• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
De Montfort University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Sussex Featured Masters Courses
University of Birmingham Featured Masters Courses
University College London Featured Masters Courses
"materials"×
0 miles

Masters Degrees (Materials)

  • "materials" ×
  • clear all
Showing 1 to 15 of 2,659
Order by 
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Read more
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of:
-The synthesis, processing, structure and properties of inorganic materials.
-Modelling methods in materials research.
-The structure and dynamics of biomolecular systems.
-The synthesis, structure and properties of polymers.
-Applications of materials research in industrial applications.
-The use of methods of physics in medicine.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your major subject, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.

Selection of the Major

At the beginning of your studies you will make a personal study plan, with the help of teaching staff, where you choose your study line. This programme has the following six study lines representing different branches of materials research.

Experimental Materials Physics
Here you will study the properties and processing of a wide variety of materials using experimental methods of physics to characterise and process them. In this programme the materials range from the thin films used in electronics components, future fusion reactor materials, and energy materials to biological and medical materials. The methods are based on different radiation species, mostly X-rays and ion beams.

Computational Materials Physics
In this study line you will use computer simulations to model the structures, properties and processes of materials, both inorganic materials such as metals and semiconductors, and biological materials such as cell membranes and proteins. You will also study various nanostructures. The methods are mostly atomistic ones where information is obtained with atomic level precision. Supercomputers are often needed for the calculations. Modelling research is closely connected with the experimental work related to the other study lines.

Medical Physics
Medical physics is a branch of applied physics encompassing the concepts, principles and methodology of the physical sciences to medicine in clinics. Primarily, medical physics seeks to develop safe and efficient diagnosis and treatment methods for human diseases with the highest quality assurance protocols. In Finland most medical physicists are licensed hospital physicists (PhD or Phil.Lic).

Polymer Materials Chemistry
In this line you will study polymer synthesis and characterisation methods. One of the central questions in polymer chemistry is how the properties of large molecules depend on the chemical structure and on the size and shape of the polymer. The number of applications of synthetic polymers is constantly increasing, due to the development of polymerisation processes as well as to better comprehension of the physical properties of polymers.

Inorganic Materials Chemistry
Thin films form the most important research topic in inorganic materials chemistry. Atomic Layer Deposition (ALD) is the most widely studied deposition method. The ALD research covers virtually all areas related to ALD: precursor synthesis and characterisation, film growth and characterisation, reaction mechanism studies, and the first steps of taking the processes toward applications. The emphasis has been on thin film materials needed in future generation integrated circuits, but applications of ALD in energy technologies, optics, surface engineering and biomaterials are also being studied. Other thin film deposition techniques studied include electrodeposition, SILAR (successive ionic layer adsorption and reaction) and sol-gel. Nanostructured materials are prepared either directly (fibres by electrospinning and porous materials by anodisation) or by combining these or other templates with thin film deposition techniques.

Electronics and Industrial Applications
Sound and light are used both to sense and to actuate across a broad spectrum of disciplines employing samples ranging from red hot steel to smooth muscle fibres. Particular interest is in exploiting the link between the structure and mechanics of the samples. The main emphasis is on developing quantitative methods suitable for the needs of industry. To support these goals, research concentrates on several applied physics disciplines, the main areas being ultrasonics, photoacoustics, fibre optics and confocal microscopy.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials
Polymer Processing
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Simulation Based Product Design
Aerospace Materials Engineering
Structural Integrity of Aerospace Metals
Ceramics
Environmental Analysis and Legislation
Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
Materials have always played a significant and defining role in human development, from the Stone Age to the material world of today. Read more
Materials have always played a significant and defining role in human development, from the Stone Age to the material world of today. Materials are central to our prosperity and new materials hold the key to our future development. Material engineers therefore have an essential role in developing the materials of today and the future and in taking performance to the next level.

Programme description

Material related issues can be found in all areas of life and engineering e.g. in biomedical, telecommunications, aeronautical, construction, chemical and mechanical, and in all aspects of a products life, from an idea or discovery to a prototype or finished product and recycling. In the puzzle of innovation, material engineers focus on the application of materials, where they test, develop and modify materials that are used in a wide range of products, from jet engines and snow skis to smartphones and diapers.

The ultimate performance of most products and processes is limited by the performance of materials, which are linked to the structure and resulting properties of a material. This in turn is affected by how the material is manufactured and processed. Materials must also perform in an economical and societal context. The challenge for the materials engineer lies in understanding the relationship between these aspects of materials, to improve their properties and to communicate these findings.

