• Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Swansea University Featured Masters Courses
"manufacture"×
0 miles

Masters Degrees (Manufacture)

We have 227 Masters Degrees (Manufacture)

  • "manufacture" ×
  • clear all
Showing 1 to 15 of 227
Order by 
The MSc in Mechanical Engineering offers Design and Manufacture specialist study options. This gives you the opportunity to meet the requirements for professional engineering competence set by the UK’s Engineering Council (UK-SPEC). Read more
The MSc in Mechanical Engineering offers Design and Manufacture specialist study options. This gives you the opportunity to meet the requirements for professional engineering competence set by the UK’s Engineering Council (UK-SPEC). You will advance your core knowledge in the discipline you choose and be given the appropriate support and experience to develop the inter-personal skills you will need to manage resources and plan objectives effectively.

This course has several available start dates and study methods - please view the relevant web-page for more information:
JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00851-1PTAB-1718/Mechanical_Engineering_with_Options_in_Design_or_Manufacture_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

SEPTEMBER 2017 - (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00851-1PTA-1718/Mechanical_Engineering_with_Options_in_Design_or_Manufacture_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P01005-1FTAB-1718/Mechanical_Engineering_with_Options_in_Design_or_Manufacture?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The MSc in Mechanical Engineering programme offers two specialist two study options: Design and Manufacture. These options share a number of common modules that directly reflect the activities of a professional mechanical engineer. The development of these Masters options is in direct response to the specification of benchmark requirements for professional engineering competence by the UK’s Engineering Council (UK-SPEC).

Mechanical engineers have traditionally been not only specialists, but also generalists, who have the breadth of expertise necessary for operation as project managers, leaders and innovators. In addition to advancing the core knowledge base of the discipline in your selected option, the programme will provide the necessary and continuing development of appropriate inter-personal skills at this level to enable management of resources and planning objectives.

In the School of Engineering and Built Environment, the area of mechanical engineering has very strong industrial links through its industrial advisory board, undergraduate placement scheme and its highly successful part-time undergraduate programmes which all contribute to a highly successful MSc programme.

Why Choose This Programme?

The MSc in Mechanical Engineering has very strong industrial links through its industry advisory board. The school participates in many research activities within the area of mechanical engineering. This includes; advanced materials and manufacturing processes, finite element analysts, computer-aided design and manufacture and machine condition monitoring.

Assessment

The taught modules are either assessed by coursework only or a combination of coursework and examination. In the later case the final mark is determined by weighted average of the two elements. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Career Opportunities

There are opportunities for graduates in the areas of mechanical design engineering, project engineering, manufacturing engineering or engineering sales. Graduates have found employment in the oil and gas industry, defence, computer-aided engineering and building services.

The programme may also form a part of CPD for engineers working towards chartership.

Read less
The MSc in Mechanical Engineering offers two specialist study options. Design and Manufacture. These respond directly to the requirements for professional engineering competence by the UK’s Engineering Council (UK-SPEC). Read more
The MSc in Mechanical Engineering offers two specialist study options: Design and Manufacture. These respond directly to the requirements for professional engineering competence by the UK’s Engineering Council (UK-SPEC). In addition to advancing the core knowledge base of the discipline in your selected option, the programme provides the necessary and continuing development of appropriate inter-personal skills to enable management of resources and planning objectives.

This course also has a part time start - for more information, see the website: http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00851-1PTAB-1617/Mechanical_Engineering_with_Options_in_Design_or_Manufacture_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The MSc in Mechanical Engineering programme offers two specialist two study options: Design and Manufacture. These options share a number of common modules that directly reflect the activities of a professional mechanical engineer. The development of these Masters options is in direct response to the specification of benchmark requirements for professional engineering competence by the UK’s Engineering Council (UK-SPEC).

Mechanical engineers have traditionally been not only specialists, but also generalists, who have the breadth of expertise necessary for operation as project managers, leaders and innovators. In addition to advancing the core knowledge base of the discipline in your selected option, the programme will provide the necessary and continuing development of appropriate inter-personal skills at this level to enable management of resources and planning objectives.

In the School of Engineering and Built Environment, the area of mechanical engineering has very strong industrial links through its industrial advisory board, undergraduate placement scheme and its highly successful part-time undergraduate programmes which all contribute to a highly successful MSc programme.

Why Choose This Programme?

