• Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
King’s College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Aberdeen University Featured Masters Courses
"materials" AND "science"…×
0 miles

Masters Degrees (Materials Science)

We have 1,069 Masters Degrees (Materials Science)

  • "materials" AND "science" ×
  • clear all
Showing 1 to 15 of 1,069
Order by 
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more

Overview

The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Specific aims are:
1. to build on the knowledge and ideas gained in prior Materials Science courses;
2. to develop a more specialised and in-depth understanding of Materials Science in selected areas;
3. to further develop analytical and presentational skills, both orally and in writing;
4. to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Learning Outcomes

At the end of the course students should:
1. be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
2. be able to demonstrate an understanding of the courses attended, and of their individual research projects;
3. be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
4. be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

Teaching

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

- Feedback
The MASt is treated as an undergraduate course for the purposes of supervisions, such that on average students should expect to have at least one supervision per week during term, with written and verbal feedback on their work within 24 hours.

Online written reports are provided at the end of each term.

Students should expect to meet daily to weekly with their project demonstrator and weekly to termly with their project supervisor.

Students receive written feedback on all aspects of work submitted for summative assessment (reports, oral presentations, poster), within two weeks of the work being submitted.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Course detail

Specific aims are:

- to build on the knowledge and ideas gained in prior Materials Science courses;
- to develop a more specialised and in-depth understanding of Materials Science in selected areas;
- to further develop analytical and presentational skills, both orally and in writing;
- to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

Learning Outcomes

At the end of the course students should:

- be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
- be able to demonstrate an understanding of the courses attended, and of their individual research projects;
- be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
- be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Format

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

Assessment

- A final report of up to 7000 words, worth 12% of the total credit.
- An interim report worth 4% of the total credit.
- A project viva worth 4% of the total credit.
- A project poster worth 4% of the total credit.
- A project oral presentation worth 4% of the total credit.
- Termly progress assessments from project supervisor worth 2% of the total credit.
- Vacation project written report worth 1% of the total credit.
- Three 3-hr written examination papers worth a total of 68% of the credit.
An oral presentation of a vacation project worth 1% of the total credit.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
If you’re a graduate from a science, mathematics, technology or another engineering discipline, this programme provides the knowledge and skills to convert… Read more

If you’re a graduate from a science, mathematics, technology or another engineering discipline, this programme provides the knowledge and skills to convert to a specialism in materials science and engineering or metallurgy to meet the present needs and future challenges of advanced materials and manufacturing in areas such as transportation, bioengineering, energy, electronics and information technology, sport and sustainable development.

Alternatively, if you’re already a professional engineer in the materials sector, you’ll have the chance to expand your expertise to enhance your career prospects.

Core modules cover key topics such as materials structures, processing-structure-property relationships, characterisation and failure analysis. You’ll also choose one from three groups of optional modules to focus your specialism to suit your own career plans and interests. Taught by experts in world-class facilities, you’ll gain the skills to thrive in a growing and fast-changing field.

Specialist facilities

You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of materials science and engineering and metallurgy. We have state-of-the-art preparative facilities for making and characterising a wide range of materials, as well as equipment and instrumentation for carrying out more fundamental studies into their process-microstructure-property relationships.

Accreditation

The course is designed to provide graduates with the educational base required for Chartered Engineer (CEng) status. Accreditation is currently being sought from IoM3

Course content

Compulsory modules at the beginning of the programme lay the foundations of your studies in materials science or metallurgy. You’ll learn about processing-structure-property relationships, which lie at the heart of the discipline, as well as examining topics such as mechanical, physical and chemical behaviour, phase transformations and how the structure and local chemistry of materials may be characterised. You’ll cover materials and process selection and their role in design, and extend this into the principles and practice of failure analysis.

This prepares the way for three sets of specialist modules: you can decide to specialise in metallurgy, functional and nanomaterials or take a broader materials science approach covering metals, ceramics, polymers, composites and biomaterials. You’ll complete your taught modules either by studying a module in materials modelling (if you already hold an accredited Engineering degree) or participating in an industry-focused interdisciplinary design project.

You will complete your programme with a major individual research project of your own. With guidance from your supervisor, you will work on a topic related to the internationally-leading materials and metallurgical research carried out in the University, or you could propose a topic of your own related to your own professional work or that of an industrial sponsor.

Want to find out more about your modules?