In addition, materials science and engineering is a key technology for environmentally sustainable development, and the importance of materials engineering is therefore growing in society.

The overall aim of the Materials Engineering Master’s programme is to offer both depth and flexibility in a comprehensive materials education focused on the application of materials. Courses are closely linked to the industry as well as contemporary research; the degree you receive here will have a wide application.

You will become an engineer of reality, a problem finder and developer both in theory and practice and besides becoming an expert on materials, you will also represent a bridge between researchers and constructors.

Educational methods

Contemporary challenges in materials cut across the traditional lines of engineering and science. Methods of modern materials engineering rely on the mix of competence and knowledge, presence where the problems occur, effective testing and model building. This is reflected in the education, which provides for example advanced experimental equipment, modern software for materials simulation applied on real material problems. In labs, with real life problems provided by the industry, you will learn through a make and brake pedagogy, exploring the limits of new materials and concepts through experiments in both theory and practice. We also emphasise that interdisciplinary intercultural international communication and teamwork are essential parts in successful projects.

Courses are run by faculty from departments of Materials and Manufacturing, Chemical and Biological engineering, applied Mechanics, Microtechnology and nanoscience, and applied Physics. Courses cover metals, ceramics, polymers and composites as well as topics of particular current interest in industry, such as material selection and design, environmental adaptation, failure analysis or materials innovation processes.

As a student, you will gain knowledge and skills to handle the complexity of materials problems and to find solutions to problems within the entire chain of a product from design, manufacturing and use to recycling. You will learn how to understand failures, select materials, develop processes and develop properties, making processes more efficient, cost-competitive, reliable and environmentally sustainable.

Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:
Core Modules
- Advanced Characterisation Techniques (SL)
- Surface Engineering (SL)
- Ceramics: Processing and Properties (SL)
- Design with Engineering Materials (SL)
- Sustainable Use of Materials (OW)
- Metals: Processing and Properties (SL)
- MSc Project

Optional Modules
- Plastics Processing Technology (OW)
- Industrial Case Studies (OW)
- Materials Modelling (SL)

Part-time Modules:
Core Modules
- Ceramics: Processing and Properties (DL)
- Design with Engineering Materials (DL)
- Sustainable Use of Materials (OW or DL)
- Metals: Processing and Properties (DL)
- Surface Engineering (DL)
- Plastics Processing Technology (OW)
- MSc Project

Optional Modules
- Industrial Case Studies (OW)
- Adhesive Bonding (OW)
- Rubber Compounding and Processing (OW or DL)

Alternative modules:*
- Polymer Properties (DL)
- Advanced Characterisation Techniques (SL)
- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning
Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.
PG Diploma: 120 credits – six core and two optional modules.
PG Certificate: 60 credits – four core modules.

- Assessment
Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation
Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.
Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.
Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities
We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.
The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research
Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects
Over 90% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are
hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more

Overview

The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Specific aims are:
1. to build on the knowledge and ideas gained in prior Materials Science courses;
2. to develop a more specialised and in-depth understanding of Materials Science in selected areas;
3. to further develop analytical and presentational skills, both orally and in writing;
4. to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Learning Outcomes

At the end of the course students should:
1. be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
2. be able to demonstrate an understanding of the courses attended, and of their individual research projects;
3. be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
4. be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

Teaching

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

- Feedback
The MASt is treated as an undergraduate course for the purposes of supervisions, such that on average students should expect to have at least one supervision per week during term, with written and verbal feedback on their work within 24 hours.

Online written reports are provided at the end of each term.

Students should expect to meet daily to weekly with their project demonstrator and weekly to termly with their project supervisor.

Students receive written feedback on all aspects of work submitted for summative assessment (reports, oral presentations, poster), within two weeks of the work being submitted.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning
Communication Skills for Research Engineers
Aerospace Materials Engineering
Materials Recycling Techniques
Environmental Analysis and Legislation
Physical Metallurgy of Steel
MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Our Advanced Materials MSc is a broad-based, flexible modular programme, giving you a thorough understanding of advanced engineering materials, their manufacture, and the techniques used for their characterisation. Read more
Our Advanced Materials MSc is a broad-based, flexible modular programme, giving you a thorough understanding of advanced engineering materials, their manufacture, and the techniques used for their characterisation.

