• Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Cass Business School Featured Masters Courses
Northumbria University Featured Masters Courses
"management" AND "of" AND…×
0 miles

Masters Degrees (Management Of Technology)

  • "management" AND "of" AND "technology" ×
  • clear all
Showing 1 to 15 of 2,892
Order by 
Professionals in construction management are at the heart of the delivery phase of buildings and infrastructure in every economy, and play an essential part in the realisation of the physical development aspiration of clients. Read more
Professionals in construction management are at the heart of the delivery phase of buildings and infrastructure in every economy, and play an essential part in the realisation of the physical development aspiration of clients.

Society continues to value and shape the built environment resulting in both public and private investment in construction assets and the successful completion of construction projects. As these projects become more socially and technically complex in a changing world dominated by a concern for sustainability, there has been a growing challenge to develop existing and new skills and expertise in construction management. This challenge is not only national but global as the need for construction management skills continues to grow internationally. Indeed, our student cohorts reflect this global challenge with students from across multiple continents.

This particular programme benefits from being rooted in a long 40 year history of delivery. It has evolved and aligned itself with the challenge above to reinforce it as one of the most long-standing and successful Construction Management Masters programmes of its kind. The programme has and continues to be the flagship of our postgraduate programmes and is heavily subscribed and endorsed by the global construction management community.

The programme is designed for recent graduates from construction and related disciplines and introduces the fundamentals and challenges to contemporary construction management. It is also ideally suited to those who have a strong technical background and need to complement it with requisite management know-how for developing their national and international careers in the construction sector.

Students on the programme significantly benefit from the programmes strong connection with the expertise of the UK’s longest-established research group ‘Construction Technology and Organisation’ and the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

Accreditation of the programme is provided by the UK’s Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Key facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- Fully accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-management/

Programme modules

Semester one, compulsory modules
- ICT for Construction Projects
This module introduces managers to a wide range of tools and technologies appropriate for their role and projects. The module covers a range of topics including project information flows, e-business, database technologies, emerging technologies, building information modelling technologies, groupware and collaborative systems.

- Research and Communication
The aims of this module are to provide the student with an overview of sources of information in construction; to explain to students how to conduct a literature review and introduce students to the principal methods of investigation in construction research; and provide an opportunity for each student to develop professional and academic skills in oral and written communication.

- Principles of Design and Construction
This module teaches students the fundamental principles of managing a project during the design and construction phases. The module develops knowledge and understanding of the role and principles of the estimating, tendering and planning of construction projects and the importance of health and safety in relation to design and construction activities.

- Principles of Project Management
Students will gain an understanding of construction project management principles and theory. Specific areas covered include management responsibility for running construction projects; contemporary issues facing the construction industry; cultural complexity and the impact of behaviour and motivation on performance; and applying appropriate project management techniques for the different project phases.

- Postgraduate Research Project
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Construction Management.

Option Module (part-time students only)
- Management and Professional Development 1
The aim of this module is to enable students to plan, develop and demonstrate progress against a suitable professional development framework, such that they become equipped with a range of transferable management and professional development skills.

Option Modules One
Choose two from:
- Design Management
This module introduces various Design Management techniques and approaches. These include process mapping techniques for design; ways to analyse and optimise the design process; and students will gain an understanding of the internal workings of a design office and their relationship with the construction team.

- Sustainability in the Built Environment
Students will gain an understanding of sustainability issues that relate to the built environment; ways in which these issues can be managed and effective communication of both strategic and technical information.

- Management of Construction Processes
This module introduces students to cutting edge contemporary management concepts and innovations; complexities of setting up and managing logistics on large construction sites; and essential project management techniques such as risk management.

- Federated 3D Building Information Modelling (BIM)
The creation, deployment and use of aggregated and integrated models are key goals of collaboration through BIM. This module aims to deliver hands-on practical skills on the use of BIM technologies (i.e. design software and collaboration tools) for real-time co-creation and data sharing of federated/aggregated 3D BIM models. The concept of shared situational awareness within design teams/processes will be explored.

Option Modules Two
Choose two from:
- Strategic Management in Construction
The aim of this module is to introduce students to the fundamental concepts of strategic management and the tools for formulating and implementing strategies within the construction sector. The application of strategic management tools to develop appropriate change strategies will be explored and fundamental skills in communication, negotiation and leadership will be developed.

- People and Teams
Students will gain a knowledge and understanding of the key fundamental management principles and theory (such as motivation, teamwork, leadership, task management) and how they can be applied to managing people within the context of the construction project environment. Students will also be able to analyse current theoretical approaches to people management, appreciate importance of ethics and cultural issues and evaluate the key factors driving HRM systems.

- Procurement and Contract Procedure
This module aims to develop students understanding of procurement methods, different forms of contract and contract practice. The module is designed to give students key practical skills including advising clients on appropriate procurement and tendering methods; selecting the most appropriate form of construction contract; and manage a construction contract effectively.

