• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bocconi University Featured Masters Courses
University of Reading Featured Masters Courses
University of Glasgow Featured Masters Courses
"masters" AND "in" AND "c…×
0 miles

Masters Degrees (Masters In Computer Science)

We have 630 Masters Degrees (Masters In Computer Science)

  • "masters" AND "in" AND "computer" AND "science" ×
  • clear all
Showing 1 to 15 of 630
Order by 
In this Master's specialisation, mathematicians working in areas pertinent to (theoretical) computer science, like algebra and logic, and theoretical computer scientists, working in areas as formal methods and theorem proving, have joined forces to establish a specialisation in the Mathematical Foundations of Computer Science. Read more
In this Master's specialisation, mathematicians working in areas pertinent to (theoretical) computer science, like algebra and logic, and theoretical computer scientists, working in areas as formal methods and theorem proving, have joined forces to establish a specialisation in the Mathematical Foundations of Computer Science. The programme is unique in the Netherlands and will be built on the excellence of both research institutes and the successful collaborations therein.
The emphasis of the Master's is on a combination of a genuine theoretical and up-to-date foundation in the pertinent mathematical subjects combined with an equally genuine and up-to-date training in key aspects of theoretical computer science. For this reason, the mathematics courses in this curriculum concentrate on Algebra, Complexity Theory, Logic, Number Theory, and Combinatorics. The computer science courses concentrate on Formal Methods, Type Theory, Category Theory, Coalgebra and Theorem Proving.
Within both institutes, ICIS and WINST, there is a concentration of researchers working on mathematical logic and theoretical computer science with a collaboration that is unique in the Netherlands. The research topics range from work on algebra, logic and computability, to models of distributed, parallel and quantum computation, as well as mathematical abstractions to reason about programmes and programming languages.

See the website http://www.ru.nl/masters/mathematics/foundations

Admission requirements for international students

1. A completed Bachelor's degree in Mathematics or Computer Science
In order to get admission to this Master’s you will need a completed Bachelor's in mathematics or computer science that have a strong mathematical background and theoretical interests. We will select students based on their motivation and their background. Mathematical maturity is essential and basic knowledge of logic and discrete mathematics is expected.

2. A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of ≥575 (paper based) or ≥90 (internet based)
- IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

There is a serious shortage of well-trained information specialists. Often students are offered a job before they have actually finished their study. About 20% of our graduates choose to go on to do a PhD but most find jobs as systems builders, ICT specialists or ICT managers in the private sector or within government.

Our approach to this field

In this Master's specialisation, mathematicians working in areas pertinent to (theoretical) computer science, like algebra and logic, and theoretical computer scientists, working in areas as formal methods and theorem proving, have joined forces to establish a specialisation in the Mathematical Foundations of Computer Science. The programme is unique in the Netherlands and will be built on the excellence of both research institutes and the successful collaborations therein.

The emphasis of the Master's is on a combination of a genuine theoretical and up-to-date foundation in the pertinent mathematical subjects combined with an equally genuine and up-to-date training in key aspects of theoretical computer science. For this reason, the mathematics courses in this curriculum concentrate on Algebra, General Topology, Logic, Number Theory, and Combinatorics. The computer science courses concentrate on Formal Methods, Type Theory, Category Theory, Coalgebra and Theorem Proving.

Our research in this field

Within both institutes, ICIS and WINST, there is a concentration of researchers working on mathematical logic and theoretical computer science with a collaboration that is unique in the Netherlands. The research topics range from work on algebra, logic and computability, to models of distributed, parallel and quantum computation, as well as mathematical abstractions to reason about programmes and programming languages.

See the website http://www.ru.nl/masters/mathematics/foundations

Read less
With a master’s degree in Web Science you will be able to study and solve problems on the web. Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, studies of the law, linguistics and mathematics. Read more

About the Program

With a master’s degree in Web Science you will be able to study and solve problems on the web. Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, studies of the law, linguistics and mathematics. All mandatory courses are taught in English.

In general, our programme aims at people with a bachelor’s degree or a minor in computer science. Our programme even is free of tuition. The medium of instruction is English.

More information under: http://west.uni-koblenz.de/en/mws

Employment Outlook

Graduates from the institute WeST have found interesting positions at successful companies, started their own businesses or continued towards a Ph.D. Institute WeST has a limited number of places available each year for pursueing a Ph.D. If you excel earning a master's degree in Web Science you will be in pole position for continuing with doctoral studies.

Studying in Koblenz

Koblenz is one of the oldest and most attractive cities in Germany with its surroundings honoured as UNESCO World Cultural Heritage. The university of Koblenz-Landau has close contacts to leading companies, offering possibilities for internships, collaboration and project experiences.

Program Structure

Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, law, linguistics and mathematics. All mandatory courses are taught in English.

The curriculum is organized in seven module groups:

Foundations of Web Science (two modules) establishes the main idea of Web Science. It provides an interdisciplinary primary view of the web and of more abstract web structures.

The Computer Science track (three modules) teaches the essential technical aspects, namely web engineering, semantic web and web retrieval.

Web and Society (two out of four modules) considers interaction of the web and different user groups: citizens, customers, entrepreneurs, and interest groups.

The module group Elective Courses in Computer Science provides a wide range of technical topics. Modules may be choosen freely from all Master courses in computer science with relevance to the web given at the University of Koblenz-Landau (three modules or more, mininum 18 ECTS).

Elective Interdisciplinary Courses contain web-related modules offered by our university from other disciplines (such as economy, social sciences, linguistics, anthropology, communication theory etc.). Students have to freely elect at least two modules (12 ECTS).

Topics for seminars and research lab can be freely chosen from Web Science subjects. Furthermore, this module group contains a social skills and leadership training..

The topic of the master's thesis can also be freely chosen from any Web Science subjects.

More information about the curriculum can also be found under: http://west.uni-koblenz.de/en/mws/curriculum

Requirements

Higher Education Entrance Qualification -

It is a legal requirement in Germany that students own a Higher education entrance qualification („Hochschulzugangsberechtigung“) respectively a Master entrance qualification („Masterzugangsberechtigung“), proven by school leaving certificates or studies completed at secondary education level.

Entrance qualification is not checked by us, but uni-assist (see application process), therefore please refrain from asking us if your diploma will be accepted. Uni-assist provides some further information on higher education entrance qualification.

Academic Background in Computer Science -

You need some academic background in computer science, such as a

bachelor's degree in computer science, business informatics, Computervisualistik (as offered by the University of Koblenz-Landau), Information management (as offered by the University of Koblenz-Landau until 2012 if 60 ECTS in computer science were acquired) or similar.