This programme is a springboard for career development, new employment opportunities and postgraduate research. It provides a strong platform for workplace-based continuing education with many part-time students funded by their employers.

PROGRAMME OVERVIEW

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Materials Science
-Research Methods
-Research Project Planning
-Project
-Introduction to Composite Materials Science
-Characterisation of Advanced Materials
-Introduction to Physical Metallurgy
-Polymers: Science, Engineering and Applications
-Structural Ceramics and Hard Coatings
-Surface Analysis: XPS, Auger and SIMS
-Materials Under Stress
-The Science and Technology of Adhesive Bonding
-Composite Materials Technology
-Corrosion Engineering
-Nanomaterials

-Advanced Materials Independent Study (part-time only)
-Advanced Materials Project (part-time only)
-Project (part-time only)

EDUCATIONAL AIMS OF THE PROGRAMME

-To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
-To address issues of sustainability such as degradation and recycling
-To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
-To enable students to prepare, plan, execute and report an original piece of research
-To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The different major classes of advanced materials
-Routes for manufacturing and processing of advanced materials
-Characterisation techniques for analysing bonding and microstructure
-Mechanical, chemical and physical properties of advanced materials
-Processing -microstructure - property relationships of advanced materials
-Material selection and use
-Appropriate mathematical methods

Intellectual / cognitive skills
-Reason systematically about the behaviour of materials
-Select materials for an application
-Predict material properties
-Understand mathematical relationships relating to material properties
-Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills
-Research information to develop ideas and understanding
-Develop an understanding of, and competence, in using laboratory equipment and instrumentation
-Apply mathematical methods, as appropriate

Key / transferable skills
-Use the scientific process to reason through to a sound conclusion
-Write clear reports
-Communicate ideas clearly and in an appropriate format
-Design and carry out experimental work

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. Read more
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. This programme features joint teaching within the School of Engineering and Materials Science and the Institute of Dentistry, bringing together expertise in the two schools to offer students a fresh perspective on opportunities that are available in the fields of dental materials.

* This programme will equip you with a deep understanding of the field of dental materials and the knowledge necessary to participate in research, or product development.
* An advanced programme designed to develop a broad knowledge of the principles underlying the mechanical, physical and chemical properties of Dental Materials.
* Special emphasis is placed on materials-structure correlations in the context of both clinical and non clinical applications.
* Provides an introduction to materials science, focusing on the major classes of materials used in dentistry including polymers, metals, ceramics and composites.
* Provides up-to-date information on dental materials currently used in Clinical Dentistry and in developments for the future It covers the underlying principles of their functional properties, bioactivity and biocompatibility, and also covers specific dental materials applications such as drug delivery, tissue engineering and regulatory affairs.

Why study with us?

Dental Materials is taught jointly by staff from the School of Medicine and Dentistry (SMD), and School of Engineering and Materials Science (SEMS).

Our school of medicine and dentistry is comprised of two world renowned teaching hospitals, Barts and The London School of Medicine and Dentistry, which have made, and continue to make, an outstanding contribution to modern medicine. We are ranked sixth in the UK for medicine (Complete University Guide 2012), and Dentistry was placed at number two in the UK in last Research Assessment Exercise (2008). Our Materials Department was the first of its kind established in the UK, and was placed at number 1 in the UK in the 2011 National Student Survey.

This degree is aimed at dental surgeons, dental technicians, materials scientists and engineers wishing to work in the dental support industries, and the materials health sector generally. On completion of the course you should have a good knowledge of topics related to dental materials, and in addition, be competent in justifying selection criteria and manipulation instructions for all classes of materials relevant to the practice of dentistry.

There has been a general move away from destructive techniques and interventions towards less damaging cures and preventative techniques. This programme will update your knowledge of exciting new technologies and their applications.

* The programme is taught by experts in the field of dentistry and materials; they work closely together on the latest developments in dental materials.
* Innovations in medical practice, drug development and diagnostic tools are often tested in the mouth due to simpler regulatory pathways in dentistry.
* The programme allows practitioners the opportunity to update their knowledge in the latest developments in dental materials.

Facilities

You will have access to state-of-the-art laboratories and equipment, including:

* Cell & Tissue Engineering Laboratories; five dedicated cell culture laboratories, a molecular biology facility and general purpose laboratorie
* Confocal microscopy unit incorporating two confocal microscopes, enabling advanced 3D imaging of living cells
* Mechanical Testing Facilities
* NanoVision Centre; our state-of-the-art microscopy unit bringing together the latest microscope techniques for structural, chemical and mechanical analysis at the nanometer scale
* Spectroscopy Lab
* Thermal Analysis Lab.

