, but many have realised that a certain amount of mathematics is necessary to be successful in such fields.

One of our most popular courses, MSc Mathematics and Finance allows those with a background in mathematics to study finance. Since finance routinely involves modelling and evaluating risk, asset pricing and price forecasting, mathematics has become an indispensable tool for this study.

You explore topics including:
-Models and mathematics in portfolio management
-Risk management in modern banking
-Financial modelling
-Actuarial modelling
-Applied statistics

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00610&subgroup=2

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

There is undoubtedly a shortage of mathematicians in general, and an even greater one of those with knowledge of finance.

Our course produces graduates with a sound background in mathematics and finance. Key employability skills include computing, use of algorithms, data analysis, mathematical modelling and understanding financial statements.

Our graduates are highly sought after by a range of employers and find employment in financial services, scientific computation, decision making support and government, risk assessment, statistics, education and other sectors.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Dissertation
-Research Methods
-Financial Modelling
-Mathematics of Portfolios
-Research Methods in Finance: Empirical Methods in Finance
-Stochastic Processes
-Applied Statistics (optional)
-Bank Strategy and Risk (optional)
-Bayesian Computational Statistics (optional)
-Combinatorial Optimisation (optional)
-Derivative Securities (optional)
-Economics of Financial Markets (optional)
-Financial Derivatives (optional)
-Ordinary Differential Equations (optional)
-Partial Differential Equations (optional)
-Statistical Methods (optional)
-Metric Spaces

Read less
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. Read more
Statistics is one of the most important fields of study in the world. The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society. If you are a logical person and enjoy solving problems, statistics at Essex is for you.

Our Department of Mathematical Sciences embraces pure mathematics, applied mathematics and statistics, and operational research, and our course offers you the opportunity to study statistics alongside other mathematical subjects.

Providing a balance of solid statistical theory and practical application, this course builds your knowledge in all areas of statistics, data analysis and probability. You also have the opportunity to specialise, taking optional modules in topics including:
-Survey methodology
-Operations research
-Applied mathematics
-Computer science

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our department has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Working in industries such as health, business, social care and finance, graduates are consistently in demand, working on projects such as efficacy of social policy, comparable data of cardiac rehabilitation and manipulation of raw data for academic research.

Our Masters graduates have progressed into careers in banking and finance, actuarial sciences, biological sciences, market research and statistics, management and consultancy etc.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Modelling Experimental Data
-Statistical Methods
-Stochastic Processes
-Applied Statistics
-Bayesian Computational Statistics
-Research Methods
-Dissertation
-Nonlinear Programming (optional)
-Financial Modelling (optional)
-Research Methods in Finance: Empirical Methods in Finance (optional)
-Machine Learning and Data Mining (optional)
-Cloud Technologies and Systems (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)
-Topics in Contemporary Social Theory (optional)
-Introduction to Survey Design and Management (optional)
-Applied Sampling (optional)

Read less
Specialised statistical methods are hugely important in dealing with particular problems of economic data. Read more
Specialised statistical methods are hugely important in dealing with particular problems of economic data. For instance, time series econometrics provides methods for analysing the dynamic processes that are often found in macroeconomics, while other techniques are required for analysing the stock market and other financial data.

Econometrics can be described as the application of statistics in an economic context so this course will interest you if your first degree included some training in both statistics and economics.

You study topics including:
-Methods of linear regression and hypothesis testing
-Bayesian statistical modelling and methods
-Actuarial modelling and time series models
-Applied statistics
-Game theory

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

You are also taught within our Department of Economics, who are rated consistently highly for student satisfaction and are Top 5 in the UK for research, with over 90% of their research rated as ‘world-leading’ or ‘internationally excellent’ (REF 2014).

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00807&subgroup=2

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

The academic staff in our Department of Economics are also exceptionally well-regarded; our researchers are at the forefront of their field and have even received MBEs.