Students with a minor in computer science (at least 60 European Credit Points) can apply, too. Here we have to make a decision on a by-case-basis. To get an educated guess please contact the course guidance.

Only diplomas of international accredited universities will be accepted. If you are unshure if your academic background fulfils our requirements, do not hesitate to contact us: . Non-academic, practical experience in computer science alone does not qualify you for our programme.

Sufficient Grades in Previous Studies -

The German grading system ranges from 1 ("very good") to 6 ("insufficient"). Lower numbers mean better grades. To be eligible for our programme, the grades from your previous studies must be between 1 and 2.5. Grade conversion into the German system is done by uni-assist (cf. application procedure), so we cannot tell you if your GPA fis sufficient. For a first, non-binding estimation on your eligibility you might want to check the calculator provided by the University of Paderborn.

English Language Proficiency -

The medium of instruction for all required courses is English, some additional electives can be taken in German. Thus, we require a certain level of English proficiency such that studies can be undertaken successfully. Thus, a standardised language certificate is required – proof that your previous studies were held in English are not sufficient and not negiotiable. We accept three types of language proficiency certificates:

a TOEFL result of at least 79 (internet based), 550 (paper based) or 213 (computer based)

IELTS test with 6.5 points mininum

Cambridge certificate at level B2 or higher (find an exam center)

Proficiency of German language is not a requirement for application. However, additional elective courses are available in German, and we recommend to learn some basic German for daily life. Some hints on learning German can be found at Deutsche Welle.

Motivational Letter -

Applicants need to supply a motivational letter. Please do not send lenghty standard letters describing your general interest in computer science and your appreciation of the German education system. Instead, refer only to our specific programme and follow these guidelines:

Length should be between 150 and 300 words.

The letter must be written in English.

Specify what you learnt and found particularly interesting in your previous studies or practical experiences. Tell us how you want to deepen these previous experience in our master's programme. You can also describe what you expect to learn here for your future job. You should always refer to our curriculum, especially the module groups Foundations of Web Science, Major Subject Computer Science und Major Subject Web and Society. Make clear that you know our curriculum and point out why you have chosen our programme above others.

Further information under: http://west.uni-koblenz.de/en/mws/requirements

Read less
The PGCE Information Technology and Computer Science enables ICT & computing professionals and graduates to become effective teachers of computing (curriculum previously called ICT and now including a strong Computer Science element) in secondary schools. Read more
The PGCE Information Technology and Computer Science enables ICT & computing professionals and graduates to become effective teachers of computing (curriculum previously called ICT and now including a strong Computer Science element) in secondary schools. The programme emphasises learning through critical reflection on theory and practice and discussion with colleagues.

The programme combines the theory and practice of education which is why students spend 60 days in College and 120 days in schools. The course is research-led and you will develop your knowledge of how pupils learn; how assessment can improve learning and teaching; how to plan lessons, and how to make appropriate use of computers and the Internet to teach effectively. The programme emphasises learning through critical reflection on theory and practice and discussion with colleagues.

Key Benefits

- Our Programme, judged 'Outstanding' by Ofsted, is taught by one of the strongest team of computer science education tutors in the country.

- The programme at King's is challenging and students are encouraged to take a critical view of policies and practice.

- It is a sociable course where you will be expected to work with others, discussing issues and problems about teaching.

- You have the opportunity to work with tutors who are actively engaged in research and development in computer science education.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/pgce-information-technology-and-computer-science.aspx

Course detail

- Description -

The programme combines the theory and practice of education. We work in close partnership with schools in designing, delivering and assessing our course.

University based: You will work with other trainees and tutors in your subject area to consider the principles and practice of teaching your subject including curriculum design, the development of materials, classroom management and lesson planning. You will also work with trainees from other subjects in a programme of lectures and seminar groups to examine broad generic issues. During both secondary school placements there are occasional days in college for tutorials to support and monitor progress towards the standards for Qualified Teacher Status (QTS). There are cross-curricular research tasks and assignments.

School based: For 24 of the 36 weeks the training takes place in schools, mainly in two complementary secondary schools but with two short primary school experiences. This introduces you to recognising key constituents of good teaching, helps develop your own teaching skills and gain an understanding of how schools work and how children learn.

- Computer Science Subject Knowledge Enhancement (SKE) courses -

Our Subject Knowledge Enhancement courses are intensive and flexible programmes for graduates in IT/computing who want to teach computer science but whose degree is not a direct match or whose specialist subject knowledge needs deepening prior to training for qualified teacher status (QTS). King's College London in conjunction with Queen Mary College, University of London, has designed a 12-unit SKE programme for computer science funded by the National College for Teaching and Leadership.

In order to be eligible for SKE (for which you may also obtain a bursary) you need an offer of a place on one of the King's PGCE programmes: either computer science or information technology and computer science. At the PGCE interview we will assess your SKE needs and determine which units you should take. Our SKE courses are also open to candidates who have PGCE offers, conditional on SKE, from other institutions. The programme runs between April and September. Please note that it is not intended for graduates in non-IT disciplines who wish to retrain in computer science: for that we recommend a conversion MSc programme (eg http://www.eecs.qmul.ac.uk/postgraduates/programme/view/21).

- Course purpose -

Our programme is for computing/ICT specialists wishing to train to be teachers of pupils aged 11-18 in computing (previously called ICT) to GCSE level and information technology to A-level. A parallel programme, PGCE Computer Science, enables computer science specialists to train to be teach computer science to A-level. The programme will lead to the Department for Education's (HM Government) Standards for QTS which are assessed through teaching practice observation, portfolios and written assignments.

- Course format and assessment -

The 45-credit honours-level module will be assessed by a combination of a written portfolio (equivalent to 8,000 words) and assessment of your teaching practice against the teaching standards as set out by the government’s Department for Education. Progress in meeting the teaching standards will be monitored through three progress reports that will be completed by staff at the placement school.

The 30-credit master’s-level modules will each be assessed by an 8,000-word written assignment.

The 15-credit honours-level module will be assessed by a 4,000-word written assignment.

Career prospects

The majority of trainees go into teaching or other areas of education: many become heads of departments or members of senior management teams; some take up careers in educational administration in the advisory or inspection services.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. Read more
Research in Computer Science at York is carried out at the frontiers of knowledge in the discipline. This course gives you the chance to study a range of advanced topics in Computer Science, taught by researchers active in that area. This means you will be learning current research results, keeping you at the forefront of these areas. You will also learn a range of theories, principles and practical methods.

