• Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Reading Featured Masters Courses
ETH Zürich Featured Masters Courses
"materials" AND "technolo…×
0 miles

Masters Degrees (Materials Technology)

We have 942 Masters Degrees (Materials Technology)

  • "materials" AND "technology" ×
  • clear all
Showing 1 to 15 of 942
Order by 
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more

This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Advanced Characterisation Techniques (SL)

- Surface Engineering (SL)

- Ceramics: Processing and Properties (SL)

- Design with Engineering Materials (SL)

- Sustainable Use of Materials (OW)

- Metals: Processing and Properties (SL)

- MSc Project

Optional Modules

- Plastics Processing Technology (OW)

- Industrial Case Studies (OW)

- Materials Modelling (SL)

Part-time Modules:

Core Modules

- Ceramics: Processing and Properties (DL)

- Design with Engineering Materials (DL)

- Sustainable Use of Materials (OW or DL)

- Metals: Processing and Properties (DL)

- Surface Engineering (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Industrial Case Studies (OW)

- Adhesive Bonding (OW)

- Rubber Compounding and Processing (OW or DL)

Alternative modules:*

- Polymer Properties (DL)

- Advanced Characterisation Techniques (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.

Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Goal of the pro­gramme. Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Read more

Goal of the pro­gramme

Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of

  • The synthesis, processing, structure and properties of inorganic materials
  • Modelling methods in materials research
  • The structure and dynamics of biomolecular systems
  • The synthesis, structure and properties of polymers
  • Applications of materials research in industrial applications
  • The use of methods of physics in medicine

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your specialisation, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.



Read less
A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines. Read more

A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines

The complete masters (MSc) course in Advanced Engineering Materials provides you with an in-depth understanding of the key factors that govern the design and selection of materials for use in advanced engineering applications, as well as their processing, properties and stability.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Advanced Engineering Materials
  • Superalloys and High Performance Materials
  • Advanced Metals Processing
  • Advanced Composites
  • Graphene and Nanomaterials

Overseas students will require and ATAS certificate for this course. The ATAS certificate will expire after 6 months so please wait until May before applying. For a full list of the course units, please contact  . The JACS code for this course is J511 or J5.

Scholarships and bursaries

Unfortunately, The University of Manchester does not have any funding opportunities at present. There may be external funding opportunities, please see the link for more information:http://www.manchester.ac.uk/study/masters/funding/

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning. For more information, visit http://www.iom3.org  



Read less
This programme provides professional training in polymer science and technology for graduates of science, engineering and technology subjects. Read more

This programme provides professional training in polymer science and technology for graduates of science, engineering and technology subjects.

Lectures are supplemented by an extensive variety of laboratory exercises, spanning chemical and physical characterisation, and compounding and processing technology experiments on pilot-scale laboratory equipment.

Core study areas include polymer science, polymer process engineering, plastics and composites applications, polymer properties, polymer characterisation, polymerisation and polymer blends, plastics processing technology and a project.

Optional study areas include plastics processing technology, rubber compounding and processing, adhesive bonding, and sustainable use of materials.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/polymer-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Polymer Science (SL)

- Polymer Process Engineering (SL)

- Plastics and Composites Applications (SL)

- Polymer Properties (SL)

- Polymer Characterisation (OW)

- Polymerisation and Polymer Blends (SL)

- MSc Project

Optional Modules

- Biomaterials (SL)

- Rubber Compounding and Processing (OW)

- Adhesive Bonding (OW)

Part-time Modules:

Core Modules

- Polymer Science (DL)

- Plastics and Composites Applications (DL)

- Polymer Properties (DL)

- Polymer Characterisation (OW)

- Polymerisation and Polymer Blends (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Rubber Compounding and Processing (OW or DL)

- Adhesive Bonding (OW)

- Sustainable use of Materials (OW or DL)

Alternative modules:*

- Design with Engineering Materials (DL)

- Polymer Process Engineering (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further study

Typical careers span many industrial sectors, including plastics, rubber, chemical and additives industries and packaging.

Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing. Many of our best masters students who are interested in research stay with us to study for a PhD.