The MSc in Mechanical Engineering has very strong industrial links through its industry advisory board. The school participates in many research activities within the area of mechanical engineering. This includes; advanced materials and manufacturing processes, finite element analysts, computer-aided design and manufacture and machine condition monitoring.

Assessment

The taught modules are either assessed by coursework only or a combination of coursework and examination. In the later case the final mark is determined by weighted average of the two elements. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Career Opportunities

There are opportunities for graduates in the areas of mechanical design engineering, project engineering, manufacturing engineering or engineering sales. Graduates have found employment in the oil and gas industry, defence, computer-aided engineering and building services.

The programme may also form a part of CPD for engineers working towards chartership.

Read less
This programme bridges the complex network that is the construction industry, and trains a new breed of experts who exploit opportunities afforded by new and emerging manufacturing technologies in this context. Read more
This programme bridges the complex network that is the construction industry, and trains a new breed of experts who exploit opportunities afforded by new and emerging manufacturing technologies in this context. It fully exploits The Bartlett’s unparalleled industry network and London location. Graduates will lead the paradigm shift that is taking place in building design and procurement.

Degree information

This programme is built around design, fabrication and testing. Students will learn to locate their work in the historical and theoretical context of design for manufacture, will select from a range of analogue and digital skills that they wish to develop and will progress to undertaking advanced design, research and fabrication projects with support from leading academics and professionals.

Students undertake modules to the value of 180 credits.

The programme consists of two core theory modules (30 credits), one skills module (30 credits), and two design thesis projects and a design thesis dissertation (120 credits). There are no optional modules. for this programme.

Core modules
-Introductory Design Workshops (15 credits)
-Contextual Theory: Design for Manufacture (15 credits)
-Skills Portfolio (30 credits)
-Design Thesis Portfolio, Initial Projects (30 credits)
-Design Thesis Portfolio, Final Project (60 credits)
-Design Thesis Written Dissertation (30 credits)

Research project/design project
All students undertake a major design project, the 'Design Thesis Portfolio, Final Project' in combination with an individual research project, culminating in the 'Design Thesis Written Dissertation'.

Teaching and learning
The programme is delivered through design and fabrication tutorials, skills workshops, seminars, lectures, site visits, group working and (optional) field trip. Assessment is via design and skills portfolios, written coursework submissions and verbal presentations.

Fieldwork
There is a field trip as an optional part of the programme. Maximum cost to the student is £500.

Careers

Graduates are likely to progress to further study and teaching, or roles in design and the built environment with some of the world's leading architecture, engineering and construction companies.

Employability
The combination of networks, knowledge and technical expertise makes graduates of The Bartlett some of the most sought-after in the world. Graduates of this programme will leave with the skills and expertise that relate to a rapidly expanding and evolving sector in industry.

Why study this degree at UCL?

The programme will be primarily located at the new UCL Here East Facility in London's Olympic Park, with a design studio focus and outstanding CNC fabrication and robotics facilities. It will also benefit from a base on the UCL main campus in Bloomsbury.

Graduates will be well placed to take leading roles in industry or academia, exploiting emerging technologies and approaches to change the nature of design and construction.

The programme has been developed in liaison with industry partners including Arup, Foster and Partners, Laing O'Rouke and Price and Myers, who all have a longstanding relationship with The Bartlett.

Read less
Qualify as a pharmaceutical scientist on this new, Masters-level Pharmaceutical Manufacture and Quality Control course at Liverpool John Moores University. Read more
Qualify as a pharmaceutical scientist on this new, Masters-level Pharmaceutical Manufacture and Quality Control course at Liverpool John Moores University. Carry out novel research and gain hands-on laboratory experience.

•Complete this masters degree in one year (full time)
•Explore the drug development and quality control aspects of the pharmaceutical industry as you study to become a qualified pharmaceutical scientist
•Gain hands-on experience in relevant laboratory techniques with a 12 week research project
•Benefit from LJMU's £12 million laboratory investment
•Enjoy excellent graduate employment prospects

Enhance your subject knowledge and gain hands-on experience with this new Masters course, taught by tutors with personal industry experience and strong manufacturing connections.

Completing a PG Cert by the end of the first semester on this full time, year-long course, you will devote the next semester to Diploma level study and then undertake a 12 week laboratory project for the final part of your MSc.