The MSc in Advanced Computer Science is a full time, one year taught course, intended for students who already have a good first degree in Computer Science, and would like to develop a level of understanding and technical skill at the leading edge of Computer Science.

You can choose modules on a range of topics, including Cryptography, Functional Programming, Interactive Technologies, Natural Language Processing, Quantum Computation and Model-Driven Engineering.

Course aims
You will gain an in-depth knowledge of topics on the frontiers of Computer Science in order to engage in research or development and application of leading-edge research findings.

By undertaking an individual project, you will become a specialist in your selected area. You will be encouraged to produce research results of your own. This will prepare you to undertake a PhD in Computer Science should you wish to continue studying within the subject.

Learning outcomes
-A knowledge of several difference topics in Computer Science at an advanced level.
-An understanding of a body of research literature in Computer Science in your chosen topic, and the underlying principles and techniques of research in this area.
-An ability to engage in independent study at an advanced level, and develop skills in self-motivation and organisation.

Research Project

You will undertake your individual research project over the Summer term and Summer vacation. This will be a culmination of the taught modules you have taken during the course, which will allow you to focus on a specialist area of interest.

You will be allocated a personal supervisor, who will be an expert in your chosen area of research. You will be hosted by the research group of your supervisor, and you will benefit from the knowledge and resources of the whole group. Being attached to a research group also allows you to take part in their informal research seminars, and receive feedback and help from other members of the group.

You can choose from projects suggested by members of our academic staff. You also have the option of formulating your own project proposal, with the assistance from your personal supervisor.

All project proposals are rigorously vetted and must meet a number of requirements before these are made available to the students. The department uses an automated project allocation system for assigning projects to students that takes into account supervisor and student preferences.

The project aims to give you an introduction to independent research, as well as giving you the context of a research group working on topics that will be allied to your own. You will develop the skills and understanding in the methods and techniques of research in Computer Science.

As part of the assessment of the project, as well as your dissertation, you will give a talk about your work and submit a concise paper which we will encourage you to publish.

Information for Students

The MSc in Advanced Computer Science exposes you to several topics in Computer Science that are under active research at York. The material taught is preparatory to helping to continue that research, and perhaps continuing to a PhD. What we require from you are enthusiasm, hard work and enough background knowledge to take your chosen modules.

The modules on the MSc in Advanced Computer Science are mostly shared with our Stage 4 (Masters level) undergraduates. Your technical background will be different, and we acknowledge this.

During August we will send entrants a document describing the background knowledge needed for each module and, in many cases, references to where this knowledge is available (for example, widely available text books and web pages).

More generally, many of the modules expect a high level of mathematical sophistication. While the kind of mathematics used varies from module to module, you will find it useful to revise discrete mathematics (predicate and propositional calculi, set theory, relational and functional calculi, and some knowledge of formal logic), statistics and formal language theory. You should also be able to follow and produce proofs.

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Read less
The MSc in Computer Science is for graduates from a different discipline interested in a career in computer science. Computing underpins much of our professional and personal lives. Read more
The MSc in Computer Science is for graduates from a different discipline interested in a career in computer science.

Why study computer science with us?

Computing underpins much of our professional and personal lives. There is a growing need for individuals trained in one discipline who are also skilled in computer science.

If you are a graduate with a non-computing first degree then our MSc will:

- provide you with a sound foundation in practical and theoretical aspects of computer science
- help you change career, with skills desirable to a huge number of industries
- enhance your employability with transferable skills
- prepare you for PhD study

No prior background in computer science is necessary.

What will I learn?

Semester one offers a broad overview of computer science through a series of core units.

Semester two focusses on advanced and emerging areas of computer science. You will have the opportunity to specialise in one or more areas of the discipline.

The final semester is for your dissertation. You will:

- demonstrate the knowledge, skills and reflective insights you have have gained
- apply them to the investigation and/or development of new software systems.

Visit the Department of Computer Science (http://www.bath.ac.uk/comp-sci/) for further information on the department.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/msc-computer-science/index.html

Programme structure

The programme covers three semesters.

In the first semester we immerse students in the practical and theoretical foundations of the discipline.

In the second semester we build upon these foundations allowing students to specialise in one or more areas of the discipline.

The third semester is dedicated to a dissertation. Students combine their acquired knowledge to produce a novel software element or conduct novel research and critique their achievements. Please visit our research pages for a an overview of our research (http://www.bath.ac.uk/comp-sci/research/).

Career opportunities

Opportunities are extensive and we expect our graduates to move into computing careers in the leading:
- computer companies
- IT consultancy firms
- banks
- companies
- agencies
- educational establishments

About the department

The new Department of Computer Science began life in August 2001, emerging from the Computing Group of the Department of Mathematical Sciences. It is a research-led department with a strong record in interdisciplinary research and postgraduate teaching.

MSc
Our Masters programmes are designed to give you a wide range of knowledge so that you can build a career in the fast-moving industry of computing. The programmes are taught by recognised experts in each field, offering you, the student, a cutting-edge experience and a qualification which is both academic and commercially relevant. You will be exposed to the latest science and technology in your chosen specialist area, to complement previously-gained knowledge and skills from your undergraduate degree.

MPhil/PhD
The Department supports a strategic range of computer science research at PhD level and beyond. Our main research interests include Human Computer Interaction, Visual Computing, Mathematical Foundations, and Intelligent Systems. Research is pursued both in fundamental theoretical development and a range of application areas.

EngD in Digital Media
The Engineering Doctorate (EngD) in Digital Media is an alternative to the traditional PhD for students who want a career in industry. A four-year programme combines PhD-level research projects with taught courses, and students spend about 75% of their time working directly with a company.

Facilities and equipment
LAN and WAN, state-of-the-art HCI laboratory, audio laboratory.

International and industrial links
The Department has active collaborations with academics in leading universities in Europe, Australasia, the USA and Japan. Strong links with industry, e.g. HP labs, Airbus, Qinetiq, Westland, Toshiba and Vodafone.

Careers information
High employment records for undergraduate and postgraduate students. Good links with employers

Find out more about the department here - http://www.bath.ac.uk/comp-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains. Read more
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains.

We offer a two-year Master of Science in Computer Science centered on this emerging field. The backbone of the program is constituted by three core units on advanced data management, machine learning, and high performance computing. Leveraging on the expertise of our faculty, the rest of the program is organised in four tracks, Business Intelligence, Health & Life Sciences, Pervasive Computing, and Visual Computing, each providing a solid grounding in data science and engineering as well as a firm grasp of the domain of interest.