Take a look at the Materials Science and Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Phase Transformations and Microstructural Control 15 credits
  • Structure-Property Relationships 15 credits
  • Materials Selection and Failure Analysis 15 credits
  • Materials Structures and Characterisation 15 credits

Optional modules

  • Team Design Project 15 credits
  • Biomaterials and Applications 15 credits
  • Materials Modelling 15 credits
  • Materials for Functional Applications 30 credits
  • Metals and Alloys 15 credits
  • Ceramics, Polymers and Composites 15 credits
  • Nanomaterials 15 credits
  • Process Metallurgy 15 credits
  • Extractive Metallurgy 15 credits

For more information on typical modules, read Materials Science and Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of the discipline through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments, vivas and projects.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by MSc Materials Science and Engineering students have included:

  • Hydrothermal synthesis of metal oxide nanoparticles
  • Temperature variable X-ray diffraction of high temperature piezoelectric material BiFeO3-KBiTiO3-PbTiO3
  • Fabrication of glass waveguide devices by femtosecond laser inscription
  • Microstructure development in drop-tube processed cast iron
  • Validation of cooling rate models of drop-tube processing
  • Characterisation of graphite nanoplatelets (GNPs) produced by solvent exfoliation of graphite
  • Studies of the effect of milling variables in the production of nanoparticles
  • Microstructural investigation of spray atomized powders

Career opportunities

There is currently an increasingly high demand for qualified materials scientists, materials engineers and metallurgists.

Career prospects are excellent and cover a wide range of industries concerned with the research and development of new and improved materials, materials synthesis and commercial production, and materials exploitation in cutting-edge applications in engineering and technology.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UKs leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery. Read more

About the course

This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery.

You’ll be taught by some of the leading academics in the fields of bio and dental materials science, tissue engineering, materials characterisation and biomedical engineering. You’ll also learn the principles of research and different techniques for evaluating dental materials and related health technologies.

Your career

We offer clinical and non-clinical courses that will further your career and develop your interests. Many of our clinical graduates go on to specialist dental practice, hospital practice or academic posts.

World-leading dental school

Our internationally recognised oral and dental research is organised into two overarching themes: ‘clinical and person centred’ and ‘basic and applied’. These themes are supported by three interdisciplinary research groups: Bioengineering and Health Technologies, Integrated Bioscience, and Person Centred and Population Oral Health.

We believe that dental science should not be constrained by the traditional boundaries created by specific clinical disciplines and that progress derives from a multidisciplinary approach. Our research supports our teaching enabling a blended approach to learning.
Your course will make the most of virtual learning environments and advanced practical sessions, as well as traditional lectures and seminars.

Facilities

You’ll develop your clinical skills in one of our two clinical skills labs or in our new virtual reality Simulation Suite where you can use haptic technology to undertake a range of clinical techniques.

You’ll complete your clinical training in Sheffield’s Charles Clifford Dental Hospital, part of the Sheffield Teaching Hospitals NHS Foundation Trust. There are 150 dental units with modern facilities for treatment under sedation, a well-equipped dental radiography department, oral pathology laboratories and a hospital dental production laboratory.

We have new modern research facilities and laboratories for tissue culture, molecular biology, materials science and histology- microscopy. All laboratories have dedicated technical support and academic expertise to guide you.

Core modules

Current Concepts in Dentistry; Dental Materials Science; Selecting Dental Materials for Clinical Applications; Science Writing and Health Informatics; Polymer Materials Chemistry; Structural and Physical Properties of Dental and Biomaterials; Group Projects and Developing Research; Introduction to Digital Dentistry and Dental Manufacturing; Dissertation.

Teaching

Teaching is through lectures, seminars and tutorials, personal academic study and self-directed learning, research project.

Assessment

You’ll be assessed on assignments, coursework, examination and research project dissertation.

Read less
Materials Science and Engineering offers interdisciplinary programs leading to the degrees of master of science and doctor of philosophy. Read more
Materials Science and Engineering offers interdisciplinary programs leading to the degrees of master of science and doctor of philosophy. Established in 2002, the program offers both the MS and PhD degree in materials science and engineering. While the program is relatively young, the participating departments and faculty on campus have an extensive legacy of research and of offering relevant materials science and engineering academic training.