There are opportunities for topic specialisation and the chance to undertake cutting edge research.

You will learn in a supportive, flexible academic environment, studying at the Byrom Street site, right in the heart of Liverpool city centre.

The School's laboratories are currently undergoing a £12 million upgrade. Here you’ll find chromatographic equipment and spectrometers, tableting and particle sizing equipment, computing laboratory and state-of-the-art molecular modelling software, electron spin resonance spectrometers and thermal analysis equipment, including dynamic differential scanning calorimetry plus chromatography, LC-MS and NMR instruments.
In terms of independent study support, the Avril Robarts Library, open 24/7 during semesters, is located just minutes away on Tithebarn Street.

Please see guidance below on core and option modules for further information on what you will study.

Research Methods
Gain the necessary core skills to effectively design, plan, perform and report scientific research.
Analytical Techniques, Structure and Function in Organic Molecules
Understand the application of analytical chemistry to pharmaceutical materials, and the effect of functional group chemistry on both the structure and consequent properties of relevant molecules.
Physicochemical Properties of Therapeutic Agents
Understand the physical and chemical properties of both small molecules and macromolecules and how these influence their in vitro and in vivo behaviour as active pharmaceutical ingredients.
Formulation and Drug Delivery
Understand the principles of pharmaceutical formulation and advanced drug delivery methods.
Product Development and Control
Understand and apply the principles of good manufacturing practice to the production and quality control of pharmaceutical products.
Research Project
Complete an independent, in-depth, 12 week scientific study related to the pharmaceutical sciences.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Please email if you require further guidance or clarification.

Read less
ISMM is very different to any other academic course. it combines traditional teaching material with a series of industrial visits, some of which will take place overseas. Read more
ISMM is very different to any other academic course: it combines traditional teaching material with a series of industrial visits, some of which will take place overseas. The course members work a full industrial week and conform to business dress codes. This intensive, practical programme gives direct experience of many different industries, cultures and working environments, and the projects present real challenges in genuine industrial and business environments. The aim of the course is to equip numerate graduates with the skills, personal development and industrial experience to be immediately effective in their early careers in industry.

ISMM will broaden your perspective and experience and open the door to a wide range of industrial careers. Many blue chip companies recognise the value of the course and target our graduates. Equally, for those who want to work in a smaller company, ISMM gives the confidence to start directly in a manufacturing engineering or management role. Those with entrepreneurial flair go on to set up their own companies.

The programme is structured around taught modules, company visits and in-company projects solving live business or technical problems. An overseas study tour offers a broader international context and the individual research thesis allows greater depth of study in a specific area of manufacturing.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpimm

Course detail

During the year you will acquire a working understanding of the fundamentals of a business enterprise, with a particular emphasis on manufacturing disciplines. You will visit up to forty companies, large and small, chosen to cover all industrial sectors; you will absorb the different cultures and learn to identify strengths and weaknesses. By the end of the course you will be in a perfect position to choose your career direction.

Skills acquired during the course include:

- critical analysis;
- creativity – the generation of innovative solutions;
- evaluation of designs, processes and products;
- balancing theory and practice;
- problem identification, definition and solution;
- data gathering, evaluation and analysis;
- effective communication written, verbal and graphic;
- preparation of business and finance cases;
- presentation preparation and delivery;
- project management;
- report writing;
- a 'can do' attitude;
- teamworking;
- appreciating the responsibilities of leadership

Format

Teaching is delivered through a variety of media. During Cambridge termtimes, there will be traditional academic lectures and interactive seminars; the dissertation is based in one of the Institute for Manufacturing's research groups and will involve normal graduate-level supervision. However, much of the learning during the course takes place during the industrial visits (of which there are approximately forty annually), and on the projects themselves. During the projects, students can expect to receive substantial 'supervisory' feedback from their line managers and colleagues. Academic assessment of the course is split into three components: examinations on module material; assessment of project reports; examination of the dissertation.

Placements

In addition to the series of industrial visits, students will undertake four two-week industrial placements over the course of the programme. During this time they will be working on live business/technical issues relevant to the company, and will be treated as an employee. These placements will terminate in a presentation to the Senior Management of the company, and in the writing of a handover report that will be examined as part of the course assessment.

Assessment

All students will be required to write a dissertation of no greater than 15,000 words. Achieving a passing mark on this dissertation is a precondition for obtaining the degree.