- Business Economics and Finance
Students will gain a sound understanding of macro, meso and micro economics and types, sources and management of finance relating to construction organisations and projects. This will allow students to analyse the policies and operations of construction organisations and projects from an economic perspective to determine likely performance consequences and analyse corporate financial data for investment prospects and business management decisions.

Careers and further study

Graduates are sought after by a wide range of companies including Arup, Atkins, Bauer Technologies, Carillion plc, Eurovia Group, Kier Group, Morgan Sindall, Skanska and Vinci Construction. Many of these organisations engage with the University in both collaborative research and in delivering lectures on the courses. This provides an ideal opportunity for students to engage in discussions about employment opportunities.

Scholarships and bursaries

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-management/

Read less
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage. Read more
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage.

You will gain specialised skills through an individual research project within our research groups, using state-of-the-art equipment and facilities.

PROGRAMME OVERVIEW

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Molecular Electronics
-RF Systems and Circuit Design
-Nanofabrication and Characterisation
-Energy Economics and Technology
-Semiconductor Devices and Optoelectronics
-Microwave Engineering
-Nanoelectronics and Devices
-Nanophotonics Principles and Engineering
-Renewable Energy Technology
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

NANOTECHNOLOGY AT SURREY

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning – know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin Nanoscience and nanotechnology for renewable systems
-Engineering problem solving - be able to analyse problems within the field of nanoscience and nanotechnology and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within Nanoscience, nanotechnology and nanoelectronics for renewable energy
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research and development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability.
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
IN BIOFORCE. 1) Opening Sessions. Objectives. To introduce the pedagogical objectives and contents to participants. To ensure that the expectations of trainees are coherent with the learning objectives defined for the programme. Read more

Modules Contents and Objectives

IN BIOFORCE

1) Opening Sessions

Objectives: To introduce the pedagogical objectives and contents to participants. To ensure that the expectations of trainees are coherent with the learning objectives defined for the programme.

Contents: Bioforce presentation. Introduction of the learning programme and objectives.

2) Immersion Internship

Objectives: To facilitate group cohesiveness and participant involvement within the programme.
To make a detailed presentation of the components of the MSc in HPM.
To encourage a joint reflection about humanitarian and development issues.
Show awareness of its own strengths and limitations as a humanitarian programme manager.

Contents: Presentation, preparation and organization of the immersion internships. Discussion and group work on Humanitarian topics.

3) Framework of Humanitarian Aid

Objectives/Learning outcomes: To provide participants with thorough knowledge of the humanitarian sector and issues at stake: stakeholders, systems, coordination mechanisms, legal and ethical framework, Q&A initiatives and applications relating to programme management.

Contents: Humanitarian actors, systems and challenges. International humanitarian law, ethics & principles. Quality & Accountability initiatives, methods & practical tools.

4) Managing People & Organisations

Objectives/Learning outcomes: To enable participants to choose and apply appropriate tools to manage themselves, other people, and organisations involved in humanitarian programmes.

Contents: Strengthening organisational capacity. Change management. Quality & Accountability in people management. Creating & developing trust in diverse teams. HR processes : HR organisation, recruitment, performance management, staff development. How to lead: leadership, management & delegation. Managing team safety and security.

5) Managing Programmes & Projects

Objectives/Learning outcomes: To enable participants to choose and apply appropriate tools to manage all stages of the project cycle in humanitarian contexts.

Contents: Programme Cycle Management (PCM):

- Assessment & analysis
- Planning & implementation
- Monitoring & evaluation

Cross-cutting issues in PCM (participation, targeting...) Quality & Accountability in programme management.

6) Managing Finance & Funding

Objectives/Learning outcomes: To provide participants with the critical skills and confidence required to raise funds for humanitarian programmes, and to manage financial resources accountably.

Contents: Donors & donor strategies. Quality & Accountability in finance management. Budgeting & proposal writing. Funding strategies & opportunities. Key principles & concepts of financial management. Practical aspects of financial management.

7) Training of Trainers for Capacity Building in the Sector

Objectives/Learning outcomes: To provide participants with the appropriate methods & tools to develop, facilitate, monitor & evaluate capacity building activities.

Contents: Designing & implementing training activities.

8) Field Exercise

Objectives/Learning outcomes : Develop, through a field scenario-based exercise, operational capacity and autonomy of the trainees.

Contents : Within an operational framework, students will have to implement capabilities developed during the training period. The exercise is based on 5 days role play scenario. Students are placed in the position of aid actors in a context of humanitarian/emergency intervention. They have to implement several programs in the field on behalf of different NGOs. They operate in a complex emergency context where multiple players are involved.

IN ESC GRENOBLE

NB : For the ESC Students it is possible to follow “English track programme” described bellow or to follow a second semester in an English spoken abroad university.
For the other students, they must follow the “English track programme”.

1) Advanced Decision Techniques

Objectives/Learning outcomes: Good knowledge of quantitative tools for decision-making.