By blending standard classes with recitations and lab sessions our program ensures that each student masters the theoretical foundations and acquires hands-on experience in each subject. In most units credit is obtained by working on a final project. Additional credit is also gained through short-term internship in the industry or in a research lab. The master thesis is worth 25% of the total credit.

TRACKS

• Business Intelligence. This track builds on first hand knowledge of business management and fundamentals of data warehousing, and focuses on data mining, graph analytics, information visualisation, and issues related to data protection and privacy.
• Health & Life Sciences. Starting from core knowledge of signal and image processing, bioinformatics and computational biology, this track covers methods for biomedical image reconstruction, computational neuroengineering, well-being technologies and data protection and privacy.
• Pervasive Computing. Security and ubiquitous computing set the scene for this track which deals with data semantics, large scale software engineering, graph analytics and data protection and privacy.
• Visual Computing. This track lays the basics of signal & image processing and of computer graphics & augmented reality, and covers human computer interaction, computational vision, data visualisation, and computer games.

PROSPECTIVE CAREER

Senior expert in Data Science and Engineering. You will be at the forefront of the high-tech job market since all big companies are investing on data driven approaches for decision making and planning. The Business Intelligence area is highly regarded by consulting companies and large enterprises, while the Health and Life Sciences track is mainly oriented toward biomedical industry and research institutes. Both the Pervasive and the Visual Computing tracks are close to the interests of software companies. For all tracks a job in a start-up company or a career on your own are always in order.

Senior computer scientist.. By personalizing your plan of study you can keep open all the highly qualified job options in software companies.

Further graduate studies.. In all cases, you will be fully qualified to pursue your graduate studies toward a PhD in Computer Science.

Read less
Our highly sought-after graduates benefit from a programme that integrates training in identifying, framing and effectively researching social problems with a leading computational approach to social science. Read more
Our highly sought-after graduates benefit from a programme that integrates training in identifying, framing and effectively researching social problems with a leading computational approach to social science.

Furthermore, we are home to the Centre for Research in Social Simulation (CRESS) and its world-leading expertise in agent-based modelling.

PROGRAMME OVERVIEW

Interest in simulation has grown rapidly in the social sciences. New methods have been developed to tackle this complexity. This programme will integrate traditional and new methods, to model complexity, evolution and the adaptation of social systems.

These new methods are having an increasing influence on policy research through a growing recognition that many social problems are insufficiently served by traditional policy modelling approaches.

The Masters in Social Science and Complexity will equip you to develop expertise in the methods necessary to tackle complex, policy-relevant, real-world social problems through a combination of traditional and computational social science methods, and with a particular focus on policy relevance.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Data Analysis
-Field Methods
-Computational Modelling
-Theory Model Data
-Modelling the Complex World
-Policy Modelling
-Theory and Method
-Statistical Modelling
-Evaluation Research
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The main aims of the programme are to:
-Provide an appropriate training for students preparing MPhil/PhD theses, or for 
 students going on to employment involving the use of social science and policy research
-Provide training that fully integrates social science, policy modelling and computational methodologies to a high standard
-Provide training resulting in students with high quality analytic, methodological, computational and communication skills

PROGRAMME LEARNING OUTCOMES
The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Develop skills in tackling real world policy problems with creativity and sound methodological judgment
-Cover the principles of research design and strategy, including formulating research 
questions or hypotheses and translating these into practicable research designs and models
-Introduce students to the methodological and epistemological issues surrounding research in the social sciences in general and computational modelling in particular
-Develop skills in programming in NetLogo for the implementation of agent-based models for the modelling of social phenomena
-Develop skills in the acquisition and analysis of social science data
-Make students aware of the range of secondary data available and equip them to evaluate its utility for their research
-Develop skills in searching for and retrieving information, using library and Internet resources
-Develop skills in the use of SPSS, and in the main statistical techniques of data analysis, including multivariate analysis
-Develop skills in the use of CAQDAS software for the analysis of qualitative data
-Develop skills in writing, in the preparation of a research proposal, in the presentation ofresearch results and in verbal communication
-Help students to prepare their research results for wider dissemination, in the form of seminar papers, conference presentations, reports and publications, in a form suitable for a range of audiences, including academics, stakeholders, policy makers, professionals, service users and the general public

Knowledge and understanding
-Show advanced knowledge of qualitative, quantitative and computational methodologies in the social science
-Show advanced knowledge of modelling methodologies, model construction and analysis
-Show critical understanding of methodological and epistemological challenges of social science and computer modelling
-Show critical awareness and understanding of the methodological implications of a range of sociological theories and approaches
-Show understanding the use and value of a wide range of different research approaches across the quantitative and qualitative spectra
-Show advanced knowledge in data collection, analysis and data driven modelling
-Show advanced knowledge of policy relevant social science research and modelling
-Show advanced understanding of the policy process and the role of social science and modelling therein
-Show advanced knowledge of statistical modelling

Intellectual / cognitive skills
-Systematically formulate researchable problems; analyse and conceptualise issues; critically appreciate alternative approaches to research; report to a range of audiences
-Conceptual development of Social Science and Complexity models to creatively enhance the understanding of social phenomena
-Integration of qualitative, quantitative and computational data
-Judgement of problem-methodology match
-Analyse qualitative and quantitative data drawn both from ‘real world’ and ‘virtual world’ environments, using basic and more advanced techniques, and draw warranted conclusions
-Develop original insights, questions, analyses and interpretations in respect of research questions
-Critically evaluate the range of approaches to research

Professional practical skills
-Formulate, design, plan, carry out and report on a complete research project
-Use the range of traditional and computational techniques employed in sociological research
-Ability to produce well founded, data driven and validated computational models
-Generate both quantitative and qualitative data through an array of techniques, and select techniques of data generation on appropriate methodological bases
-Employ a quantitative (SPSS) and qualitative software package to manage and analyse data
-Plan, manage and execute research as part of a team and as a sole researcher
-Ability to communicate research findings models in social science and policy relevant ways
-Ability to manage independent research

Key / transferable skills
-Communicate complex ideas, principles and theories by oral, written and visual means
-Apply computational modelling methodology to complex social issues in appropriate ways
-Creativity in approaching complex problems and a the ability of communicating and justifying problem solutions
-Apply computing skills for computational modelling, research instrument design, data analysis, and report writing and presentation
-Work to deadlines and within work schedules
-Work independently or as part of a team
-Demonstrate experience of a work environment

PLACEMENTS

On the MSc Social Science and Complexity, we offer the opportunity to take a research placement during the Easter vacation. This will provide you with first-hand experience of real-life policy research in action.