All students are required to write four project reports, each of which will be based on two weeks of project work on an issue relevant to a host company.

Four taught modules will be assessed through written assessments under timed conditions.
At the discretion of the Examiners, candidates may be required to take an additional oral examination on the work submitted during the course, and on the general field of knowledge within which it falls.

Students can expect to receive reports at least termly on the Cambridge Graduate Supervision Reporting System. They will have access to a University supervisor for their dissertation, and can expect to receive input from their line managers during project placements.

Continuing

The MPhil is a professional practice programme and is not specifically designed to lead on to doctoral research. Nevertheless, students wishing to apply for continuation to a PhD in Engineering at Cambridge would normally be expected to attain an overall mark of at least 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Bursaries are available to two categories of applicant.

Category A: Bursaries of between £1,200 and £1,800 are available to successful applicants who either (i) have UK citizenship; or (ii) have settled status in the UK, and have been ordinarily resident in the UK and Islands (for a purpose other than full-time education) for the three years prior to the 1 September immediately preceding the course.

Category B: Successful applicants who have secured sufficient funding from studentship providers to cover the standard University Composition Fee rate, but not the additional cost, may receive a bursary to cover the discrepancy.

All eligible applicants will be considered for bursaries. Students in Category B may wish to contact the course email to ensure that their situation is noticed.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MSc in Global Innovation Management is a unique two-year programme. It’s offered jointly by. - University of Strathclyde. - Aalborg University (Denmark). Read more

Why this course?

The MSc in Global Innovation Management is a unique two-year programme. It’s offered jointly by:
- University of Strathclyde
- Aalborg University (Denmark)
- Hamburg University of Technology (Germany)

You'll have the opportunity to study at two of the universities.
The course focuses on new challenges in innovative global enterprise and provides you with:
- a practical and global perspective of innovation management
- skills applicable to larger multinational organisations and smaller enterprises
- broader views of Innovation Management including; technology management; research and development; product/service development
- increased research capability

See the website https://www.strath.ac.uk/courses/postgraduatetaught/globalinnovationmanagement/

You’ll study

The programme is divided into four semesters over two years.

You’ll spend your first year at Strathclyde. You’ll gain practical experience of working within globally distributed teams and with an industrial client.

In the first semester of Year 2, you’ll either undertake in-depth study of innovation management in Germany or an industrial internship in Denmark.

In the final semester you’ll take on a thesis project. This is supervised by the Year 2 host institution.

Partner Universities

- Department of Design, Manufacture and Engineering Management, University of Strathclyde
The department focuses on 'what to make' and 'how to make it'. Its research interests involve:
- product and process technologies
- information technologies
- design methodologies
- telepresence and organisational modelling

The department has a range of innovative purpose built design and manufacture laboratories. This includes the new digital design and manufacture studio. It brings together:
- data capture
- CAD
- 3D visualisation
- rapid prototyping capabilities

The department achieved a research rating of four (where five is top) in the most recent UK national assessment of research.

- The Institute of Technology and Innovation Management, Hamburg University of Technology
The institute’s focus is on the management of technology and innovation. In particular, the practical management of the innovation process.
Lecture content is based on new research findings. You’ll also take part in:
- group work
- case studies
- practical applications in the field of innovation management.

Research is directly focused on innovation processes and new technologies.

- The Centre for Industrial Production (CIP) at Aalborg University
The main focus is on linking theory to method. The relationship between product development, manufacturing and distribution networks in a global context is of key interest.
The University ensures that their most relevant and up-to-date research activity is delivered to students through project-based work. There’s a particular emphasis on industrial experience.
The centre organises their research into four distinct areas:
- product development in networks
- supply chain management
- strategic manufacturing development
- organisational design and change

All three universities are members of the European Consortium of Innovative Universities (ECIU).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

As a graduate of Global Innovation Management you’ll be able to enter the international employment market working for employers such as:
- enterprises dealing with high end technological products and services
- consultants making technology assessment and innovation /change management
- governmental institutes dealing with innovation policy and strategy
- relevant research and higher education institutions

Where are they now?

100% of our graduates are in work or further study.*

Job titles include:
- Business Analyst
- Business Systems Developer
- Engineering Consultant
- Researcher
- Product Manager
- Senior Analyst

Employers include:
- Alten
- Emerson
- Openlink Financials
- Siemens
- SRW & Co
- University of Strathclyde

*Based on the results of the national Destinations of Leavers from Higher Education Survey 2011/12, 2010/11

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade. Read more

Why this course?