From the smallest of the small to the opposite end of the spectrum, our students develop a foundation in the principles of materials science, selecting an atomic/nano approach or a bulk/macro approach. This foundation is then coupled with specialized knowledge in one area of materials, such as: energy production, storage and transmission; nanomaterials for a range of applications; electronic materials with a specialization in flexible electronics; biomaterials; modeling and mechanical behavior.

Recent doctoral graduate placements include: Post Doctoral Fellowship at Massachusetts Institute of Technology, Reliability Engineer for Microsoft Corporation, Research Scientist for Toyota, Senior Research Engineer at LG Electronics, Post Doctoral Fellowship at Northwest National Lab, Senior Process Engineer at Global Foundries

Graduate Degrees Offered

- MS with an engineering emphasis or a science emphasis

All applicants must also submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more

Overview

This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

The main aims of the programme are:
- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Learning Outcomes

By the end of the programme, students will have:
- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

Teaching

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

- Feedback
Students can expect a formal discussion with their supervisor, and a written report (via the University's on-line system) on their progress, at least once a term. Written feedback will be provided on drafts of the dissertation.

Assessment

- Thesis
Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Read less
The development of new materials lies at the heart of many of the technological challenges we currently face, for example creating advanced materials for energy generation. Read more

Overview

The development of new materials lies at the heart of many of the technological challenges we currently face, for example creating advanced materials for energy generation. Computational modelling plays an increasingly important role in the understanding, development and optimisation of new materials. This four year Doctoral Training Programme on computational methods for material modelling aims to train scientists not only in the use of existing modelling methods but also in the underlying computational and mathematical techniques. This will allow students to develop and enhance existing methods, for instance by introducing new capabilities and functionalities, and also to create innovative new software tools for materials modelling in industrial and academic research. The first year of the CDT is a materials modelling option within the MPhil in Scientific Computing (please see the relevant entry) at the University of Cambridge and a range of additional training elements.

The MPhil in Scientific Computing is administered by the Department of Physics, but it serves the training needs of the Schools of Physical Sciences, Technology and Biological Sciences. The ability to have a single Master’s course for such a broad range of disciplines and applications is achieved by offering core (i.e. common for all students) numerical and High Performance Computing (HPC) lecture courses, and complementing them with elective courses relevant to the specific discipline applications.

In this way, it is possible to generate a bespoke training portfolio for each student without losing the benefits of a cohort training approach. This bespoke course is fully flexible in allowing each student to liaise with their academic or industrial supervisor to choose a study area of mutual interest.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms

Learning Outcomes

By the end of the course, students will have:
- a comprehensive understanding of numerical methods, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Teaching

The first year of the CDT has a research as well as a taught element. The students attend lecture courses during the first five months (October-February) and then they will undertake a substantial Research Project over the next 6 months (from March to the end of August) in a participating Department. The research element aims to provide essential skills for a successful completion of the PhD, as well as to assess and enhance the research capacity of the students. It is based on a materials science topic which is studied by means of scientific computation. Research project topics will be provided by academic supervisors or by the industrial partners. Most of the projects are expected to make use the University’s High Performance Computing Service (for which CPU time for training and research has been budgeted for every student).

The taught element comprises core lecture courses on topics of all aspects of scientific computing, and elective lecture courses relevant to the topic of the research project. There is equal examination credit weighting between the taught and the research elements of the course, which is gained by submitting a dissertation on the project and by written assignments and examinations on the core and elective courses, respectively. Weighting of the assessed course components is as follows: Dissertation (research) 50%; written assignments 25%; written examinations 25%.

The core courses are on topics of high-performance scientific computing and advanced numerical methods and techniques; they are taught and examined during the first five months (October-February). Their purpose is to provide the students with essential background knowledge for completing their theses and for their general education in scientific computing.

Appropriate elective courses are selected from Master’s-level courses offered by the Departments of the School of Physical Sciences, Technology or Biological Sciences. The choice of courses will be such as to provide the students with essential background knowledge for completing their theses and for their general education in the materials science application of the project. They are decided in consultation with the project supervisor.

Depending on the materials science application of the research topic, students will follow one of the following two numerical methodology options: a) Continuum methods based on systems of partial differential equations (PDEs, e.g. finite-difference, element or volume methods); or b) atomistic approaches, which can be based on classical particle-based modelling (e.g. molecular dynamics) or on electronic structure- based methods (e.g. density functional theory). The students who take the atomistic modelling options will attend a 12-lecture course before continuing to classical particle-based methods or electronic structure methods. Irrespective of the numerical methodology option, students will attend lecture courses on High Performance Computing topics and elements of Numerical Analysis.