Organisations in which placements might be possible are a number of consultancies (e.g. Sandtable), government departments (e.g. Defra) and academic research centres (e.g. Centre for Policy Modelling at Manchester).

CAREER OPPORTUNITIES

Computational methods and especially computer-based simulations, are becoming increasingly important in academic social science and policy making.

Graduates might find career opportunities in government departments, consultancies, government departments, consultancies, NGOs and academia.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Learning how to make new discoveries that will contribute to a better understanding of the historical, social political and cultural processes that shape societies. Read more

Overview

Learning how to make new discoveries that will contribute to a better understanding of the historical, social political and cultural processes that shape societies.

Are people living in ethnically diverse neighbourhoods more inclined to turn inwards and to ‘hunker down’ compared to people of ethnically homogeneous settings? Are there cross-country differences in the causes of hooliganism, and in the effectiveness of methods used to combat hooligans in different European countries?

More and more comparative questions on societies are being raised. At Radboud University we believe that answers to comparative questions are more informative, lead to a better understanding of societal phenomena and processes, and therefore have more scientific and social importance than answers to questions about one society in one historical period.

This programme therefore fully focuses on teaching students how to perform high-quality comparative research. We look into the degree of inequality, cohesion and modernisation in both Western and non-Western societies. You’ll learn how to translate social problems into empirical research questions and understand the diverse theoretical approaches, research designs, data collections and analyses you need to get the answers you are looking for.

See the website http://www.ru.nl/masters/scs

Why study Social and Cultural Science at Radboud University?

- A majority of our courses are exclusively created and offered for the research students enrolled in this programme, and therefore perfectly match the needs and desires of social and cultural researchers.
- This programme is linked to the Nijmegen Institute for Social and Cultural Research (NISCO) who offer an excellent research environment and have extensive social science databases that students are free to use.
- You’ll participate in group-oriented education and be part of a small, select group of highly motivated national and international students.
- You’ll be given your own workplace (equipped with a computer) in a room with your fellow students to enhance solidarity. Every student also receives personal guidance and supervision.
- You’ll write two scientific journal papers which will not only give you plenty of practise but will also give you a good academic research portfolio that you can use when applying for research positions.
- A large majority of our graduates gain PhD and other research positions; almost all of our graduates found work shortly after graduating.

Multidisciplinary

The programme combines the disciplines of sociology, anthropology, development studies and communication science. This programme is therefore ideal for Bachelor’s students from these disciplines with an interest in research. However, we believe that students from disciplines such as political science, economics and human geography can also profit from this Master’s.

The Research Master’s in Social and Cultural Science trains aspiring researchers and is ideal preparation for PhD positions or research positions in relevant non-academic research institutes. Or you could build a bridge between academic research and the world of practice, thereby influencing policy-making in the public and private sphere.

Quality label

This programme was recently awarded the quality label ‘Top Programme' in the Netherlands in the Keuzegids Masters 2015 (Guide to Master's programmes).

Career prospects

The career prospects of a graduate of Social and Cultural Science are good; almost 100% of our alumni found a job or research position immediately after graduating.

Job positions

There are plenty of options open to graduates of the research Master’s in Social and Cultural Science:
- Scientific research career (academia)
The programme provides an excellent basis for a scientific research career and attaining PhD positions.

- Societal research career
Our graduates can also go on to have careers in relevant non-academic research and policy institutes like government ministries, Statistics Netherlands (CBS), The Netherlands Institute for Social Research (SCP) and The Netherlands Institute for the Study of Crime and Law Enforcement (NSCR) and foreign equivalents.

- More
Of course, this Master’s programme does not close other doors. Students with a research Master’s are also highly sought after by (commercial) businesses and organisations because of their analytical and communication skills and in-depth understanding of social and cultural behaviour. Other careers, such as policymaker, manager, journalist, etc are certainly within reach.

Find information on Scholarships here http://www.ru.nl/scholarships

See the website http://www.ru.nl/masters/scs

Our research in this field

Half of the Master’s programme in Social and Cultural Science consists of practical research training.

In the first year, you’ll do a research project in which you conduct a small-scale empirical research under guided supervision of a senior researcher. The comparative research issue is typically part of the ongoing research within a Radboud chair group. Finally, you’ll write a scientific journal paper regarding the research results. The project is done in small groups (2-3 students) and prepares you well to independently conduct a comparative empirical social science study for your Master’s thesis in the second.

- Master’s thesis topics in the field of Social and Cultural Science
For your Master’s thesis you are completely free to tackle any social issue in the disciplines of sociology, anthropology, communication science or development studies. Important is the ability to reflect on the societal significance of your research question and the societal importance of your research. Thesis topics vary widely:
- Many theses are concerned with cross-country comparisons of behaviour or attitude measures using European cross-sectional survey data on, for example, xenophobia or gender roles.
- Others theses compare classrooms and the effect ethnic composition has on interethnic bullying or the impact of the economic crisis on African migrants in Athens, Greece, or the utilisation of different sexual health services by Aboriginal adolescents.
- Thesis topics can also be found in the field of communication science, like examining the news on extreme right political parties in Belgium, Germany and the Netherlands and correlating it with election results, or studying patterns in TV drama (e.g. increasing Americanisation) and comparing these media trends with societal processes such as individualisation.

See the website http://www.ru.nl/masters/scs

Read less
The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. Read more

Overview

The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. It is a one-year full-time programme designed for both home and international students, with a background in life sciences, who wish to study at postgraduate level for the MSc in Biomedical Blood Science. The programme is open to science graduates who do not meet the academic criteria for a direct entry into the MSc. The MSc in Biomedical Blood Science is accredited by the Institute of Biomedical Science (IBMS). The IBMS is the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver the best possible service for patient care and safety.

See the website https://www.keele.ac.uk/pgtcourses/biomedicalsciencegraduatediploma/

Course Aims

The overall aim is to provide the students with the academic background necessary for the masters programme and to enable them to develop and practise the subject specific academic skills required for the intensive pace of study at masters level. The course also aims to allow international students to benefit from English language support that will help them to develop their academic English language skills.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request; but, to summarise, the overarching course aims are as follows:

- To provide students with core knowledge, understanding and skills relevant to Biomedical Science

- To produce skilled and motivated graduates who are suitably prepared for the MSc in Biomedical Science and for further study.

- To cultivate interest in the biosciences, particularly at the cellular and molecular level, within a caring and intellectually stimulating environment.

- To get an accurate insight into the role of Biomedical Scientists in the diagnosis, treatment and monitoring of disease.