Read less
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. Read more
The MASt in Materials Science aims to train to Masters level students who already have a bachelors' degree in Materials Science. It is a predominantly taught course in which candidates work alongside the 4th-year students taking the integrated Cambridge BA/MSci Materials Science course. It is designed for students who may wish to pursue a professional career in Materials Science / Materials Engineering or related areas (in academic or industrial research) and who are already familiar with the subject.

The course allows students to continue a broad Materials Science education across a range of topics : the taught element consists of a series of approximately 16 modular lecture courses, covering a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. A research project is undertaken over 6 months, between October and March.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcmmasmsc

Course detail

Specific aims are:

- to build on the knowledge and ideas gained in prior Materials Science courses;
- to develop a more specialised and in-depth understanding of Materials Science in selected areas;
- to further develop analytical and presentational skills, both orally and in writing;
- to provide training in investigating research problems, including gaining an understanding of relevant research techniques and also of the design and interpretation of experiments.

Learning Outcomes

At the end of the course students should:

- be able to apply the ideas and concepts introduced in the course to solve problems, do calculations, make predictions and critically evaluate information and ideas;
- be able to demonstrate an understanding of the courses attended, and of their individual research projects;
- be able to demonstrate practical, organisational and presentational skills that will enable them to continue successfully with research or in other professional careers;
- be able to demonstrate the necessary skills and understanding required for a career in Materials Science.

Format

There are approximately 16 lecture modules focusing on advanced topics across a broad range of aspects of Materials Science, including Structural Materials, Device Materials, Materials Characterisation, Materials Chemistry and Biological & Pharmaceutical Materials. Details of the modules available this year can be found at: http://www.msm.cam.ac.uk/teaching/partIII.php.

Students may choose which lecture modules they wish to attend, and must prepare a minimum of 10 courses for examination.

Students also undertake a substantial individual research project, chosen from a set of topics proposed by academic staff. Work on this project accounts for about a third of the final credit.

Assessment

- A final report of up to 7000 words, worth 12% of the total credit.
- An interim report worth 4% of the total credit.
- A project viva worth 4% of the total credit.
- A project poster worth 4% of the total credit.
- A project oral presentation worth 4% of the total credit.
- Termly progress assessments from project supervisor worth 2% of the total credit.
- Vacation project written report worth 1% of the total credit.
- Three 3-hr written examination papers worth a total of 68% of the credit.
An oral presentation of a vacation project worth 1% of the total credit.

Continuing

Students wishing to continue to PhD studies will usually be required to obtain at least a 'Commendable' result in the MASt.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities: http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering. Visit the website http://mte.eng.ua.edu/graduate/ms-program/. Read more
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering.

Visit the website http://mte.eng.ua.edu/graduate/ms-program/

The program options include coursework only or by a combination of coursework and approved thesis work. Most on-campus students supported on assistantships are expected to complete an approved thesis on a research topic.

Plan I is the standard master’s degree plan. However, in exceptional cases, a student who has the approval of his or her supervisory committee may follow Plan II. A student who believes there are valid reasons for using Plan II must submit a written request detailing these reasons to the department head no later than midterm of the first semester in residence.

All graduate students, during the first part and the last part of their programs, will be required to satisfactorily complete MTE 595/MTE 596. This hour of required credit is in addition to the other degree requirements.

Course Descriptions

MTE 519 Principles of Casting and Solidification Processing. Three hours.
Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, and defects, and the use of analytical and computational tools for the design, understanding, and use of solidification processes.

MTE 520 Simulation of Casting Processes Three hours.
This course will cover the rationale and approach of numerical simulation techniques, casting simulation and casting process design, and specifically the prediction of solidification, mold filling, microstructure, shrinkage, microporosity, distortion and hot tearing. Students will learn casting simulation through lectures and hands-on laboratory/tutorial sessions.

MTE 539 Metallurgy of Welding. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.

MTE 542 Magnetic Recording Media. Three hours.
Prerequisite: MTE 271.
Basic ferromagnetism, preparation and properties of magnetic recording materials, magnetic particles, thin magnetic films, soft and hard film media, multilayered magnetoresistive media, and magneto-optical disk media.