Contents: This course presents the main quantitative modelling and simulation tools to help in decision-making.

2) Strategy, Innovation and Entrepreneurship

This course focuses on the strategic choices: the decisions that shape the future of an organization. This course will address first the strategic choices that the manager must operate in an entrepreneurship environment (opportunity, business model design), then different options for development and growth patterns (growth internal / external growth, mergers and acquisitions, alliances).

3) Corporate Governance

Objectives/Learning outcomes: At the end of the course, the students:

- will know how to position and use concepts and techniques in finance, accounting, management control and law learnt during the common core subjects in a more global framework of analysis,
- will have learnt the legislation covering corporate governance,
- will be aware of the present developments in practice and the principal discussions concerning corporate governance,
- will be able to establish a diagnosis on the quality of a company's corporate governance.

Contents: It is essential for every manager to understand who determines the objectives of corporations and of other organizations, how they are governed and how their managers are incentivized and monitored. The course covers the following themes: value creation, the legal rules and the practices of company management(remuneration, ethics, social responsibility, governance "codes"), the legal rights and the behaviour of shareholders, the impact of financial markets on governance (shareholders activism, takeovers, LBOs). In addition the students have the opportunity to apply the main concepts and techniques of finance, accounting and management control to the case of a listed company.

4) Geopolitics

Objectives/Learning outcomes: At the end of the course, students will be able to:

- acquire the basics of a geopolitical culture allowing them to develop a reading list for current geopolitical and economic affairs,
- understand the geopolitical conditions for undertaking business in certain emerging and/or risk-laden geopolitical situations.

Contents: The object of this course is to allow students to acquire knowledge about geopolitical and economic affairs in certain zones and emerging and risk-related countries in the world. During the course, the following themes will be covered:

- the globalisation of the economy and its players, notably national States, and international and non-governmental organisations,
- geopolitical and economic analysis of certain countries and zones: Brazil, Russia, China, the Mediterranean and Africa,
- the problems of Afghanistan and Pakistan will also be discussed,
- Europe will be studied through analysis of the different themes mentioned above.

5) Global Marketing and Strategy

Objectives/Learning outcomes : Students will be able to:

- critically analyse and propose well-justified solutions to key Global Marketing Strategy issues.
- develop a Strategic Marketing plan to go global.

Contents: This module takes a decision-making perspective to Marketing Strategy issues, specifically in the global context.

The course will cover:

- Globalization decision and process,
- International market selection,
- International marketing research,
- International market entry strategies and expansion,
- Standardization versus Adaptation of 4 Ps.

6) Leadership and Responsible Management

Objectives/Learning outcomes: At the end of this course, students will:

- understand the organizational and managerial specificities of contemporary organizations,
- know about recent developments in organizational thinking relating to institutional theory, power and politics, routines, and organizational cognition,
- be able to reflect on the specific challenges to leadership and corporate social responsibility in contemporary organizations.

Contents: This course addresses key issues for understanding and managing contemporary organizations. It seeks to move beyond simple managerialist views by integrating recent developments in organizational thinking with the dual challenges of organizational leadership and corporate social responsibility. Topics covered in this course include institutionalized environments, innovation and entrepreneurship, social movements, networks and social capital, power and politics in contemporary organizations, organizational routines and decision making, sense making and cognition in organizations, and organizational change. Each topic will be introduced through case studies alongside theoretical readings, and each of the course sessions will discuss the consequences of these topics for both leadership processes and corporate social responsibility.
The course will be demanding in terms of class preparation, contribution and after-class work, and hopefully rewarding in terms of generating novel insights into contemporary organizational and managerial challenges.

Applied Research Project

During the whole training period, the students, divided into sub-groups of 2-3 students, work on a problematic related a strong issue in the humanitarian and development sector. It is an applied research which leads to a written report in English and its presentation before a jury composed by the tutor and the partner if possible and relevant. This applied research is an integral part of the training programme and it is monitored by a tutor.
The month of December will be specifically dedicated to work on this project.
During the second semester, even if students are abroad, they have to organize themselves to work on this project.
The grade given on this work will be included in the final transcript.

OBJECTIVE

To work as a team during the whole training period to sort out a humanitarian and/or development management issue.

This project will require:

- To write a report in English (20,000 – 25,000 words) which may remain confidential; it is possible to write a summary for the organisation in a foreign language if required. Students have to submit the final report to the tutor 15 days before the oral presentation. The deadline for the oral presentation is mid-november 2014 (15 November 2014);
- To write a case study-based summary;
- To prepare the oral presentation to the jury in English.

STUDENTS’ PROFILES

Students involved in this applied research are from the MSc in Humanitarian Programme Management delivered by ESC Grenoble and Bioforce.

EXPECTED RESULTS

- A specific humanitarian and/or development management issue is defined.
- A bibliographical research is consolidated.
- Concrete proposals and outlooks are drawn up.
- A critical analysis is provided.
- Relevant recommendations are made.