In addition to the comprehensive set of Masters-level courses provided by the MPhil and across the University in the field, which will be available to the CDT students, it will also be possible for students to take supplementary courses (not for examination) at undergraduate level, where a specific need is identified, in order to ensure that any prerequisite knowledge for the Masters courses is in place.

Moreover, depending on their background and circumstances, students may be offered places in the EPSRC-funded Autumn Academy, which takes place just before the start of the academic year (two weeks in September).

Funding Opportunities

Studentships funded by EPSRC and/or Industrial and other partners are available subject to eligibility criteria.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphpdcms

Read less
With a growing world population, there is increasing need for scientific experts and entrepreneurs who can develop novel materials with advanced properties - addressing critical issues from energy to healthcare - and take scientific discoveries to the commercial world. Read more
With a growing world population, there is increasing need for scientific experts and entrepreneurs who can develop novel materials with advanced properties - addressing critical issues from energy to healthcare - and take scientific discoveries to the commercial world. This degree combines frontline research-based teaching from across UCL to train the next generation of materials scientists.

Degree information

The programme aims to equip students with advanced, comprehensive knowledge of materials science and related state-of-the-art technologies, an understanding of the structure, properties and applications of materials, scientific research skills, and the insight and capability to be an entrepreneur in the field. In addition, students will engage in a literature project and a six-month cutting-edge research project.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), two optional modules (30 credits), a literature project (15 credits) and a research project/dissertation (60 credits).

Core modules
-Advanced Materials Characterisation
-Advanced Materials Processing and Manufacturing
-Materials Design, Selection and Discovery
-Microstructural Control in Materials Science
-Research Methodology

Optional modules
-Students choose one or two optional modules to a total value of 30 credits from the following:
-Advanced Topics in Energy Science and Materials (15 credits)
-Biomaterials Applications (15 credits)
-Mastering Entrepreneurship (15 credits)
-Materials and Fatigue/Fracture Analysis (15 credits)
-Nanoscale Processing and Characterisation for Advanced Devices (15 credits)
-Simulation Methods in Materials Chemistry (30 credits)

Dissertation/report
All students undertake a literature project and a research project an independent research project which culminates in a 20-minute oral presentation and a dissertation of 10,000 to 12,000 words.

Teaching and learning
Teaching is delivered by lectures, interactive tutorials, case discussions, and modelling projects. Assessment is by a combination of ongoing coursework, presentations, a group project and/or a written examination, a dissertation and a viva voce.

Careers

On graduation students will be equipped for a future career as a materials scientist or engineer in academia or industry, or as an entrepreneur.

Employability
In addition to the specific skills and knowledge students acquire by taking this programme, they also develop managerial and entrepreneurship skills, and transferable skills in areas including literature search, design of experiments, materials research, critical data analysis, teamwork and effective communication skills using real-life case scenarios and student-led group projects.

Why study this degree at UCL?

Advanced Materials Science MSc relates scientific theories to research and applications of advanced materials, encourages innovation and creative thinking, and contextualises scientific innovation within the global market and entrepreneurship.

The programme aims to deliver innovative teaching; from the group design projects where students are challenged to design the next advanced material to the module, Mastering Entrepreneurship, where students learn how to apply research in the commercial world.

Students on this interdisciplinary programme benefit from UCL’s emphasis on research-based learning and teaching and research input from departments across UCL in mathematical and physical sciences, and in engineering.

Read less
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Read more
This full time course is designed to provide further training in research in Materials Science after a minimum of at least 3 years’ university-level education to UK Bachelor’s level, or overseas equivalent. Students admitted to this course may apply to continue to PhD level research (which takes a minimum of a further 3 years) in Materials Science.

MPhil students are encouraged to participate in many of the training opportunities and other activities available to students in the University, and become fully integrated members of the Department’s Research School.

Students carry out a one-year research programme under the supervision of a member of the academic staff of the Department of Materials Science.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmsm

Course detail

The main aims of the programme are:

- to give students with relevant experience at first-degree level the opportunity to carry out focussed research in the discipline under close supervision; and
- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research, research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

This course is exclusively by research. Applicants should identify potential supervisors, and provide a short project description, in section A(12) of the GradSAF, so that their papers can be considered by appropriate members of academic staff working in their field(s) of scientific interest.