Bursaries and scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are

hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/polymer-science-tech/



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage

Structural metals and ceramics for gas turbine applications

Grain boundary engineering

Recycling of polymers and composites

Corrosion mechanisms in new generation magnesium alloys

Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)

Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The MA is for people with a personal passion for material culture, materials innovations, crafts, designs, heritage, and the cultural issues which they present. Read more

The MA is for people with a personal passion for material culture, materials innovations, crafts, designs, heritage, and the cultural issues which they present. Some are social scientists rethinking the engagement of anthropology, ethnography and material culture; others are designers or makers exploring cultural and social issues.

About this degree

Students will study anthropological and material culture theory, apply social science and ethnographic methodologies to the problems of design, explore the technical, aesthetic and symbolic properties of materials, and examine how these interact with production technologies and consumption choices. They will develop understanding of how working with materials, crafts, and design helps us to rethink, understand, and critique socio-cultural issues in ways beyond other disciplines, and in cutting-edge anthropological ways.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (45 credits), three optional modules (45 credits), a departmental seminar series and a research dissertation (90 credits).

Core modules

  • Materials, Anthropology and Design

Optional modules

  • Anthropology of the Built Environment
  • Art in the Public Sphere
  • Mass Consumption and Design
  • Anthropology and Photography
  • Social Construction of Landscape
  • Ethnographic Film
  • Archaeobotanical Analysis in Practice
  • Archaeometallurgy 1: Mining and Extractive Technology
  • Archaeometallurgy 2: Metallic Artefacts
  • Archaeological Glass and Glazes
  • Interpreting Pottery
  • Lithic Analysis
  • Archaelogical Ceramics and Plaster
  • Issues in Conservation: Understanding Objects

Dissertation/report

All MA students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, and tutorials. Several courses entail practical instruction, including visits to product design companies and trade fairs; archaeological field sites; Kew Botanical Archive and the British Museum. Assessment is through unseen examination, long essays, research methodology project and the dissertation.

Further information on modules and degree structure is available on the department website: Materials, Anthropology and Design MA

Careers

The unique combination of scientific and social science training offers students career pathways in a range of areas including:

  • design research
  • design consultancy and policy
  • heritage and museums
  • materials consultancy: advising industry on different materials, old and new, and their technical and aesthetic properties
  • product marketing
  • fashion marketing and buying
  • academia (PhDs, lecturing)

Employability

In addition to analytic and ethnographic skills honed by the core academic training, graduates develop a solid grounding in materials and design literacy, communication and interpersonal skills, new ways of thinking about culture and society and presentational and studio groupwork skills. 

Our graduates are equipped to collaboratively engage with different materials and design approaches for working alongside, and in conjunction with, designers, engineers, heritage professionals, environmentalists, materials scientists, and others with a pragmatic interest in materials and design.

Why study this degree at UCL?

UCL is a world leader in anthropological work, specialising in material culture, and also a pan-disciplinary leader in materials innovation and making. This MSc is the only specific design anthropology programme with a material culture emphasis, and the only one dedicated to seriously exploring materials and making in cultural terms.

The programme involves interdisciplinary engagements in: looking at materials expertise across London through visits to makespaces and materials libraries; a project for an external design client (in commerce, heritage, or the third sector); weekly high-profile academic speakers on material culture; and optional vocational seminars in the Spring Term. In some years we facilitate participation in conferences or workshops abroad.

UCL is located in central London, within walking distance to the British Museum and the British Library. UCL's own museums and collections form a resource of international importance for academic research.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Anthropology

68% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Scientific analysis is a key tool in the study of archaeological artefacts and assemblages. Read more

Scientific analysis is a key tool in the study of archaeological artefacts and assemblages. This MSc offers detailed training in the use of scientific techniques for the analysis of archaeological and heritage materials, and a solid background in the archaeology and anthropology of technology, allowing students to design and implement archaeologically meaningful scientific projects.