- To develop an understanding of the analytical, clinical and diagnostic aspects of Cellular Pathology, Clinical Biochemistry, Medical Microbiology, Blood Transfusion, Clinical Immunology and Haematology pathology laboratories.

- To promote the development of a range of key skills, for use in all areas where numeracy and an objective, scientific approach to problem-solving are valued.

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment.

- To promote the development of critical thinking, autonomous learning, independent research and communication skills to help prepare the students for the MSc in Biomedical Blood Science and for a lifetime of continued professional development.

Course Content

All the modules in this one year programme are compulsory. The programme consists of a total of 90 credits made up of one 30 credit module and four 15 credit modules. An additional English module (English for Academic Purposes) will be offered for non-native English speakers if required. This module will not form part of the overall award, but successful completion is required for progression to the Masters programme.

Modules:
- Biomedical Science and Pathology (30 credits):
The module provides the student with the knowledge and understanding of the pathobiology of human disease associated with Cellular Pathology, Clinical Immunology, Haematology, Clinical Biochemistry, Medical Microbiology and Clinical Virology. It also examines the analytical and clinical functions of three more of the major departments of a modern hospital pathology laboratory, including Haematology, Clinical Pathology, Clinical Immunology, Blood Transfusion, Clinical Biochemistry and Medical Microbiology. In addition, the module will give an accurate insight into the role of Biomedical Scientists and how they assist clinicians in the diagnosis, treatment and monitoring of disease.

- Biochemistry Research Project (non-experimental) (15 credits):
This module aims to introduce students to some of the key non-experimental research skills that are routinely used by biochemists and biomedical scientists, such as in depth literature searching, analysis of experimental data and the use of a computer as tool for both research (bioinformatics) and dissemination of information (web page construction). The student will research the literature on a specific topic, using library and web based resources and will produce a written review. In addition, the student will either process and interpret some raw experimental data provided to them.

- Advances in Medicine (15 credits):
This module will describe and promote the understanding of advances in medicine that have impacted on diagnosis, treatment, prevention of a range of diseases. It will highlight fast emerging areas of research which are striving to improve diagnosis including nanotechnology and new biochemical tests in the fields of heart disease, cancer and fertility investigations which will potentially improve patient care.

- Clinical Pathology (15 credits):
The majority of staff that contribute to the module are employees of the University Hospital of North Staffordshire (UHNS). Students will benefit from lectures and expertise in Clinical Diagnostic Pathology, Pharmacology, Biochemistry, Genetics and Inflammatory Diseases. Students will gain an insight into how patients are managed, from their very first presentation at the UHNS, from the perspective of diagnosis and treatment. The course will cover both standardised testing options and the development of new diagnostic procedures with a particular emphasis on genetic and epigenetic aspects of disease. Students will also gain an appreciation of the cost benefit of particular routes for diagnosis and treatment and the importance of identifying false positive and false negative results. Finally, the students will have the opportunity to perform their own extensive literature review of a disease-related topic that is not covered by the lectures on the course.

- Case Studies in Biomedical Science (15 credits):
This module aims to give you an understanding of the UK health trends and the factors that affect these trends. Through clinical case studies and small group tutorials, you will explore why the UK has some of the highest incidences of certain diseases and conditions in Europe and consider what factors contribute to making them some of the most common and/or rising health problems faced by this country. This will include understanding the relevant socioeconomic factors as well as understanding the bioscience of the disease process and its diagnosis and management. You will also focus on what is being done by Government and the NHS to tackle these major health problems.

- English for Academic Purposes (EAP ):
For non-native English speakers if required

Teaching & Assessment

In addition to the lecture courses and tutorials, problem based learning (PBL) using clinical scenarios is used for at least one module. Students will also be given the opportunity to undertake an independent non-experimental research project, supervised and supported by a member of staff. Web-based learning using the University’s virtual learning environment (KLE) is also used to give students easy access to a wide range of resources and research tools, and as a platform for online discussions and quizzes. Students will be given many opportunities to become familiar with word processing, spreadsheets and graphics software as well as computer-based routes to access scientific literature.

All modules are assessed within the semester in which they are taught. Most contain elements of both ‘in-course’ assessment (in the form of laboratory reports, essays, posters) and formal examination, although some are examined by ‘in-course’ assessment alone.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business. Read more

Program overview

The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business.

The degree is offered on a full- or part-time basis. Courses are generally offered in the afternoons and evenings to accommodate part-time students. Full-time students take three or four courses per semester and may be able to complete the course work in three semesters. Full-time students who are required to take additional bridge courses may be able to complete the course work in four semesters. Part-time students take one or two courses per semester and may be able to complete the course work in four to five semesters. The time required to complete a master's project is one semester, but can vary according to the student and the scope of the topic. Two semesters is typical.

Plan of study

The program consists of 30 credit hours of course work, which includes either a thesis or a project. Students complete one core course, three courses in a cluster, four electives, and a thesis. For those choosing to complete a project in place of a thesis, students complete one additional elective.

Clusters

Students select three cluster courses from the following areas (see website for individual area information):
-Computer graphics and visualization
-Data management
-Distributed systems
-Intelligent systems
-Languages and tools
-Security
-Theory

Electives

Electives provide breadth of experience in computer science and applications areas. Students who wish to include courses from departments outside of computer science need prior approval from the graduate program director. Refer to the course descriptions in the departments of computer science, engineering, mathematical sciences, and imaging science for possible elective courses.

Master's thesis/project

Students may choose the thesis or project option as the capstone to the program. Students who choose the project option must register for the Project course (CSCI-788). Students participate in required in-class presentations that are critiqued. A summary project report and public presentation of the student's project (in poster form) occurs at the end of the semester.

Curriculum

Thesis/project options differ in course sequence, see the website for a particular option's modules and a particular cluster's modules.

Other admission requirements

-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit scores from the Graduate Record Exam.
-Have a minimum grade point average of 3.0 (B), and complete a graduate application.
-International applicants, whose native language is not English, must submit scores from the Test of English as a Foreign Language. A minimum score of 570 (paper-based) or 88 (Internet-based) is required.
-Applicants must satisfy prerequisite requirements in mathematics (differential and integral calculus, probability and statistics, discrete mathematics, and computer science theory) and computing (experience with a modern high-level language [e.g., C++, Java], data structures, software design methodology, introductory computer architecture, operating systems, and programming language concepts).