The definition of the issue has to be validated by both Bioforce and ESC Grenoble. A specific deadline will be communicated by Bioforce.

Rigor in diagnostic, analysis and facts interpretations, as well as recommendations will be required.
This work aims to support organizations in their development and functioning. In this way, we expect students to be creative (while being realist) and to practice benchmarks. This research work is neither an operational mission nor a counseling one. The report presented is not an internship report.

EXEMPTION OF “GRAND MÉMOIRE” – FOR THE ESC STUDENTS

Usually, ESC Grenoble students have to write a “Grand mémoire” during their enrollment. As they already write a specific applied research report, they benefit from an exemption of this “Grand mémoire”.

Assignment

Students from the MSc in HPM have to realize an assignment, after their study period, during 20 weeks at least. The presentation before a jury must be done before the 15th of November 2014.
The aim of this assignment is to reinforce students’ autonomy and to further develop their skills as a humanitarian programme manager in the humanitarian and development sector.

Students are to submit to Bioforce assignment terms of reference in order to be validated. As a second step, the ESC Grenoble will give the final validation.

The ESC Grenoble is in charge of all administrative issues regarding the assignment.

The evaluation process for the assignment is the following:

- A written report including :
- a context (region, country, organisation, programme, …) presentation,
- a description and analysis of the objectives and results obtained,
- an analysis of the key challenges faced during the assignment,
- an analysis of the impact of the training period on their professional capacities as a humanitarian programme manager.

- An oral presentation before a jury.

The final mark will be a global mark including the written report and the oral presentation.

Assessment Process

ASSESSMENT PROCESS IN BIOFORCE

The assessment process includes the following exams:

- An individual written exam for the “Managing people and organizations” module. This exam may consist of theoretical questions, exercises or case study linked with the module’s learning outcomes. The student has to obtain a minimum of 10 out of 20 to successfully complete the module.
- An individual written exam for the “Managing programmes and projects” module. This exam may consist of theoretical questions, exercises or case study linked with the module’s learning outcomes. The student has to obtain a minimum of 10 out of 20 to successfully complete the module.
- An individual written exam for the “Managing finance and funding” module. This exam may consist of theoretical questions, exercises or case study linked with the module’s learning outcomes. The student has to obtain a minimum of 10 out of 20 to successfully complete the module.

ASSESSMENT PROCESS IN GRENOBLE ECOLE DE MANAGEMENT

It is a two-stage process:

- For each module, a continuous assessment is managed by a Grenoble Ecole de Management’s permanent professor.
- For some modules, an exam is organized.

To be successfully completed, the student has to obtain a minimum of 10 out of 20. Each module’s responsible define the share of continuous assessment and exam.

CONDITIONS OF GRADUATION

The diploma is delivered to the students:

- Having obtained a minimum of 10 out of 20 to all exams;
- Having produced and supported the presentation of a report demonstrating analysis and synthesis skills.

Admission

To participate to the MSc in Humanitarian Programme Management, the prerequisites are the following:

- Master 1 level or Bachelor’s degree (four years of higher education after baccalauréat) for applicants justifying at least 1 year of professional experience as a project coordinator, administrator or logistician in international solidarity
- By special dispensation, a L3 (licence) level or Bachelor’s degree (three years of higher education after baccalauréat) for applicants justifying an outstanding work experience (more than one year).
- have an English language proficiency level of B2 (according to European language levels - Self Assessment Grid).
- Have a profesional project in programme management (Programme coordinator, Logistics coordinator…)

Please note that these prerequisites provide a base for any validation of the application form. The final decision lies with the Coordinators of the training programme.”

Read less
Whether you're looking for a broad-ranging business degree or the ability to become a specialist in key business discipline, the Master of Business will develop your professional expertise and advance your business career. Read more
Whether you're looking for a broad-ranging business degree or the ability to become a specialist in key business discipline, the Master of Business will develop your professional expertise and advance your business career.

An innovative and industry-focused course, the Master of Business has a strong emphasis personal development, ethics, corporate governance and social responsibility. A key feature of the course is the personal development program which will enhance your leadership and interpersonal skills and transform the way you operate in professional contexts.

The course addresses all facets of business development, and provides a solid foundation for those without business experience. It connects research and practice to make you a stronger communicator and problem-solver, and will broaden your understanding of management and business ethics.

As part of the course you can build your knowledge and extend your expertise in one of the following specialisations:

Business, ethics and society
Commercialisation
Information technology
Law and responsible business
Managing human capital
Marketing
Project management
Quantitative business analysis
Risk management
Supply chain management
Sustainability

The flexible structure of the Master of Business enables you select units that give you a broadly applicable business qualification. Alternatively, you may prefer to choose one of the listed specialisations, effectively tailoring your studies to your particular interest or career aspirations.