Many of our researchers in economics also provide consultancy services to businesses in London and other major financial centres, helping us to develop research for today's society as well as informing our teaching for the future.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-Extensive software for quantitative analysis is available in all computer labs across the university
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society where you can explore your interest in your subject with other students
-Alternatively, our Economics Society is an active and social group

Your future

Our graduates are sought after by employers in banking, investment and forecasting, local government and other fields.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Modelling Experimental Data (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)
-Applied Statistics (optional)
-Bayesian Computational Statistics (optional)
-Research Methods
-Dissertation
-Mathematics of Portfolios (optional)
-Financial Derivatives (optional)
-Partial Differential Equations (optional)
-Econometric Methods (optional)
-Economics of Financial Markets (optional)
-Game Theory and Applications (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)

Read less
Businesses, organisations, and individuals all strive to work as effectively as possible. Operational research uses advanced statistical and analytical methods to help improve the complex decision-making processes to deliver a product or service. Read more
Businesses, organisations, and individuals all strive to work as effectively as possible. Operational research uses advanced statistical and analytical methods to help improve the complex decision-making processes to deliver a product or service. Working in this field, you might be identifying future needs for a business, evaluating the time-life value of a customer, or carrying out computer simulations for airlines.

Our MSc Statistics and Operational Research will appeal if your first degree included mathematics as its major subject, and we expect you to have prior knowledge of statistics – for example significance testing or basic statistical distributions – and operational research such as linear programming.

You specialise in areas including:
-Continuous and discrete optimisation
-Time series econometrics
-Heuristic computation
-Experimental design
-Machine learning
-Linear models

Our interdisciplinary research recognises that mathematics, including what can be very abstract mathematics, is an essential part of research in many other disciplines.

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

This course can also be studied to a PGDip level - for more information, please view this web-page: http://www.essex.ac.uk/courses/details.aspx?mastercourse=PG00808&subgroup=2

Our expert staff

Our Department of Mathematical is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

Our staff have published several well-regarded text books and are world leaders in their individual specialisms, with their papers appearing in learned journals like Communications in Algebra, Studia Logica, International Journal of Algebra and Computation, SIAM Journal in Optimization, IEEE Evolutionary Computation, Computers and Operations Research, Ecology, Journal of Mathematical Biology, and Journal of Statistical Applications in Genetics and Molecular Biology.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year
-Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students

Your future

Our MSc Statistics and Operational Research will equip you with employability skills like problem solving, analytical reasoning, data analysis, and mathematical modelling, as well as training you in independent work, presentation and writing skills.

Your exposure to current active research areas, such as decomposition algorithms on our module, Combinatorial Optimisation, prepares you for further study at doctoral level. Graduates of this course now hold key positions in government, business and academia.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Nonlinear Programming
-Combinatorial Optimisation
-Modelling Experimental Data (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)
-Applied Statistics (optional)
-Bayesian Computational Statistics
-Research Methods
-Dissertation
-Ordinary Differential Equations (optional)
-Graph Theory (optional)
-Partial Differential Equations (optional)
-Portfolio Management (optional)
-Machine Learning and Data Mining (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Time Series Econometrics (optional)
-Panel Data Methods (optional)
-Applications of Data Analysis (optional)
-Mathematical Research Techniques Using Matlab (optional)

Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Masters in Mathematics/Applied Mathematics offers courses, taught by experts, across a wide range. Mathematics is highly developed yet continually growing, providing new insights and applications. Read more
The Masters in Mathematics/Applied Mathematics offers courses, taught by experts, across a wide range. Mathematics is highly developed yet continually growing, providing new insights and applications. It is the medium for expressing knowledge about many physical phenomena and is concerned with patterns, systems, and structures unrestricted by any specific application, but also allows for applications across many disciplines.