About this degree

This degree aims to bridge the gap between archaeology and science by integrating both a detailed training in the use of scientific techniques for the analysis of inorganic archaeological materials and a solid background in the anthropology of technology. By the end of the degree, students should have a good understanding of the foundations of the most established analytical techniques, practical experience in their application and data processing, as well as the ability to design research projects that employ instrumental analyses to address archaeological questions.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), four optional modules (75 credits) and a research dissertation (90 credits).

Core modules

  • Laboratory and instrumental skills in archaeological science

Optional modules

You are then able to choose further optional modules to the value of 75 credits. At least 15 credits must be made up from the following:  

  • Technology within Society
  • Archaeological Data Science

At least 30 credits must be made up from the following list below: 

  • Technology within Society
  • Archaeological Data Science
  • Archaeological Ceramic Analysis
  • Archaeological Glass and Glazes
  • Archaeometallurgy
  • Geoarchaeology: Methods and Concepts
  • Key topics in the Archaeology of the Americas
  • Interpreting Pottery
  • Working with Artefacts and Assemblages

In order to allow for a flexible curriculum, students are allowed to select up to 30 credits from any of the postgraduate modules offered at the UCL Institute of Archaeology under other Master's degrees

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, practical demonstrations and laboratory work. A popular aspect of this programme is its extensive use of analytical facilities. Assessment is through essays, practicals, projects, laboratory reports and oral presentations depending on the options chosen, and the dissertation.

Further information on modules and degree structure is available on the department website: Archaeological Science: Technology and Materials MSc

Careers

Given our strong emphasis on research training, many of our MSc graduates take up further research positions after their degree, and over half of our MSc students progress to PhD research. Their projects are generally concerned with the technology and/or provenance of ceramics, metals or glass in different regions and periods, but most of them involve scientific approaches in combination with traditional fieldwork and/or experimental archaeology. 

Some of our graduates are now teaching archaeometry or ancient technologies at different universities in the UK and abroad. Others work as conservation scientists in museums and heritage institutions, or as finds specialists, researchers and consultants employed by archaeological field units or academic research projects.

Employability

Due largely to an unparalleled breadth of academic expertise and laboratory facilities, our graduates develop an unusual combination of research and transferable skills, including critical abilities, team working, multimedia communication, numerical thinking and the use of advanced analytical instruments. On completion of the degree, graduates should be as comfortable in a laboratory as in a museum and/or an archaeological site. They become acquainted with research design and implementation, ethical issues and comparative approaches to world archaeology through direct exposure to an enormous variety of projects. The range of options available allows students to tailor their pathways towards different career prospects in archaeology and beyond.

Why study this degree at UCL?

The UCL Institute of Archaeology is the largest and most diverse department of archaeology in the UK. Its specialist staff, outstanding library and fine teaching and reference collections provide a stimulating environment for postgraduate study.

The excellent in-house laboratory facilities will provide direct experience of a wide range of techniques, including electron microscopy and microphone analysis, fixed and portable X-ray fluorescence, X-ray diffraction, infra-red spectroscopy, petrography and metallography under the supervision of some of the world's leading specialists.

The institute houses fine teaching and reference collections that are extensively used by MSc students including ceramics, metals, stone artefacts and geological materials from around the world. In addition, the institute has a wide network of connections to museums and ongoing projects offering research opportunities for MSc students.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Institute of Archaeology

73% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Degree. Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics. Teaching language. Read more

Degree: Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics

Teaching language: English

The Material Physics and Nanotechnology master's programme provides students with specialist knowledge in the area of new materials. Huge advances in modern technology and products in recent decades have to a large extent relied on developments in this field.

The importance of advanced materials in today’s technology is best exemplified by the highly purified semiconductor crystals that are the basis of the electronic age. Future implementations and applications of materials in electronics and photonics involve such subjects as nano-scale physics, molecular electronics and non-linear optics.

With support from internationally competitive research activities in materials physics at Linköping University, the programme has been established with distinct features that offer students high‑level interdisciplinary education and training in fundamental solid state physics and materials science within the following areas:

  • Electronic materials and devices
  • Surface and nano-sciences
  • Theory and modelling of materials
  • Organic/molecular electronics and sensors.