MTE 546 Macroscopic Transport in Materials Processing. Three hours.
Prerequisite: MTE 353 or permission of the instructor.
Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.

MTE 547 Intro to Comp Mat. Science Three hours.
This course introduces computational techniques for simulating materials. It covers principles of quantum and statistical mechanics, modeling strategies and formulation of various aspects of materials structure, and solution techniques with particular reference to Monte Carlo and Molecular Dynamic methods.

MTE 549 Powder Metallurgy. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Describing the various types of powder processing and how these affect properties of the components made. Current issues in the subject area from high-production to nanomaterials will be discussed.

MTE 550 Plasma Processing of Thin Films: Basics and Applications. Three hours.
Prerequisite: By permission of instructor.
Fundamental physics and materials science of plasma processes for thin film deposition and etch are covered. Topics include evaporation, sputtering (special emphasis), ion beam deposition, chemical vapor deposition, and reactive ion etching. Applications to semiconductor devices, displays, and data storage are discussed.

MTE 556 Advanced Mechanical Behavior of Materials I: Strengthening Methods in Solids. Three hours. Same as AEM 556.
Prerequisite: MTE 455 or permission of the instructor.
Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.

MTE 562 Metallurgical Thermodynamics. Three hours.
Prerequisite: MTE 362 or permission of instructor.
Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.

MTE 574 Phase Transformation in Solids. Three hours.
Prerequisites: MTE 373 and or permission of the instructor.
Topics include applied thermodynamics, nucleation theory, diffusional growth, and precipitation.

MTE 579 Advanced Physical Metallurgy. Three hours.
Prerequisite: Permission of the instructor.
Graduate-level treatments of the fundamentals of symmetry, crystallography, crystal structures, defects in crystals (including dislocation theory), and atomic diffusion.

MTE 583 Advanced Structure of Metals. Three hours.
Prerequisite: Permission of the instructor.
The use of X-ray analysis for the study of single crystals and deformation texture of polycrystalline materials.

MTE 585 Materials at Elevated Temperatures. Three hours.
Prerequisite: Permission of the instructor.
Influence of temperatures on behavior and properties of materials.

MTE 587 Corrosion Science and Engineering. Three hours.
Prerequisite: MTE 271 and CH 102 or permission of the instructor.
Fundamental causes of corrosion problems and failures. Emphasis is placed on tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining this with prevention and materials selection.

MTE 591:592 Special Problems (Area). One to three hours.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

MTE 595:596 Seminar. One hour.
Discussion of current advances and research in metallurgical engineering; presented by graduate students and the staff.

MTE 598 Research Not Related to Thesis. One to six hours.

MTE 599 Master's Thesis Research. One to twelve hours. Pass/fail.

MTE 622 Solidification Processes and Microstructures Three hours.
Prerequisite: MTE 519
This course will cover the fundamentals of microstructure formation and microstructure control during the solidification of alloys and composites.

MTE 643 Magnetic Recording. Three hours.
Prerequisite: ECE 341 or MTE 271.
Static magnetic fields; inductive head fields; playback process in recording; recording process; recording noise; and MR heads.

MTE 644 Optical Data Storage. Three hours.
Prerequisite: ECE 341 or MTE 271.
Characteristics of optical disk systems; read-only (CD-ROM) systems; write-once (WORM) disks; erasable disks; M-O recording materials; optical heads; laser diodes; focus and tracking servos; and signal channels.

MTE 655 Electron Microscopy of Materials. One to four hours.
Prerequisite: MTE 481 or permission of the instructor.
Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.

MTE 670 Scanning Electron Microscopy. Three hours
Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.

MTE 680 Advanced Phase Diagrams. Three hours.
Prerequisite: MTE 362 or permission of the instructor.
Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.

MTE 684 Fundamentals of Solid State Engineering. Three hours.
Prerequisite: Modern physics, physics with calculus, or by permission of the instructor.
Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.

MTE 691:692 Special Problems (Area). One to six hours.
Credit awarded is based on the amount of work undertaken.

MTE 693 Selected Topics (Area). One to six hours.
Topics of current research in thermodynamics of melts, phase equilibra, computer modeling of solidification, electrodynamics of molten metals, corrosion phenomena, microstructural evolution, and specialized alloy systems, nanomaterials, fuel cells, and composite materials.

MTE 694 Special Project. One to six hours.
Proposing, planning, executing, and presenting the results of an individual project.