The strong reputation of the Master of Business means our graduates are highly sought after, both in Australia and overseas. Graduates of the course pursue careers across the spectrum of business, including roles in human resources, management, marketing, science and commercialisation, project management, risk management or logistics.

Visit the website http://www.study.monash/courses/find-a-course/2016/business-b6005?domestic=true

Overview

Please select a specialisation for more details:

Business, ethics and society

Business, ethics and society investigates and activates the role of business as ethical and social leaders. The specialisation equips students with an understanding of the theoretical foundations and practical issues of internal and external ethical and societal forces that businesses face, respond to and activate. Business, ethics and society especially develops students' critical engagement and leadership capabilities to manage diversity, inclusiveness, and work and life. These capacities are developed within a strong context of ethics and corporate responsibility, and the domestic and international environments in that organisations operate. The specialisation prepares students for active managerial roles within organisations in the private, public and not-for-profit sectors.

Commercialisation

Commercialisation is the process or cycle of introducing a new product or production method into the market. The commercialisation process or cycle can be applied in many different contexts, including: art, design, and architecture; arts and humanities; business and economics; education; engineering; information technology; law; medicine, nursing and health sciences; pharmacy and pharmaceutical sciences; and science and technology. The specialisation provides a comprehensive business-focused setting to help students develop the necessary business and entrepreneurial acumen and commercialisation knowledge to succeed. Commercialisation especially develops students' new venture finance, patenting, innovation, and wealth pathways skills and knowledge. The specialisation prepares students, particularly facilitated by the commercialisation project, for commercialisation and entrepreneurial roles within organisations in the private, public and not-for-profit sectors.

Information technology

The information technology discipline allows students to build upon the core program with six units dealing with current practices and emerging strategies for the application of information technology in business management. Students are introduced to management of the creation, storage, recall and dissemination of business records within organisation-wide frameworks and they will gain a high-level of understanding of the processes of project management. Units are taught by the Faculty of Information Technology.

Law and responsible business

The fortunes of a business can quickly turn around if it does not pay proper attention to the laws that regulate its organisation and activities. The law provides the framework for all aspects of business from the internal management of business organisations to their relationships with clients, consumers and the public. The units in this specialisation provide students with an understanding of the legal framework within which business operates and the fundamental laws that regulate business activities and transactions, with particular emphasis on how legal and social responsibility considerations should impact business decision-making.

Managing human capital

Managing human capital is the recognition of people as valuable contributors, and the systems and operations for investing in people to enhance their contributions. The specialisation equips students with an understanding of the theoretical foundations and practical issues of managing and developing people within an international context. Managing human capital develops students' strategic and operational people management knowledge and skills, particularly for diverse, inclusive, and productive workplaces. This specialisation prepares students for careers in human resource management, industrial relations, consulting, public sector management, and general people management roles.

Marketing

Marketing is a fun, dynamic, complex activity (and discipline) that focuses on providing value to both organisations and consumers. Very simply, marketing is about matching what an organisation has (or can do) with someone who wants it. Marketing is about selling, it is about advertising, but it also so much more. The study and practice of the 'so much more' is what makes marketing so interesting!

In today's dynamic and global business environment, marketing permeates all areas of operations and forms an integral element of business growth and achievement. Highly qualified, innovative and international marketing practitioners, supported by well researched and pertinent marketing knowledge, are increasingly in demand.

Project management

A project is a collection of activities and resources undertaken to achieve planned objectives, which could be defined in terms of time, quality and cost or economic outcomes. Project management is the process of ensuring defined goals are achieved in relation to a project. This specialisation provides graduates with the knowledge, technology and processes employed in project management that allow them to pursue such professional roles in industry and government. This specialisation will provide graduates with an understanding and ability to apply the theories and concepts of project management, and will assist in a variety of roles in industry or government. Graduates will be able to analyse requirements for the management of given projects, identify the applicable methods and develop innovative project management strategies and processes.

Quantitative business analysis

Students will be provided with advanced quantitative skills required to carry out statistical analysis in business, economics and finance. They will also develop skills to report on the findings of their quantitative analysis.

Risk management

Risk is defined by AS/NZS ISO 31000: 2009 as 'the effect of uncertainty on objectives'. The management of risk is an evolving discipline that builds on current knowledge in a diverse range of activities. The risk management specialisation focuses on operational and financial risk in today's commercial world. It provides extended skills in the strategic and process applications of risk management and prepares for the increasingly complex risk management issues faced in many areas of business and government. It prepares graduates for roles that are required to address business, insurance and financial risk. The range of units undertaken will greatly assist those seeking employment in managerial positions where risk management is an expanding field of practice.

Supply chain management

Supply chain management involves the coordination of people, organisations, technologies and processes to ensure optimal supply of products and services. This specialisation develops students' capacity to design and optimise supply chains, and to manage them to achieve strategic business outcomes. Supply chain management enhances students' skills and knowledge in innovation and improvement, business optimisation, services and operations management, and sustainable operations management. The specialisation prepares students for careers in supply chain management roles in the private, public and not-for-profit sectors.