Assessment

Assessment is based entirely on a viva voce examination of a 15,000 word dissertation which must be submitted by 31 August (students starting in October of each academic year) on a topic approved by the Degree Committee for the Faculty of Physics and Chemistry. The dissertation is examined in an oral examination by one external and one internal examiner appointed individually for each candidate.

Continuing

Students wishing to continue to PhD level research (which takes a minimum of a further 3 years) may apply during the masters year. A conditional offer may be made, contingent on successful completion of the MPhil. Students will be expected to have demonstrated the potential to carry out a further programme of research during their MPhil programme.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials. Read more
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials.

The objectives of the program are threefold:

- With the advent of new classes of materials and instruments, the traditional practice of empiricism in the search for and selection of materials is rapidly becoming obsolete. Therefore, the program offers a serious interdisciplinary learning experience in materials studies, crossing over the traditional boundaries of such classical disciplines as chemistry, physics, and electrical, mechanical, and microelectronic engineering.

- The program provides extensive experimental courses in diverse areas of materials-related studies.

- The program explores avenues for introducing greater harmony between industrial expansion and academic training.

Plan of study

A minimum of 30 semester credit hours is required for the completion of the program. This includes five required core courses, graduate electives, and either a thesis or project. The core courses are specially designed to establish a common base of materials-oriented knowledge for students with baccalaureate degrees in chemistry, chemical engineering, electrical engineering, mechanical engineering, physics, and related disciplines, providing a new intellectual identity to those involved in the study of materials.

The program has an emphasis on experimental techniques, with one required experimental course as part of the core. Additional experimental courses are available for students who wish to pursue course work in this area. These courses are organized into appropriate units covering many aspects of the analysis of materials. This aspect of the program enhances a student’s confidence when dealing with materials-related problems.

- Electives

Elective courses may be selected from advanced courses offered by the School of Chemistry and Materials Science or, upon approval, from courses offered by other RIT graduate programs. Elective courses are scheduled on a periodic basis. Transfer credit may be awarded based on academic background beyond the bachelor’s degree or by examination, based on experience.

- Thesis/Project

Students may choose to complete a thesis or a project as the conclusion to their program. Students who pursue the thesis option take two graduate electives, complete nine semester credit hours of research, and produce a thesis paper. The project option includes four graduate electives and a 3 credit hour project.

Admission requirements

To be considered for admission to the MS program in materials science and engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree in chemistry, physics, chemical engineering, electrical engineering, mechanical engineering, or a related field from an accredited college or university,

- Submit official transcripts (in English) from all previously completed undergraduate and graduate course work,

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). A minimum TOEFL score of 575 (paper-based) or 88-89 (Internet-based) is required. A 4.0 is required on the TWE. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org. In addition, upon arrival at RIT, international students are required to take the English language exams, administered by the English Language Center. Individuals scoring below an established minimum will be referred to the center for further evaluation and assistance. These students are required to follow the center’s recommendations regarding language course work. It is important to note that this additional course work may require additional time and financial resources to complete the degree requirements. Successful completion of this course work is a requirement for the program.

Candidates not meeting the general requirements may petition for admission to the program. In such cases, it may be suggested that the necessary background courses be taken at the undergraduate level. However, undergraduate credits that make up deficiencies may not be counted toward the master’s degree.

Any student who wishes to study at the graduate level must first be admitted to the program. However, an applicant may be permitted to take graduate courses as a nonmatriculated student if they meet the general requirements mentioned above.

Additional information

- Part-time study

The program offers courses in the late afternoon and evenings to encourage practicing scientists and engineers to pursue the degree program without interrupting their employment. (This may not apply to courses offered off campus at selected industrial sites.) Students employed full time are normally limited to a maximum of two courses, or 6 semester credit hours, each semester. A student who wishes to register for more than 6 semester credit hours must obtain the permission of his or her adviser.

- Maximum limit on time

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
Materials Science is the foundation for much of the technological advances in recent decades, and continues to drive development of new devices and functionalities in a wide variety of fields. Read more

Materials Science is the foundation for much of the technological advances in recent decades, and continues to drive development of new devices and functionalities in a wide variety of fields. This programme is designed to cater for those in full-time employment who are interested in such fields.