Why this programme

-The University of Glasgow’s School of Mathematics and Statistics is ranked 4th in Scotland (Complete University Guide 2015).
-The School has a strong international reputation in pure and applied mathematics research and our PGT programmes in Mathematics offer a large range of courses ranging from pure algebra and analysis to courses on mathematical biology and fluids.
-You will be taught by experts across a wide range of pure and applied mathematics and you will develop a mature understanding of fundamental theories and analytical skills applicable to many situations.
-You will participate in an extensive and varied seminar programme, are taught by internationally renowned lecturers and experience a wide variety of projects.
-Our students graduate with a varied skill set, including core professional skills, and a portfolio of substantive applied and practical work.
-With a 94% overall student satisfaction in the National Student Survey 2014, the School of Mathematics and Statistics combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the Masters in Mathematics/Applied Mathematics include lectures, laboratory classes, seminars and tutorials and allow students the opportunity to take part in project work.

If you are studying for the MSc you will take a total of 120 credits from a mixture of Level-4 Honours courses, Level-M courses and courses delivered by the Scottish Mathematical Sciences Training Centre (SMSTC).

You will take courses worth a minimum of 90 credits from Level-M courses and those delivered by the SMSTC. The remaining 30 credits may be chosen from final-year Level-H courses. The Level-M courses offered in a particular session will depend on student demand. Below are courses currently offered at these levels, but the options may vary from year to year.

Level-H courses (10 or 20 credits)
-Algebraic & geometric topology
-Continuum mechanics & elasticity
-Differential geometry
-Fluid mechanics
-Functional analysis
-Further complex analysis
-Galois theory
-Mathematical biology
-Mathematical physics
-Numerical methods
-Number theory
-Partial differential equations
-Topics in algebra

Level-M courses (20 credits)
-Advanced algebraic & geometric topology
-Advanced differential geometry & topology
-Advanced functional analysis
-Advanced methods in differential equations
-Advanced numerical methods
-Biological & physiological fluid mechanics
-Commutative algebra & algebraic geometry
-Elasticity
-Fourier analysis
-Further topics in group theory
-Lie groups, lie algebras & their representations
-Magnetohydrodynamics
-Operator algebras
-Solitons
-Special relativity & classical field theory

SMSTC courses (20 credits)
-Algebra 1
-Algebra 2
-Applied analysis and PDEs 1
-Applied analysis and PDEs 2
-Applied mathematical methods 1
-Applied mathematical methods 2
-Geometry and topology 1
-Geometry and topology 2
-Mathematical modelling 1
-Mathematical modelling 2
-Pure analysis 1
-Pure analysis 2.

The project titles are offered each year by academic staff and so change annually

Career prospects

Career opportunities are diverse and varied and include academia, teaching, industry and finance.

Graduates of this programme have gone on to positions such as:
-Maths Tutor at a university.

Read less
The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society and are the basis of growth of the economy and success of businesses. Read more
The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society and are the basis of growth of the economy and success of businesses. Technology is growing and evolving at an incredible speed, and both the rate of growth of data we generate and the devices we use to process it can only increase.

Data science is a growing and important field of study with a fast-growing number of jobs and opportunities within the private and public sector. The application of theory and methods to real-world problems and applications is at the core of data science, which aims especially to use and to exploit big data.

If you are interested in solving real-world problems, you like to develop skills to use smart devices efficiently, you want to use and to foster your understanding of mathematics, and you are interested and keen to use statistical techniques and methods to interpret data, MSc Data Science at Essex is for you. You study a balance of solid theory and practical application including:
-Computer science
-Programming
-Statistics
-Data analysis
-Probability

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

You also benefit from being taught in our School of Computer Science and Electronic Engineering, who are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of their research rated ‘world-leading’ or ‘internationally excellent’ (REF 2014).