Sustainability

The sustainability specialisation focuses on current practices and emerging strategies for improving corporate sustainability, particularly in social, economic and environmental domains. The units within this specialisation will provide insights into sustainability from the perspectives of governance, ethics and management. This specialisation is suited to those who want to enhance their knowledge and skills in both business and sustainability issues and who seek employment in environmental governance or corporate sustainability management. It will also suit those who want to enable organisational and individual change in support of sustainability.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/business-and-economics

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/business-b6005?domestic=true#making-the-application

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

PROGRAMME OVERVIEW

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:
-Communications Networks and Software
-RF and Microwave Engineering
-Mobile Communications Systems
-Mobile and Satellite Communications
-Mobile Media Communications
-Computer Vision, Robotics and Machine Learning
-Satellite Communications Engineering
-Electronic Engineering
-Space Engineering
-Nanotechnology and Renewable Energy
-Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

PROGRAMME STRUCTURE

This programme is studied full-time over 24 months and part-time over 60 months. It consists of ten taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-Molecular Electronics
-RF Systems and Circuit Design
-Internet of Things
-Nanofabrication and Characterisation
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VHDL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering Optional
-Nanoelectronics and Devices
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-Engineering Professional Studies 1 (with industrial Placement)
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

PARTNERS

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:
-Brno University of Technology, Czech Republic
-University of Prague, Czech Republic
-Universität di Bologna, Italy
-Universität Politècnica de Catalunya, Barcelona, Spain
-Universita' degli Studi di Napoli Federico II, Italy

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Use of quantitative methods for problem solving. Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Primary and Secondary PGCEs are "Outstanding" (Ofsted, 2015). All our Education courses have been developed in collaboration with Partnership schools and the National College for Teaching and Leadership (NCTL). Read more

About the course

Our Primary and Secondary PGCEs are "Outstanding" (Ofsted, 2015).

All our Education courses have been developed in collaboration with Partnership schools and the National College for Teaching and Leadership (NCTL). This ensures not only the highest possible quality of provision, but also relevance in reflecting national and school-level priorities in Education.

Aims

The Brunel Science Postgraduate Certificate (PGCE) is a M-level course with 60 credits that can contribute to further Master's level study in Education, subject to approval.

The course will equip you with the knowledge, understanding and skills necessary to teach science and the ability to:

Demonstrate an understanding of the vital role of the teacher and the school in ensuring excellence in the educational experiences of young people

Undertake professional practice which enables you to evidence the Teachers’ Standards which facilitate the award of Qualified Teacher Status

Understand the relationships between Education and science within current national and government frameworks, and critically reflect on the impact of these in the work of schools and the educational experiences of young people

Recognise the contribution that science as part of the whole school curriculum makes to the development of the individual learner and groups of learners

Think critically about what it means to be scientifically educated and how this informs curriculum planning and design within the subject area

Apply a thorough knowledge and understanding of science (Physics) National Curriculum to the planning of curriculum experiences for pupils in school

Demonstrate competence and confidence in your ability to teach across the contexts for pupil learning in the mathematics National Curriculum range and content, applying principles of continuity and progression

Use subject knowledge and relevant course specifications to plan and deliver the 14-16 curriculum including examination and vocational courses

Demonstrate an understanding of the subject knowledge and specification requirements for the 16-19 curriculum

Utilise a range of teaching strategies to meet the identified learning needs of a wide range of pupils

Utilise a range of resources, including information and communication technology, to enhance pupil learning in physics

Understand the importance of safe practice and safeguarding and apply these in working with young people both within and beyond lessons

Use a wide range of class management strategies to maximise pupil learning

Understand the principles of inclusion and apply these to ensure equality of opportunity for all pupils in the subject area

Understand national frameworks for assessment within the subject area and use these to support the recording and analysis of data, and the subsequent use of this to plan the next phase of learning

Raise the status of the subject area by demonstrating high standards of professionalism at all times

Understand the crucial role of professional learning for the teacher, the pupils and schools.

Course Content

The PGCE is an intensive programme, which combines an exploration of principles and methods of teaching and learning with practical school-based teaching placements. It lasts for 36 weeks from early September to late June.

The Secondary programme prepares you to work with pupils aged 11-16. At the heart of our programmes is a vision that our student teachers’ teaching will impact positively on pupil progress over time in schools and that our Partnership activities with schools will contribute to school improvement. We aspire for all our students to be outstanding teachers.

The PGCE Secondary courses are structured around three modules, which share a generic General Professional Education (GPE) component. The GPE programme involves an enquiry based learning approach, which combines taught sessions with independent professional learning activities (PLAs). These PLAs require independent research, which is either school-related or school-based. The three PGCE modules are:

1. Education Studies I
This module covers the following GPE themes:

Professionalism, values and reflective practice;
Safeguarding, child protection and e-safety;
Understanding curriculum and the National Curriculum;
Supporting learners, learning and effective behaviour management;
Inclusive education, with a specific focus on supporting pupils with SEND and SEBD;
Effective planning and teaching to promote pupil progress;
Assessment and its role in promoting effective learning.