The programme will give students an understanding of the principal facts, theories and characterisation methods associated with materials science, with the aim to develop knowledge and capability that will enhance the work performance of students employed in materials based industries or make them directly employable in a range of positions within such industries.

Materials Science drives the development of new devices and functionalities in a variety of industries. This MSc is designed for those in full-time employment who are interested in such fields.

The programme aims to develop knowledge and capability that will enhance the work performance of students employed in materials based industries or make them directly employable in a range of positions within such industries.



Read less
The material sciences form the foundations that allow technological innovation and the development of pioneering technologies. In the interdisciplinary, NAWI Graz degree programme Advanced Materials Science, offered in the English language, you gain an understanding of materials and their properties. Read more

The material sciences form the foundations that allow technological innovation and the development of pioneering technologies. In the interdisciplinary, NAWI Graz degree programme Advanced Materials Science, offered in the English language, you gain an understanding of materials and their properties. You learn the physical and chemical fundamentals as well as the engineering skills needed to develop new materials. As a trained material scientist, you are able to tackle a wide variety of complex tasks in industry and research.

Content

  • You will learn about the production, processing, characterization, modeling and application of materials in an interdisciplinary way.
  • You will learn how to apply complex scientific methods used in the fields of physics, chemistry and materials science.
  • You may choose one of the following areas of specialization:
  • Metallic and ceramic materials
  • Semiconductor process technology and nanotechnology
  • Bio-based materials
  • You learn to work together in project teams in an interdisciplinary and problem-solving oriented way.
  • You document and present your results and strategies using state-of-the-art communication and presentation techniques.

Barbara Glanzer, master's degree student in Advanced Materials Science:

"What I particularly like about my degree programme is that it offers the opportunity to acquire both a theoretical understanding of the characteristics of materials, as well as of their practical applications."

Career Options

Graduates work nationally and internationally in:

  • industrial research and development, for example, in the materials, chemical, and semiconductor industries,
  • high-tech areas such as sustainable technologies, process innovation, and information technology, and
  • research and teaching facilities at universities and other research institutions.


Read less
A master of excellence. Mamaself is a two year European Master program in Materials science, a program of excellence build in the framework of the Erasmus Mundus program. Read more

A master of excellence

Mamaself is a two year European Master program in Materials science, a program of excellence build in the framework of the Erasmus Mundus program. One specific aim of the Mamaself program is to teach the application of "Large scale facilities" for the characterisation and development of materials.

Modern life and globalisation imply new and additional exigencies for scientists and scientific engineers in the field of scientific and industrial competitiveness. This holds specifically for the development of new technologies and new materials which are important key-products and which contribute to the technological and scientific competitiveness of highly industrialized countries. The characterisation of these materials and also the optimising of technologies strongly demand sophisticated methods, some of them uniquely available at "Large scale facilities” using neutrons or synchrotron radiation.

The Master Mamaself’s objective is to train in a very multidisciplinary and international approach high-level students who will manage perfectly the scientific and technological aspects of the elaboration, the implementation, the control and the follow-up of materials, capable of fitting into the industrial environment as well as continuing with a PhD.

A consortium of five universities

The Mamaself Consortium includes 5 primary European Universities in the field of Materials sciences, Engineering Physics, Chemistry :

The partners have a large background in materials science and a long collaboration with Large Scale Facilities. They are located in culturally and historically rich European towns. Through full integration of teaching and research, the consortium universities have managed to bring together different specializations in a unique course programme.

Erasmus Mundus programme

The Erasmus Mundus programme is a co-operation and mobility programme in higher education. It aims to enhance quality in European higher education and to promote intercultural understanding through co-operation with third countries. 

The programme is intended to strengthen European co-operation and international links in higher education by supporting high-quality European Masters Courses, enabling students from around the world to engage in postgraduate study at European higher education institutions, as well as encouraging the outgoing mobility of European students and scholars towards third countries.

Structure of the program

The program is organized as a pedagogic continuum:

The course begins in September (semester 1) of each year, including lectures, tutorials, seminars and a work-based research project

Students can start Year 1 of their studies at any of the five partner universities. Semester 3 is offered at one the other 4 partner universities, while semester 4 can be undertaken in industry, at one of the consortium universities, at LSF or at any of the partner universities. 

In each semester, students take 30 ECTS credits.