Advanced equipment training

The programme emphasises the comprehension of scientific principles and the development of personal and professional skills in solving practical engineering problems. Studies begin with mandatory courses, including nanotechnology, quantum mechanics, surface physics and the physics of condensed matter, in order to provide students with a solid knowledge foundation for modern materials science and nanotechnology. Moreover, through courses in experimental physics and analytical methods in materials science, students gain extensive training in operating the advanced instruments and equipment currently used in the research and development of new materials.

In-depth CDIO courses

A variety of elective courses is offered from the second term onwards, many of them involving the use of cutting-edge technology. These courses give students a broad perspective of today’s materials science research and links to applications in semiconductor technology, optoelectronics, bioengineering (biocompatibility), chemical sensors and biosensors, and mechanical applications for high hardness and elasticity. Students will also be instructed through in-depth CDIO (Conceive – Design – Implement – Operate) project courses, to develop abilities in creative thinking and problem solving.

Students complete a thesis project in the area of materials science and nanotechnology, either with an in-house research group or the industry.



Read less
A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products. Read more

About the course

A fantastic time to be a specialist in aerospace materials, Sheffield is in the heartland of the UK aerospace industry, meaning many international aerospace companies look to the Department to discover ways to improve both materials and processes for use in their products.

You’ll develop knowledge of the manufacturing, processing and properties of the metals and composite materials used in airframes and aeroengines. You’ll also be trained in the fundamentals of thermodynamics, structure and mechanical behaviour.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Aerospace Metals; Design and Manufacture of Composites; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials with Application; Advanced Materials Manufacturing; Deformation, Fracture and Fatigue; Research project in an area of your choice.

Read less
The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. Read more

The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. The goal of this programme is to educate specialists who are able to design, develop and improve materials for use in sustainable energy systems.

The programme offers a joint degree from two of the biggest and most respected universities in Estonia: Tallinn Tech and the University of Tartu

Key features

  • Integrating lectures, laboratory, theoretical classes and experience in industries
  • Professors of the programme are highly recognised scientists. In 2013 Professor Enn Mellikov received the Estonian National Science Award in the field of solar energy
  • Specialisation in Materials will concentrate on solar panels and fuel cells
  • Specialisation in Processes will teach all about the different ways to produce energy: oil shale, wind energy, water, etc.

Course outline

The goal of the programme is to educate engineers and material scientists in the field of sustainable energetics. For that reason there are two specializations to choose between:

  • Specialization on Materials will concentrate on solar panels and fuel cells
  • Specialization on Processes will teach all about the different ways to produce energy: oil shale, wind energy, water etc. It also gives an overview about how to analyse different methods and how to combine them

Master's programme is connected to the industry and will offer experience in the Estonian Energy Company already during the studies.

The main aim of the curriculum is to educate engineers able to solve or minimize problems connected first of all with the utilization but also with the conversion, transportation and storage of energy. The curriculum provides education in alternative energy materials science and engineering at MSc level with a strong technology component.

The curriculum offers an integrated approach towards current and long term materials and energetics issues, focusing on technologies and concepts in sustainable development of industrial production and use of energy.

The courses will be taught both, in Tallinn University of Technology and University of Tartu in compact courses integrating lectures, laboratory and theoretical classes blocked to just several days duration enabling also the integration of foreign visiting students.

Energy is becoming more and more a major cost factor for all the players in the energy business due to increased worldwide consumption on the one hand and on the other hand a need to restrict the production of greenhouse gases.

By 2030, the world's energy needs are expected to be 50% greater than today. Nowadays, much of this energy comes from non-renewable sources, such as fossil fuels- coal, oil and gas. These fuels are being used faster rate than they are produced and may be unavailable for future generations. At the same time, there is a need for a 25% reduction in greenhouse gas emissions by 2050 to avoid serious changes in the Earth's climate system.

In 2009 Tallinn University of Technology launched in cooperation with University of Tartu a joint master programme „Materials and Processes of Sustainable Energetics“ which teaches different sustainable energy methods.