MTE 695:696 Seminar. One hour.
Presentations on dissertation-related research or on items of current interest in materials and metallurgical engineering.

MTE 698 Research Not Related to Dissertation. One to six hours.

MTE 699 Doctoral Dissertation Research. Three to twelve hours. Pass/Fail.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
“New sustainable energy technologies invariably depend on advances in the application of Materials Science. These technologies will play a vital role in reducing green house gas emissions and in conserving vital raw materials.”. Read more
“New sustainable energy technologies invariably depend on advances in the application of Materials Science. These technologies will play a vital role in reducing green house gas emissions and in conserving vital raw materials.”
Professor Rex Harris FREng, Metallurgy and Materials

The University of Birmingham has been active in energy research for more than a century, with more than 100 academics currently active in this area. We are a partner in the Midlands Energy Consortium, with the University of Nottingham and Loughborough University.

Metallurgy and Materials is one of the largest centres for materials research in the UK. Our Research School comprises more than 20 full-time academic staff in addition to 30 honorary and visiting staff, 30 research fellows and close to 150 postgraduate students. Our diverse research portfolio ranges from fundamental aspects of materials science to practical high performance engineering applications. The School has particularly active R&D activities in: hydrogen energy materials & systems, hard magnetic materials, and functional materials for energy applications.

This EPSRC-sponsored programme can be taken on a full- or part-time basis. The programme comprises one major research project in Materials for Sustainable Energy Technologies, which can be based in the University or in industry, plus six taught modules, five compulsory and one optional.

We recommend that you start the course at the beginning of the academic year. However, if your background is in Materials Science, then you may start at any time of the year.

About the School of Metallurgy & Materials Engineering

The School of Metallurgy and Materials ranked in the top quartile in the UK for world-leading research in the Research Excellence Framework (REF). Overall 86% of the research in the School was recognised as internationally excellent of which 31% was given the higher accolade of being world-leading.
We are considered to be the leading school for many areas of metallurgical research. Our numerous interactions with industry span agreements lasting between three months and twelve years.
We are proud to encompass a wide range of interests in the processing, characterisation, assessment and modelling of materials, including:
- Alloy Processing
- Characterisation and Modelling
- Engineering Properties of Materials
- Functional Materials Processing

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage
Structural metals and ceramics for gas turbine applications
Grain boundary engineering
Recycling of polymers and composites
Corrosion mechanisms in new generation magnesium alloys
Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)
Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
The Research Masters (MRes) programme in Materials Research is designed following guidelines provided by the Engineering and Physical Sciences Research Council (EPSRC), to provide graduates with the foundations for a research career in industry, the service sector, the public sector or academia. Read more
The Research Masters (MRes) programme in Materials Research is designed following guidelines provided by the Engineering and Physical Sciences Research Council (EPSRC), to provide graduates with the foundations for a research career in industry, the service sector, the public sector or academia. It serves both as a qualification in its own right for an immediate entry into a research career or as an enhanced route to a PhD through further research.

The taught modules within this programme are designed to provide high quality training in the methods and practice of research, as well as providing complementary transferable skills through the optional modules which focus on business and management related topics.

A substantial component of the MRes Materials Research programme is the research project. This is undertaken alongside taught modules throughout the academic year, and will be based within one of the materials-based research groups of the School of Engineering and Materials Science. The MRes Materials Research may be focused in the fields of ceramics, polymers,composites, elastomers, functional materials or manufacturing technologies.


MSc

This long established programme provides rigorous training in both theoretical and applied research for those who wish to pursue their career as a professional materials scientist. Technological advances, as well as methodological issues, have contributed to the transformation of materials and their functions. A number of challenges lie ahead, as manufacturing supply chains become global, involving companies in strategic alliances and partnerships. Materials research is of great use here, as competition can only be achieved through the development of innovative approaches to the design, development and manufacture of novel materials and their characterisation.

The MSc in Materials Research will provide an insight into areas of manufacturing, planning and control systems, knowledge based systems and measurements and manufacturing systems. The course is interdisciplinary in nature and involves a combination of theoretical and practical approaches.

A substantial component of the programme is the research project. The research project is undertaken alongside taught modules throughout the academic year, and will be based within one of the materials-based research groups of the School of Engineering and Materials Science. The research project may be focused in the fields of Ceramics, Polymers, Composites, Elastomers, Functional Materials or Manufacturing Technologies.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X