You will also focus on teaching and learning issues of particular concern to your phase or subject specialism.

2. Education Studies II
This module covers the following GPE themes:

Applying for your first post;
Understanding data analysis to support effective teaching and learning;
Behaviour for learning and the wider professional responsibilities of the subject teacher;
Inclusive education, with a specific focus on supporting pupils with English as an Additional Language, pupils receiving the Pupil Premium and able pupils;
Safeguarding with a focus on the Prevent and Channel national strategy and bullying and homophobic bullying.

You will also continue to focus on teaching and learning issues of particular concern to your phase or subject specialism.

3. Education Studies III
This module focuses specifically on supporting student teachers to make an effective transition into their first post and examines the following themes in GPE:

Preparing for induction and the professional learning action plan for your first post;
Pathways into leadership in education;
Learning outside the classroom;
Contributing to the wider aspects of the formal and informal curriculum and your wider professional role as a teacher.

Subject Specific Course Content

As a qualified science teacher you may be required to teach National Curriculum general science to Key Stage 4, as well as your particular specialism to ‘A’ level and beyond. To this end, the course aims to facilitate your transformation into a well-educated, well-trained, confident and motivated science educator.

Along with English and mathematics, science is one of the three core subjects of the National Curriculum and since all pupils have to study a broad, balanced curriculum in science there is a demand for well-qualified and skilled science teachers. Most pupils entering secondary school are excited at the prospect of work, for the first time in a fully equipped laboratory, and secondary school science teachers have to build upon and sustain this interest for the subject.

To meet this challenge we need capable, skilled and enthusiastic teachers who are able to motivate young people and lead them to discover the wonders of science.

School Experience

School-based professional learning is a compulsory element of all programmes leading to a recommendation for QTS. The course involves the statutory requirement of at least 120 days of school experience in the form of block school placements undertaken in at least two different contexts.

Our current partnership schools are mainly located in the West London area and adjoining Home Counties. We have developed close links with a number of very good schools over a number of years, and offer placements within carefully chosen schools that provide an appropriate professional learning experience. The ethnic and cultural diversity of the schools we work with is a distinctive aspect of our provision and we are equally proud of the diversity of our student teacher cohort, who reflect the communities in which many of them go on to work as teachers.

We also offer student teachers the opportunity to experience placements in alternative settings, which include special schools, Pupil Referral Units (PRUs), young offenders institutions. This further demonstrates our commitment to preparing teachers to work with young people in a diverse range of educational contexts.

You will be allocated a school-based mentor, selected for their experience and expertise, who is there to help you develop and learn while you are on placement. The importance of this person should not be underestimated. Teaching is a very challenging profession and with the help of your school-based mentor and your University tutor we aim to make sure that you have support every step of the way, encouraging reflection and development.

Disclosure and Barring Service (DBS), Childcare Disqualification and Prohibition Orders

As an accredited provider of Initial Teacher Education we have to have regard to the Department for Education’s statutory guidance Keeping Children Safe in Education, when carrying out their duties to safeguard and promote the welfare of children. We ensure that all student teachers have been subject to Disclosure and Barring Service (DBS) criminal records checks, including a check of the children’s barred list. The Department for Education has published statutory guidance on the application to schools of the Childcare (Disqualification) Regulations 2009 and related obligations under the Childcare Act 2006.

We undertake our responsibility to ensure that the student teachers are not, therefore, disqualified from childcare or that the student teacher has obtained a childcare disqualification waiver from Ofsted. We also check that candidates are not subject to a prohibition order for teaching issued by the Secretary of State.

Teaching

We adopt an enquiry-based learning approach in our PGCE Secondary courses where students are encouraged to research and investigate a range of broad and subject specific educational themes and issues and bring their findings back for discussion in interactive lectures, workshops and seminars. These themes and issues address national, regional and partnership priorities as well as specific areas for investigation with the subject area.

Assessment

Postgraduate Certificate in Education (PGCE)
The PGCE Secondary programme carries 60 Master’s Level credits and requires you to successfully complete three formally assessed pieces of academic work during the year.
All of these assessments also require an accompanying portfolio of evidence.
The Master’s Level credits provide an excellent foundation for future academic and professional study.

Qualified Teacher Status (QTS)
Alongside the PGCE academic award for your programme, you will also be assessed for the recommendation of QTS. In order to be recommended for QTS you are required to demonstrate that you have met the Teachers’ Standards (DfE, 2013) in both the University and in school and alternative education settings. All aspects of the programme are designed around you being able to demonstrate that you are meeting the Teachers’ Standards.