Keywords such as solar energyfuel cellsbiomass, and wind energy are just the tip of the iceberg to describe the programme. Student can choose specialization either in materials of sustainable energetics or processes of sustainable energetics. Specialization on materials of sustainable energetics will give the student knowledge about solar panels and fuel cells- there is already a spin-off company Crystalsol which specializes on building solar panels. Students who choose to study processes of sustainable energetics will learn different ways how to produce and combine sustainable energy- solar, wind, biomass, etc.

Volume of the programme is 2 years and graduates will be awarded with the Master of Science in Engineering.

Curriculum

Structure of curriculum

Future career options

Since the beginning of the programme, almost 50% of the graduates have continued their studies at PhD level in Tallinn University of Technology or in other universities in Europe or America. This has the result of many career possibilities as a researcher in the field of fuel cells and solar panels for material specialisation students whereas processes students are demanded in industries related to sustainable energetics.



Read less
It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of man-made materials, and aims to prepare you for a career in industry by teaching you the concepts and theories that make materials science and engineering possible. Read more

About the course

It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of man-made materials, and aims to prepare you for a career in industry by teaching you the concepts and theories that make materials science and engineering possible.

Our research-led teaching introduces you to all the latest developments, and you’ll have the option to specialise in the area that interests you the most.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials; Research project in an area of your choice.

Examples of optional modules

Functional and Structural Ceramics; Design and Manufacture of Composites; Materials 
for Energy Applications; Metals Processing Case Studies; Glasses and Cements; Metallurgical Processing; Nanostructures 
and Nanostructuring.

Read less
Gain qualified teacher status (QTS) as a teacher of food technology with experience teaching Key Stages 3 to 5. Through study and teaching placements, you develop the skills, knowledge and enthusiasm needed to teach pupils with a range of abilities in both secondary school and college settings. Read more

Gain qualified teacher status (QTS) as a teacher of food technology with experience teaching Key Stages 3 to 5. Through study and teaching placements, you develop the skills, knowledge and enthusiasm needed to teach pupils with a range of abilities in both secondary school and college settings.

This secondary teacher training course leads to qualified teacher status (QTS). It equips you to teach food technology.

On the course you

  • enhance your subject knowledge, understanding and skills
  • learn how to teach food technology
  • learn about the wider role of teachers in school
  • gain knowledge about schools and the education system
  • apply your skills and knowledge on school placements

We help you develop the skills you need to be a successful teacher of pupils of all abilities. By studying with us you build your enthusiasm, confidence, knowledge and ability to teach food technology.

You complete a lot of practical work in our well-equipped facilities to help you learn creative and innovative teaching methods, which you can then transfer to the classroom.

You also gain self-evaluation skills by completing a career preparation profile. This provides evidence that you meet the QTS standards for self-evaluation and personal development.

School placements are central to the course. You complete teaching placements in two 11–16 or 11–18 schools. This allows you to experience the progression from Key Stage 3 to 5. A University-trained mentor supports you when on placement. Your course tutor also visits you to discuss your progress.

We have strong partnerships with secondary schools and colleges in the area and many of our students are offered teaching jobs in their placement schools.

Your placements are complemented by University and Academy based study that includes teaching sessions, seminars, group study, tutorials and assessment.

During the course you can choose to complete either the PGCE or the professional graduate certificate in education (ProfGCE). Both qualifications achieve QTS but the PGCE also gives you 60 masters level credits, which you can use towards a masters degree.

School Direct

Apply for a place through the School Direct scheme for a dedicated route into a job after graduation. During School Direct, the school or partnership of schools that you've applied to will be much more involved in your selection, recruitment and professional development as there is the expectation that you will be employed by them once qualified.

For more information visit our School Direct page

Course structure

Modules

  • developing and reflecting on professional practice in secondary design and technology education – (food technology)
  • learning and teaching in context in design and technology
  • block placement 1
  • block placement 2

Assessment

  • research projects
  • individual and group work
  • presentations and reports
  • preparing teaching materials and plans
  • teaching practice
  • practical work

Employability

We have an excellent graduate employment record. Over 96 per cent of our PGCE graduates are teaching or in further study within six months of graduating.



Read less

Show 10 15 30 per page



Cookie Policy    X