Manufacturing and engineering are thriving sectors at the heart of the UK economy. They generate jobs, promote economic growth and increase global trade.

Manufacturing engineers therefore play a vital role in integrating technology and management within the sector to achieve added value and deliver superior performance.

This popular MSc programme is based within the Department of Design, Manufacture & Engineering Management, the only department in the UK combining end-to-end expertise from creative design, through engineering design, manufacture and management of the entire system.

This course is designed for:
- graduates with experience in manufacturing, engineering, design or business who wish to develop their manufacturing expertise. This course is ideal for graduates wishing to transfer smoothly and effectively to a career in the manufacturing sector of industry

- established manufacturing engineers, designers and managers working in the industry who are facing new challenges and increased areas of responsibility. New disruptive technologies also present a significant opportunity for existing professionals to further develop their career in advanced manufacturing technology systems

This course will prepare students for industrial careers within a reinvigorated global manufacturing sector. Students will develop specialist skills in areas such as:
- manufacturing automation
- advanced production techniques
- micro/nano-manufacturing
- materials and production technology
- strategic technology management

At the end of the course you'll have a greater understanding of the methods, tools and techniques relating to advanced manufacturing technology and systems.

You'll be able to apply your knowledge and skills by taking part in projects to solve some of the technological problems currently faced by industry.

The course is run jointly with the Advanced Forming Research Centre (AFRC), a £35 million facility developing forming and forging technologies to support the development of high integrity components. The AFRC is one of seven elite centres that form the UK High Value Manufacturing Catapult which is the catalyst for the future growth and success of manufacturing in the UK.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedmanufacturingtechnologysystems/

- Funded places
There are a limited number of funded places (fees +£3,000 scholarship) available for this programme for students with home status for fees purposes (Scotland & EU). As these are allocated on a first-come, first-served basis, applicants are encouraged to apply as early as possible.

You’ll study

You'll take a combination of compulsory and optional taught modules.

Major projects

During the programme, you'll undertake an individual and group project.

For group projects, you'll have the opportunity to work with fellow students and an industrial client to address a practical problem. You'll gain direct industry experience, develop skills and manage a project through to completion. Previous students have worked with organisations such as Rolls Royce, BAE Systems and Weir Group.

For individual projects, you'll have the opportunity to combine the skills learned in other course modules and apply them to an industry-involved or funded project within a specific area of manufacturing.

Facilities

Our facilities provide you with a large range of rapid prototyping and manufacturing tools and machinery. These will help you to design, prototype, manufacture and perform research on a broad range of items.

The AFRC has invested £35M in equipment for the development of forming and forging technologies.

Teaching staff

Some of the key course content will be taught by leading experts in manufacturing technology and product design and engineering management. High-profile teaching staff include:
- Professor Yi Qin, internationally leading expert in Micro-Manufacturing and Forming technology
- Dr Andrzej Rosochowski, a leading expert in Ultra-fine Grained Metals and Processing
- Professor Alex Duffy, Editor of the Journal of Engineering Design and past President of the Design Society
- Professor Jonathan Corney, leading expert in CAD/CAM and Rapid Manufacturing
- Mr Gordon Mair – a pioneering researcher in Telepresence Research
- Dr Xiu-Tian Yan - Vice Chairman of the Mechatronics Forum

Learning & teaching

Lectures, tutorials and practical laboratories.

Assessment

Major assessment formats are written assignments. There is also a group project and an individual Master project.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/

Read less
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
If you are a scientist or technologist wanting transition into an industry with exciting career opportunities or are already involved in the leather industry but wanting to increase your knowledge and skills, this is an ideal course for you. Read more
If you are a scientist or technologist wanting transition into an industry with exciting career opportunities or are already involved in the leather industry but wanting to increase your knowledge and skills, this is an ideal course for you.

Here at the Institute for Creative Leather Technologies (ICLT), you will cover the science and technology of leather manufacture in a way designed to suit graduates for senior tannery positions. Whilst developing the critical mind it provides an excellent base for a move into Research and Development departments within chemical companies, tanneries and brands or into academic careers.