Additional information

Bridge courses:
If an applicant lacks any prerequisites, bridge courses may be recommended to provide students with the required knowledge and skills needed for the program. If any bridge courses are indicated in a student's plan of study, the student may be admitted to the program on the condition that they successfully complete the recommended bridge courses with a grade of B (3.0) or better (courses with lower grades must be repeated). Generally, formal acceptance into the program is deferred until the applicant has made significant progress in this additional course work. Bridge program courses are not counted as part of the 30 credit hours required for the master's degree. During orientation, bridge exams are conducted. These exams are the equivalent to the finals of the bridge courses. Bridge courses will be waived if the exams are passed.

Faculty:
Faculty members in the department are actively engaged in research in the areas of artificial intelligence, computer networking, pattern recognition, computer vision, graphics, visualization, data management, theory, and distributed computing systems. There are many opportunities for graduate students to participate in these activities toward thesis or project work and independent study.

Facilities:
The computer science department provides extensive facilities that represent current technology, including:
-A graduate lab with more than 15 Mac’s and a graduate library.
-Specialized labs in graphics, computer vision, pattern recognition, security, database, and robotics.
-Six general purpose computing labs with more than 100 workstations running Linux, Windows, and OS X; plus campus-wide wireless access.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. Read more
One of a range of degrees from the taught Masters Programme at the School of Computer Science our course is especially designed for graduates of numerate subjects other than computer science. It is mostly taught separately from the other courses. It intensively covers a broad range of the key principles and techniques of computer science.

About the course

There is an emphasis on software development, in particular when applied to solving problems in other disciplines. Depending on the modules chosen, it can lead to a career in areas such as systems development, IT management, or the deployment of advanced applications in specific disciplines.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-A flexible course, part of our postgraduate master's programme in Computer Science, with two different routes
-Our course is especially designed for graduates of numerate subjects other than computer science
-Taught by a highly-regarded and long-established computer science department with strong links to business
-Half the research outputs in Computer Science at the University of Hertfordshire have been rated as world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our masters programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research. This particular course will prepare you for a career such as a software engineer, developer or project manager.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for masters students. In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

This offers you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Computer Architectures
-Computer Science Masters Project
-Operating Systems and Networks
-Preparation for Placement
-Professional Issues
-Professional Work Placement for MSc Computer Science
-Programming and Program Design
-Software Development Exercise
-Systems Modelling

Year 2
Core Modules
-Computer Science Masters Project

Read less
A solid, theoretical understanding of computer technology with plenty of attention for the wide range of ICT applications. The enormous and rapidly growing power of ICT is the main driving force shaping our modern society. Read more
A solid, theoretical understanding of computer technology with plenty of attention for the wide range of ICT applications.

The enormous and rapidly growing power of ICT is the main driving force shaping our modern society. This goes beyond the technical and economical aspects. ICT is also essential in research as all sciences benefit from the raw power of software in processing huge quantities of data. But how do we manage and control the complexity of modern software? How can we make the most of the opportunities? And, not to be forgotten, how can we secure the ICT infrastructures we so heavily rely on? The Master’s programme in Computing Science covers all these aspects.

We offer specialisations in each terrain: security, software, data and the mathematics at the base of it all. These are not, however, isolated disciplines. We also look at the interesting interplay between them. For example, by taking privacy into account when dealing with big data. And by doing a thorough analysis of newly designed software to prevent security breaches later. Thanks to a large number of optional courses, you can decide where you want your focus to be.

The job opportunities in computer science are excellent: many of our students get offered jobs before they’ve even graduated and almost all have positions within six months after graduating. Many of our graduates find jobs as systems builders, ICT specialists or ICT managers and a few continue as researchers.

See the website http://www.ru.nl/masters/computingscience

Specialisations

- Cyber Security
You’ll learn to assess the security of existing ICT solutions, and how to develop more secure solutions for the future. This specialisation is offered in collaboration with the Eindhoven University of Technology, meaning you get taught by many of the best cyber security experts in the country.

- Data Science
You’ll learn how to turn real-world data sets into tools and useful insights, with the help of software and algorithms. Radboud University and the iCIS research institute are leading in research on legal and privacy aspects of data science and on the societal and administrative impact of data science.

- Mathematical Foundations of Computer Science
You’ll come to understand the fundamental mathematical concepts of computation and information in order to stretch the boundaries of computer technology. We’re the only specialisation in the country – and one of the few in the world – to focus on the theoretical and abstract playing field linking mathematics and computer science.

- Software Science
You’ll learn how to design high-level software that guarantees safety while controlling its complexity. At Radboud University, we are specialised in model based development. In other words, writing and testing code before they are unleashed in the real world or built into an expensive prototype.

- Societal Master's specialisations
You can either follow one of the above-mentioned research Master's specialisations as a whole (2 years), or you can combine the first year of the research specialisation with an additional year of one of the societal Master’s specialisations, namely:
- Science in Society
- Science, Management and Innovation

Why study Computing Science at Radboud University?

- All of our specialisations are closely related to the research carried out within the Institute for Computing and Information Science (iCIS).
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- There are plenty of high profile companies in the vicinity such as Philips and ASML, where you could do an internship or the research for your Master’s project.
- Exceptional students who choose the Data Science specialisation have the opportunity to do a double degree in Computing Science together with the specialisation in Web and Language Interaction (Artificial Intelligence). This will take three instead of two years.

Career prospects

There is a serious shortage of well-trained information specialists. Often students are offered a job before they have actually finished their study. About 20% of our graduates choose to go on to do a PhD but most find jobs as systems builders, ICT specialists or ICT managers in the private sector or within government.

Our research in this field

The Institute for Computing and Information Science (iCIS) is the research institute that is connected to Radboud University. Within this institute there are three research sections:
- Model Based System Development
- Digital Security
- Intelligent Systems

Within each research section there are different departments/groups that have their own research. On the websites of the research sections you will find more information about their research, publications, the departments/groups and contact information.

See the website http://www.ru.nl/masters/computingscience

Read less
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity. Read more
Learning how to design high-level software that guarantees safety and correctness while still being in control of its complexity.

Software plays a role in almost every aspect of our daily lives and in every organisation anywhere in the world. It can often be a crucial key to their success. Well-structured software that is attuned to an organisation’s needs and future plans can be cost effective, improve efficiency, offer better services and be innovative. Many companies, in every branch out there, are therefore looking for highly skilled software specialists. Graduates of the Master’s specialisation in Software Science will have no trouble finding a job.

Producing software is not merely a technological enterprise but a deeply scientific and creative one as well. Modern cars drive on 20 million lines of code. How do we develop all this software and control its complexity? How do we ensure correctness of software on which the lives in a speeding car literally depend on? This specialisation goes far beyond basic code writing. It’s about analysing and testing code in order to improve it as well as simplify it.