The collaborative work between our departments has resulted in well-known research in areas including artificial intelligence, data analysis, data analytics, data mining, data science, machine learning and operations research.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

The academic staff in our School of Computer Science and Electronic Engineering are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist staff working on data analytics include Dr Paul Scott, who researches data mining, models of memory and attention, and artificial intelligence, and Professor Maria Fasli, who researches data exploration, analysis and modelling of complex, structured and unstructured data, big data, cognitive agents, and web search assistants.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We have six laboratories that are exclusively for computer science and electronic engineering students
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-You have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors
-We host regular events and seminars throughout the year
-Collaborate with the Essex Institute of Data Analytics and Data Science (IADS) and the ESRC Business and Local Government (BLoG) Data Research Centre of the University of Essex
-The UK Data Archive and the Institute for Social and Economic Research (ISER) at Essex contribute to our internationally outstanding data science environment

Your future

With a predicted shortage of data scientists, now is the time to future-proof your career. Data scientists are required in every sector, carrying out statistical analysis or mining data on social media, so our course opens the door to almost any industry, from health, to government, to publishing.

Our graduates are highly sought after by a range of employers and find employment in financial services, scientific computation, decision making support and government, risk assessment, statistics, education and other sectors.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Dissertation (optional)
-MSc Project and Dissertation (optional)
-Applied Statistics
-Machine Learning and Data Mining
-Modelling Experimental Data
-Text Analytics
-Artificial Neural Networks (optional)
-Bayesian Computational Statistics (optional)
-Big-Data for Computational Finance (optional)
-Combinatorial Optimisation (optional)
-High Performance Computing (optional)
-Natural Language Engineering (optional)
-Nonlinear Programming (optional)
-Professional Practice and Research Methodology (optional)
-Programming in Python (optional)
-Information Retrieval (optional)
-Data Science and Decision Making (optional)
-Research Methods (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)

Read less
Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models… Read more

Research profile

Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models through the application of numerical and computational approaches in the analysis, interpretation, modelling and prediction of complex animal systems from the level of the DNA and other molecules, through cellular and gene networks, tissues and organs to whole organisms and interacting populations of organisms.

The biology and traits of interest include: growth and development, body composition, feed efficiency, reproductive performance, responses to infectious disease and inherited diseases.

Research encompasses basic research in bioscience and mathematical biology and strategic research to address grand challenges, e.g. food security.

Research is focussed on, but not restricted to, target species of agricultural importance including cattle, pigs, poultry, sheep; farmed fish such as salmon; and companion animals. The availability of genome sequences and the associated genomics toolkits enable genetics research in these species.

Expertise includes genetics (molecular, quantitative), physiology (neuroendocrinology, immunology), ‘omics (genomics, functional genomics) with particular strengths in mathematical biology (quantitative genetics, epidemiology, bioinformatics, modelling).

The Division has 18 Group Leaders and 4 career track fellows who supervise over 30 postgraduate students.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

The University's genomics facility Edinburgh Genomics is closely associated with the Division of Genetics and Genomics and provides access to the latest genomics technologies, including next-generation sequencing, SNP genotyping and microarray platforms (genomics.ed.ac.uk).

In addition to the Edinburgh Compute and Data Facility’s high performance computing resources, The Roslin Institute has two compute farms, including one with 256 GB of RAM, which enable the analysis of complex ‘omics data sets.

Read less
Actuaries provide assessments of financial security systems, with a focus on their complexity, their mathematics, and their mechanisms. Read more
Actuaries provide assessments of financial security systems, with a focus on their complexity, their mathematics, and their mechanisms. Actuaries quantify the probability and manage the risk of future events in areas such as insurance, healthcare, pensions, investment, and banking and also in non-financial areas. This course is taught by the Department of Mathematical Sciences and is intended for students with a first degree in mathematics, statistics, economics or finance who would like to acquire knowledge in actuarial science.

Our MSc Actuarial Science course is based on the syllabus of the majority of the Core Technical subjects of the Institute and Faculty of Actuaries, so you’ll cover Core Technical subjects as part of your course (CT2 or CT3, depending on the optional module selected, CT4, CT5, CT6, and CT8). This focus on up-to-date research findings in actuarial methodologies and actuarial applications means that you gain a solid training in actuarial modelling and actuarial analysis.

It is also possible to specialise on a topic of choice, with options including:
-Actuarial and Financial Modelling
-General Insurance
-Life Insurance

You will also have the chance to study a problem in depth through a Master's thesis project on a subject chosen by you or your supervisor.