Leather is returning to prominence as nearly all alternatives require using up non-renewable carbon-based materials. Scientific advances in conjunction with environmental responsibility have transformed the leather manufacture industry into a modern scientific process, creating a highly sustainable material with high value in many sectors such as sports, automobiles, luxury goods and fashion.

Northampton graduates have been at the forefront of these changes making our leather alumni one of the best bodies in the industry to be associated with. Successful graduates from this course can expect easy access into senior industry positions.

This course is ideal for embedding into corporate continuing personal development (CPD) programmes. Taking this into account, ICLT delivers the course in a way that enables employees to only be away from their place of work for three months between September and December. During this period the theoretical and practical elements of the course are delivered in an intensive manner, after which the employees are able to return to their workplace to continue with their assessments and research elements of the programme. The course also enables students to study in the traditional manner where they stay at University for the whole academic year if desired.

As one of the foremost centres for leather education in the world, ICLT is dedicated to providing cutting edge education and training in the theory and practice of leather technology at the highest level.

If you do not meet our standard entry requirements, it is possible to undertake a single or a number of modules. The non-credit bearing course is called ‘Professional Leather Development’ Course, for further information about this course please visit the Professional Leather Development Course page: https://www.northampton.ac.uk/study/courses/professional-leather-development-course/

Course content

The MSc Leather Technology (Professional) course is unique in that it aims to provide the opportunity to acquire and/or enhance technical skills within the subject of leather technology. Students will study within an environment that encourages the development of intellectual creativity as well as providing transferable skills to undertake research with respect to advanced technologies, developing skills and flexibility necessary to discriminate between technical and entrepreneurial issues and relating these to the needs of the leather industry such as successful management of the commercial operations.

This course offers students the opportunity to work and learn in a state-of-the-art teaching tannery for some of the modules, and will also be working with staff with a mix of academic and industrial experience. Many of the staff carry out research in various leather subjects and over the last 20 years Northampton leather research has built a leading world-wide reputation.

Industry leaders are frequent visitors to meet students and provide knowledge on current technical and commercial aspects of leather and its fascinating chain from farm to fashion or one of its many other end uses.

The MSc Leather Technology (Professional) course is delivered to meet student flexibility. In order for you to complete Master’s level qualification, you must complete up to seven modules and an independent research dissertation. During the course, you will complete six compulsory modules and choose up to two optional modules. This ensures that you have a basic understanding of principles pertinent to the leather industry with an added advantage in that you are able tailor the course to meet your particular needs and career aspirations.

Further information on the indicative content of the leather modules is available through the module catalogue for Leather Technology (Level 7).

Course modules (16/17)

-Leather Process Operations
-Performance Leather Process Operations
-Quality Evaluation and Systematic Problem Solving
-Sustainable Manufacture within the Leather Industry
-Research and Analytical Methods
-Dissertation
-From Hide to High Street
-Leather Science
-Marketing: Principles and Management
-International Marketing Strategy
-Managing Operations
-Podiatry: Applied to the Footwear Industry
-Wastes Management

Methods of Learning

Theoretical lectures and seminars are reinforced by practical examples, case studies and site visits. Our virtual learning environment allows you and course tutors to exchange ideas as well as submit assignments.

Assessments

A variety of approaches to teaching is used such as lectures, seminars, workshops, practical sessions with course teaching materials made available through our virtual learning environment. Modules are assessed by a wide range of methods and include the following: practical reports, seminar files, reflective portfolios, presentations and dissertation.

Facilities and Special Features

As the UK’s only university to integrate leather technology with subjects such as fashion, marketing, business and the environment, we are proud to house an on campus working tannery for practical leather making as well as laboratories to enable leather testing.
-100% employment of graduates in 2011, 2012, 2013, 2014.
-This course is unique to the University of Northampton and not offered anywhere else in the UK or Europe.
-The University has an on campus tannery and laboratories for teaching.
-Modules to cater for leather career choices in practical leather making and testing.
-Industry-led practical workshops and seminars in technology and supply chain knowledge delivered by international experts.
-Continual networking with potential employers within the industry.
-Opportunities to attend international leather fairs in Hong Kong, Milan and Shanghai.
-Bursaries and scholarships available for leather students.