Why study Software Science at Radboud University?

- Although not the only focus, our programme puts a lot of emphasis on embedded software and functional programming.
- We teach a unique range of software analysis techniques and application down to practical/commercial use in industry.
- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as model based and virtual product development, advanced programming, and domain specific languages. We also closely collaborate with the Embedded Systems Institute.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- For your Master’s research we have a large number of companies like Philips, ASML and NXP offering projects. There are always more projects than students.
- Thanks to free electives students can branch out to other Computing Science domain at Radboud University such as security, machine learning or more in-depth mathematical foundations of computer science.
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.

See the website http://www.ru.nl/masters/softwarescience

Admission requirements for international students

1. A completed Bachelor's degree in Computing Science or related area
In order to get admission to this Master’s you will need a completed Bachelor’s degree in Computing Sciences or a related discipline.
2. A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >575 (paper based) or >232 (computer based) or >90 (internet based)
- IELTS score of >6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

Writing good software is a highly creative process, which requires the ability to approach problems in entirely novel ways through computational thinking. Besides creativity, a professional software scientist also has fine problem-solving, analytical, programming, and communication skills. By combining software programming, model-checking techniques and human intellect, software scientists can make a real difference to help and improve the devices that govern such a large part of our lives.

The job perspective for our graduates is excellent. Industry desperately needs software science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. Several of our graduates decide to go for a PhD and stay at a university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or programmer, or they start up their own software company.

Examples of companies where our graduates end up include the big Dutch high-tech companies such as Océ, ASML, Vanderlande and Philips, ICT service providers such as Topicus and Info Support and companies started by Radboud graduates, like AIA and GX.

Our research in this field

The Master’s programme in Computing Sciences is offered in close collaboration with the research Institute for Computing and Information Sciences (iCIS). Research at iCIS is organised in three different research sections:
- Model Based System Development
- Digital Security
- Intelligent Systems

The Software Science specialisation builds on the strong international reputation of iCIS in areas such model based and virtual product development, advanced programming, and domain specific languages.

Research project and internship

For your research project, you may choose to do your internship at:
- A company
---- SME, such as as Océ, Vanderlande, Clarity or GX
---- multinational, such as the Philips, ASML, NXP, Logica or Reed Business Media
- A governmental institute, such as the (Dutch) Tax Authorities or the European Space Agency.
- Any department at Radboud University or another university with issues regarding software, like studying new techniques for loop bound analysis, the relation between classical logic and computational systems, or e-mail extension for iTasks.
- One of the iCIS departments, specialising on different aspects of Software Science.
- Abroad, under supervision of researchers from other universities that we collaborate with. For instance, exploring a new technique for automata learning at Uppsala University in Sweden, or verifying the correctness of Erlang refactoring transformations at the Eötvös Loránd University (ELTE) in Budapest, Hungary.

See the website http://www.ru.nl/masters/softwarescience

Read less
The Department of Computer Science at Aberystwyth has a strong research focus on techniques and applications of intelligent systems, working with many major companies. Read more

About the course

The Department of Computer Science at Aberystwyth has a strong research focus on techniques and applications of intelligent systems, working with many major companies. Our taught Masters degrees draw on this focus, and link to the expertise and interests of the Department. They are designed to meet the needs of both students wanting a foundation for a career in research, and those wanting to expand on their skills to accelerate their industrial career.

Contemporary software is frequently developed to function in distributed systems. Applications are deployed across multiple computers, interacting to provide services and to solve problems in a distributed way. This Masters course is suitable for students intending to pursue a career in the software industry, and is a qualifying Masters Degree for Chartered Engineer status. It can also lead to a career in research.

The course in Software Engineering is a two year full-time programme. This degree is the same as the one year MSc in Computer Science (Software Engineering) - G493, with the addition that the student spends a year working in industry after the taught part of the course.

Year one of the course is divided into two parts over three semesters. In part one, you will establish a breadth of necessary skills in a number of core modules whilst directing your own study by choosing specialist modules, worth a total of 120 credits. In part two, you will apply your learning in the individual dissertation worth an additional 60 credits.

Previous study topics have included: Transmission of MIDI music over internet connection, Designing a network intrusion detection system, Online results and statistics using web service technology, Supply chain management system applications and Prototype railway track measurement system.

Whatever your own previous experience or future aspiration, with this course you will benefit from the marvellous integration of cutting-edge theory and practical application, within a world-class department. The most recent Research Excellence Framework (2014) assessment found that 100% of the impact research the department of Computer Science undertakes is world leading.

Course content

Year 1

Core modules:

Advanced Software Engineering
Machine Learning for Intelligent Systems
Mobile Solutions

Optional modules:

Enterprise Systems Development
Fundamentals of Intelligent Systems
Internet Technologies
Research Skills and Personal Development for Scientists
Statistical Concepts, Methods and Tools
The Object Oriented Programming Paradigm
Research Skills and Personal Development for Scientists (1520)

Year 2

Core modules:

MSC Project
Sandwich Year (PG)

Optional modules:

Statistical Concepts, Methods and Tools

Contact time

Approximately 12 hours a week in the first two semesters. During semester three you will arrange your level of contact time with your assigned supervisor.

Assessment

The taught part of the course is delivered and assessed through lectures, student seminars, practical exercises, case studies, course work and formal examinations. The subsequent successful submission of your research dissertation leads to the award of an MSc.

Industrial Year

This degree is the same as the one year MSc in Computer Science (Software Engineering), with the addition that the student spends a year working in industry after the taught part of the course.

• Students study at Aberystwyth University from September to May, and are supported in applying for suitable jobs in the software
industry.
• They work in the UK from June to the following May.
• They return to Aberystwyth to complete their dissertation from June to September

The work in industry is paid employment, not just work experience. Typical annual salaries for an industrial year are between £11,000 and £15,000.

Students wishing to do the industrial year are assisted in finding a place in industry. There is assistance with preparing an appropriate CV, training in what to expect at an interview, and practice in being interviewed by experienced industry interviewers. The Department of Computer Science sends about 70 students each year for a year's experience in industry, and has many contacts in companies enthusiastic to take good students from Aberystwyth University.

As these are paid jobs for companies, we cannot guarantee any student a job - the companies select the employees they want. Students that are unable to find a job can complete the Masters degree without an industrial year.

There is an additional but much reduced fee for the year in industry (presently £800 for the year), and members of staff stay in touch electronically and by visiting students during the year.

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less

Show 10 15 30 per page



Cookie Policy    X