As part of our Department of Mathematical Sciences you’re a member of an inclusive and approachable research community with an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

Our expert staff

As well as being world-class academics, many of our academics have won research awards and grants from some of the largest actuarial society’s worldwide, national or regional awards for lecturing, and many of them are qualified and accredited teachers.

Teaching on our course are expert academics and practising actuaries. The key departmental contacts for our MSc Actuarial Science are Keith Bannister, Dr Haslifah Hashim, and Dr Spyridon Vrontos.
-Keith Bannister is a qualified actuary, and a Fellow of the Institute of Actuaries and Faculty of Actuaries; he lectures part-time in Actuarial Science.
-Dr Hashim specialises in life and general insurance, pensions, financial mathematics, enterprise risk management, forensic economics, and Islamic finance and takaful.
-Dr Vrontos specialises in actuarial mathematics and modelling, asset-liability management and performance measurement for pension funds, hedge funds and mutual funds, risk management and solvency, and risk theory.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We host regular events and seminars throughout the year

Your future

As a new course, we expect our graduates of MSc Actuarial Science to become actuaries in a range of industries. It is predicted by the US Department of Labor that the employment of actuaries is expected to grow faster than any other occupation, making it a great prospect for a graduate job.

Aside from a rewarding career as an actuary (actuaries are in the top ten jobs for 2016, careercast.com), clear thinkers are required in every profession, so the successful mathematician has an extensive choice of potential careers. The Council for Mathematical Sciences offers further information on careers in mathematics.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability; applied statistics, bioinformatics and mathematical biology, and our department is strongly committed to research and to the promotion of graduate activities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Read less
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems. Read more
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems.

Degree information

Students develop an understanding of the areas making up synthetic biology, including engineering principles, mathematical modelling, molecular biology, biochemical engineering and chemistry. Modules also provide the necessary skills for acquisition and critical analysis of the primary scientific literature and transferrable research development skills. The programme includes a major research project that will give in-depth training in synthetic biology research methods.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (60 credits) and an extended research project (120 credits). There are no optional modules for this programme.

Core modules
-Synthetic Biology
-The Scientific Literature
-Biosciences Research Skills

Dissertation/report
All students undertake an independent laboratory-based extended research project which culminates in a dissertation of 15,000–18,000 words.

Teaching and learning
The programme is delivered through lectures, seminars and tutorials, combining research-led and skills based courses. The taught courses are assessed by assignments and coursework. The research project is assessed by an oral presentation, submission of a dissertation and is subject to oral examination.

Careers

Synthetic biology is a fast growing area of research and will have a major economic and social impact on the global economy in the coming decades. The involvement of engineers, physical scientists, chemists and biologists can create designed cells, enzymes and biological modules that can be combined in a defined manner. These could be used to make complex metabolic pathways for pharmaceuticals, novel hybrid biosensors or novel routes to biofuels. A future integration of biological devices and hybrid devices as components in the electronic industry might lead to a whole new high value industry for structured biological entities.

Top career destinations for this degree:
-Science Technician, King Richard's School
-Scientific consultant, Labcitec
-PhD Synthetic Biology, UCL
-PhD Biochemistry, University of Oxford
-PhD Bioenergy and Industrial Biotechnology, University of Cambridge

Employability
The Synthetic Biology MRes will qualify students to go on to work in the growing number of small companies engaged in synthetic biology both here in London and across the UK and the world. There are many large companies that are building their own synthetic biology potential and some of students are already working with these groups. Our students often go on to do further research in PhDs and EngDs globally. Our graduates have practical experience in unique facilities of generating novel research that makes them of great value to employers and collaborators.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biochemical engineering and synthetic biology as well as biological and biomedical science.

UCL Biochemical Engineering is in a unique position to offer tuition and research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of synthetic biology research.

Students on this new MRes programme undertake a major research project where topics can be chosen spanning the expertise in six departments across UCL.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X