Careers

Graduates of this course are in high demand and are able to secure suitable posts in leather making or associated industries, including technical management, research and development, technical services, higher education and government bodies. When it comes to jobs in the leather industry, demand exceeds supply and opportunities are available worldwide with excellent progression prospects. Employment opportunities can also be found in other materials production or chemical industries. Successful graduates from this course can also proceed to undertake MPhil or PhD studies with us.

Read less
Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture is at the forefront of providing successful business with the competitive edge needed to survive and grow. Read more
Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture is at the forefront of providing successful business with the competitive edge needed to survive and grow. In addition society is demanding that such business enterprises become evermore proactive in terms of sustainability and to adopt a social conscious across their business strategies.


This course aims to develop your knowledge and understanding of modern sustainable technologies in terms of product development, optimisation and manufacture. You will gain a comprehensive understanding of how various IT based tools and systems function while also gaining insights into how these are implemented effectively within the manufacturing and industrial sectors. You will be equipped to undertake cross-functional management roles and to evaluate how modern organisations can strategically exploit existing and emerging technologies. This reflects the growing demand for specialists with advanced skills and knowledge to drive forward effective new product development and introduction across all of the major industrial sectors including automotive, aerospace and general manufacture.

To help you meet the challenges presented by this fascinating and key area, the School of Technology not only supports you with a wealth of experience and unique expertise, it also gives you access to state of the art Computing and Product Development facilities including the Virtual Design Enterprise Centre equipped with high specification PC’s and immersive 7 metre wide stereoscopic visualisation screen.

Read less
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. Read more
This course will develop your knowledge of the design, development, analysis and production of medicines, the drug industry and regulatory affairs. It is particularly suitable if you are keen to enter employment in areas such as pharmaceutical marketing, formulation, regulatory affairs, process development, medical statistics and clinical trial organisations. You can choose to combine your studies with training in the fundamentals of management theory (option available only for September intake), which is especially suitable to those interested in taking up management positions in relevant organisations.

What will you study?

You will have the chance to explore current trends in chemical, biological and biotechnological therapeutics, and will look at the latest technologies used in the pharmaceutical industry. You will gain an understanding of the processes used in clinical trials and in the development, manufacture and regulation of medicines. You will also develop your computing and statistical skills and other key skills, such as data collection, communication, time management, organisational and review and synopsis skills.

Assessment

Exams, tests, laboratory reports, assignments, case studies, oral and poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules (September start)
-Statistics and Quality Systems
-Pharmaceutical and Analytical Technology
-Manufacture and Clinical Trials of Medicines
-Design, Discovery and Development of Pharmaceuticals
-Business in Practice
-Project

Modules (January start)
-Statistics and Formulation of Therapeutics
-Design, Discovery and Manufacture of Medicines
-Quality and Analytical Systems
-Drug Development and Clinical Trials
-Project

Read less
The Mechanical and Systems Engineering MPhil allows you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Read more
The Mechanical and Systems Engineering MPhil allows you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Research degrees are offered through four research groups: Bioengineering, MEMS and Sensors, Fluid Dynamics and Thermal Systems, and Design, Manufacture and Materials.

The School of Mechanical Engineering is one of the top 10 Mechanical Engineering research schools in the UK (RAE 2008). As a postgraduate researcher you will be welcomed as a junior academic colleague rather than a student. In this role we ask you to play a full and professional role in contributing to the School’s objective of international academic excellence.

The School, the Faculty of Science, Agriculture and Engineering, and your supervisory team will support you to develop your research capabilities. We will help you progress with your higher degree and attain a unique skill set, through international conference attendance and research paper submissions.

Research in the School falls into four main fields. You can find more detailed information regarding each research group and suggested PhD projects on the School website:
-Bioengineering - group leader Professor Thomas Joyce
-MEMS and Sensors - group leader Professor Peter Cumpson
-Design, Manufacture and Materials – group leader Professor Kenneth Dalgarno
-Fluid Dynamics and Thermal Systems – group leader Professor Nilanjan Chakraborty

NewRail

NewRail is our centre for railway research at Newcastle and is part of the design, manufacture and materials research group. Through this centre you have the opportunity to research the organisation, management and economics of train movement. The subject looks at innovative concepts for sustainable rail transport with a particular focus on system services, production patterns and rail system designs.