The duration of the Mamaself Masters course is two years (120 ECTS credits). The academic program is split into two years with 60 ECTS credits for each. The language of instruction and examination is English. The student will stay one year in one institution and a second second in another institution. In respect of the Erasmus Mundus mobility rules, students must change country between Yea 1 and Year 2. It is not possible to stay the two years at the same site in Munich. It is possible to go back to one of the two first institutions for the 4th semester.

Year 1

The first year consists of lectures and practicals at one out of the five universities yielding 60 ECTS. This part of teaching will take place at one of the 5 leading European universities belonging to the consortium.

At the end of the first year, student must change country and join a second institution.

Students will receive at least 2 European Master diploma , one for each institution.

Year 2

  • Summerschool

The second academic year will start with a summer school of two weeks, where both lectures and practicals (comprehensively corresponding to 7 ECTS) will offer an excellent introduction into the use of “Large Scale Facilities”. The core of the lectures will all be given by the scientists responsible of the Master in each of the four universities (W. Paulus, P. Rabiller, W. Petry and W. Schmahl, C. Lamberti), exhibiting a huge background in this area. Each year the core lectures will be supported by specific seminars given by other university colleagues and by researchers directly coming from national or European Large Scale Facilities centers.

During these two weeks, the topic of the Master thesis will be chosen by the student out of a list of subjects proposed by the staff of the institutions.

  • Year 2

During the first semester of the second year each student has to shift to one out of the four other universities. The first semester consists in lectures and practicals (30 ects, cf programme in each university of the consortium). During the second semester of the second year the student has to undergo the Master thesis work which will also yield 30 ECTS. The thesis work will take six months and is generally in strong relation with the use of ”Large Scale Facilities” for applied or academic research problem.

The research topic can be supervised and located at large Scale Facilities, but will then be jointly supervised by an advisor of one of the consortium institutions. The research work is finalised by a written dissertation, wich must be defended in front of a comittee.

Students may undergo their master thesis at another partner institution in Japan (Kyoto University, Tokyo Institite of Technology) Switzerland (PSI / ETH Zurich) or India (IIT Madras), Univeristy Cornell (USA), University of Connecticut (USA).

Find out about the Study Program - https://www.mamaself.eu/study-program

Find out about the Master Thesis - https://www.mamaself.eu/master-thesis

Application

Students must apply online on the Mamaself application site:

http://application.mamaself.eu

-Fill the online form

-Add the requested documents;

  • Transcripts
  • English level certificate
  • Bachelor degree (or certificate of third Bachelor year)
  • Letters of recommendation
  • Passport
  • Picture

Practical information can be found here - https://www.mamaself.eu/practical-information



Read less
The Department of Materials Science and Engineering (MSE) offers graduate programs leading to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). Read more
The Department of Materials Science and Engineering (MSE) offers graduate programs leading to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). Graduate courses and research opportunities are offered to qualified students in a wide range of subjects.

Typical subjects in extractive and process metallurgy involve a study of the equilibria existing during the reduction of oxides with carbon and metals, life cycle analysis of materials, properties of iron and steelmaking slags, the fundamental properties of fused salt solutions, fused salt electrolysis of reactive metals, kinetics of high-temperature reactions, mathematical modelling of metallurgical processes, process metallurgy, and hydrometallurgy.

Typical physical metallurgy and materials science subjects deal with the structure, properties, and application of advanced materials in such fields as nanomaterials, surface chemistry, energy, sustainability, optoelectronics, biomaterials, nuclear materials, metalmatrix composites (MMCs), metallic glasses, corrosion, fatigue, phase transformations, and solidification. These studies are all related to the general problem of understanding structure-property-processing-performance relationships in materials.

Read less
It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of man-made materials, and aims to prepare you for a career in industry by teaching you the concepts and theories that make materials science and engineering possible. Read more

About the course

It is estimated 70 per cent of innovations are due to an advance in materials. This course provides a solid grounding in all types of man-made materials, and aims to prepare you for a career in industry by teaching you the concepts and theories that make materials science and engineering possible.

Our research-led teaching introduces you to all the latest developments, and you’ll have the option to specialise in the area that interests you the most.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials; Research project in an area of your choice.

Examples of optional modules

Functional and Structural Ceramics; Design and Manufacture of Composites; Materials 
for Energy Applications; Metals Processing Case Studies; Glasses and Cements; Metallurgical Processing; Nanostructures 
and Nanostructuring.

Read less

Show 10 15 30 per page



Cookie Policy    X