Your scientific work will contribute to the modernisation of the rail sector as a whole, integrating knowledge from a variety of disciplines such as systems engineering, economics and marketing. You will have the opportunity to work with railway experts from local and international rail-focused organisations, such as Network Rail, Railfuture, Tyne and Wear Metro, Port of Tyne and the Tyne and Wear Freight Partnership. Our research areas include
-Demand patterns and models
-Supply patterns and models
-Grants and contracts
-Service execution
-Customer satisfaction
-Business generation

Delivery

Our research programmes are based in the Stephenson Building on the central Newcastle campus.

Attendance is flexible and depends on the requirements of the research project and is subject to our School Safety policy. You are expected to undertake 40 hours of work per week with annual holiday entitlement of 35 days (this includes statutory and bank holidays)

Read less
This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications. Read more

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Compound Semiconductor Device Manufacture; Major Research Project.

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode. This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility. Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.

Read less
This programme will equip you with the knowledge and skills you need to meet the needs of the automotive industry in the advanced areas of analysis, design and manufacture. Read more

This programme will equip you with the knowledge and skills you need to meet the needs of the automotive industry in the advanced areas of analysis, design and manufacture.

Traditionally, the sector has been associated with high-volume vehicle manufacture, but the past decade has seen the landscape shift towards automotive component manufacturers and specialist design and consultancy house.

This course will prepare you to work in a range of different settings. Core modules will develop your knowledge of key fields such as chassis and driveline engineering, as well as vehicle and product systems design. You’ll then choose from optional modules on topics that suit your own interests and career intentions.

We put particular emphasis on computational methods and software packages in automotive engineering analysis, design and manufacture. Depending on the modules you choose, you could use Matlab, Abaqus finite element code, Fluent CFD, SolidWorks CAE and LabView (DAQ and control).

Specialist facilities

You’ll benefit from working in world-class specialist facilities for different aspects of automotive engineering. These include a brake test area and measurement lab, as well as the latest industry-standard software for computational fluid dynamics and finite element modelling of systems and materials. ADAMS software is also available for suspension simulation.

High-level CNC and wire EDM facilities are available in the Faculty workshop, and we have cutting-edge tribology facilities to study wear on engine parts. There’s even a ‘stirred bomb’ for characterising fuel ignition and advanced engines with optical access. If you get involved with Formula Student race car, you’ll also use our dedicated car build area including computerised engine test bays.

This programme is also available to study part-time over 24 months.

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Course content

Core modules will give you a solid knowledge base in key areas of automotive engineering. You’ll build your understanding of how vehicle and product systems are designed and developed, as well as automotive driveline and chassis engineering.

This foundation will allow you to gain specialist knowledge in areas that particularly interest you when you choose from our range of optional modules. You could focus on topics such as computational methods, tribology, combustion in engines or applications of mechatronics among many others.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within mechanical engineering that allows you to demonstrate your knowledge and skills.

In the two taught semesters you’ll review the literature around your topic and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months. You could even get involved with the Formula Student race car through your project.

If you choose to study part-time, you’ll extend your studies over a longer period so you can take fewer modules in each year.

Want to find out more about your modules?

Take a look at the Automotive Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Automotive Chassis Engineering 15 credits
  • Automotive Driveline Engineering 15 credits
  • Vehicle and Product Systems Design 15 credits
  • Professional Project 75 credits

Optional modules

  • Vehicle Design and Analysis 20 credits
  • Mechatronics and Robotics Applications 15 credits
  • Engineering Computational Methods 15 credits
  • Surface Engineering 15 credits
  • Introduction to Tribology 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Automotive Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Automotive Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects for MSc Automotive Engineering students have included:

  • Regenerative braking systems – Impact on fuel consumption and vehicle stability in HEVs
  • Thermo-mechanical analysis of disc brake for vehicle rollaway
  • Coated lightweight brake rotors
  • Designing, Measuring and Modelling of Vehicle Dynamics

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer. You can also get involved with projects linked to the design, construction and testing of the Formula Student race car.

Career opportunities

Career prospects are excellent and with this qualification you should expect to find employment in the automotive and motor sport industries.

Graduates from this programme are working for employers such as Bentley Motors, BMW UK, Jaguar Land Rover, Honda, Nissan Motor Company, Renault F1 (Lotus Renault GP), Red Bull Racing and Ricardo UK.

Alternatively, you may choose to work in the general engineering industry, undertake PhD study or move into a completely different field such as finance or teaching.




Read less

Show 10 15 30 per page



Cookie Policy    X