Part 1 of the Teachers’ Standards require you to:

Set high expectations which inspire, motivate and challenge pupils
Promote good progress and outcomes by pupils
Demonstrate good subject and curriculum knowledge
Plan and teach well structured lessons
Adapt teaching to respond to the strengths and needs of all pupils
Make accurate and productive use of assessment
Manage behaviour effectively to ensure a good and safe learning environment
Fulfil wider professional responsibilities
(Teachers’ Standards, DfE, 2013)

Part 2 of the Teachers’ Standards require students to demonstrate the highest standards of personal and professional conduct.

As the PGCE is a professional course, 100% attendance is an expectation.

Recommendation for Qualified Teacher Status will be made by the Secondary PGCE Examination Board for all those who successfully demonstrate the Teachers’ Standards as shown in the requirements for University and school-based work.

Special Features

As a leading centre of education and with roots in teacher education dating back to 1798, we are able to provide first class teacher education that is internationally recognised.

A Brunel PGCE is a recognised symbol of quality teacher education which accounts for our high employment rates.

At the heart of our programmes is a vision that our student teachers’ teaching will impact positively on pupil progress over time in schools and that our partnership activities with schools will contribute to school improvement. We aspire for all our students to be outstanding teachers.

You will benefit from an established partnership between Brunel and a variety of educational institutions and local schools. Brunel education degrees offer multicultural placement learning opportunities. For example, our location in West London and our diverse and well-established schools network means you will gain highly-valued placement learning experiences in vibrant multicultural schools.

Beyond ITE, for early career teachers we offer the Masters in Teaching (MAT), where students can utilise their 60 PGCE Masters level credits to continue their postgraduate studies part-time, whilst also meeting the requirements outlined for Newly Qualified Teachers (NQTs) and early career development. Where schools have qualified for Enhanced Partnership status with Brunel University London, NQTs in those schools have access to the first year MAT module for free, illustrating our commitment to supporting NQTs into and through their first year of teaching. We also offer a Masters in Education (MAEd), a Doctorate in Education (EdDoc) and PhD postgraduate routes through the Department of Education. This continuum of provision ensures a commitment to teacher education and professional learning at all stages and the growing community of professional practice strengthens our Partnership.

Staff are nationally and internationally recognised for their research, and liaise with government and other agencies on education policy issues. The Department of Education is host to a number of research centres, including the Brunel Able Children’s Centre. The process of learning is informed by cutting-edge research by staff in the strands of: Science, Technology, Engineering and Mathematics (STEM) and Pedagogy and Professional Practice (PPP).

You can take advantage of free access to our excellent University Academic Skills service, ASK.

We have an award winning Professional Development Centre.

Our library has been nominated for national awards for its outstanding provision.

We have on-site volunteering opportunities through our Brunel Volunteers provision.

Our Disability and Dyslexia Service team have an excellent track record of support for students.

Our Union of Brunel Students provides you with a range of additional support and a broad range of extra-curricular opportunities and social events.

There is excellent University-wide access to PCs and the Internet, as well as free loan of media equipment and music/recording studios, and web space on the University server.

Read less
If you want to develop a specialist career in multinational enterprises, this course offers high-level strategic learning in a range of areas. Read more
If you want to develop a specialist career in multinational enterprises, this course offers high-level strategic learning in a range of areas.

This course will provide you with the specialist knowledge to manage and adapt supply chains, and pioneer logistics in a growing field of industry. If you are looking to refine your skills or further progress within the profession, this course will enable you to gain a better understanding of how to apply strategic thinking in senior decision-making roles.

The University of South Wales is a preferred provider of professional and Masters level qualifications for the Chartered Institute of Logistics and Transport (CILT) and the Chartered Institute of Purchasing and Supply (CIPS). The course is also accredited by the Institute of Operations Management (IOM). These accreditations highlight the industry-level standards embedded within the course and ensure your learning can be applied and inform best practice in the modern workplace.

Upon successful completion of this course, you will gain MCIPS (in addition to three years’ work experience) and MCILT (with an average mark of 50% across the course with work experience, which will be assessed by the professional body). You are also set to gain from further exemptions from the Institute of Operations Management.

This course includes field trips that enable you to understand the practical implications of logistics and supply chain management in a variety of industrial settings (additional costs may apply).

See the website http://courses.southwales.ac.uk/courses/492-msc-international-logistics-and-supply-chain-management

What you will study

There are two pathways available to students studying the MSc International Logistics and Supply Chain Management course. Modules of study for each pathway depend upon whether students complete a 60 Credit Dissertation or a 20 Credit management project. The normal mode of study will be to undertake the 20 credit management project route.

Route One

- Sustainable Supply Chain Management (20 credits)
The module will explore the strategic need, role and value for logistics, purchasing and supply chain research within organisations in order to achieve sustainable supply chain networks in the future. Examining the major changes that are currently affecting logistics and supply chain strategies and how management in the future will be influenced by new structures, reconfiguration of material and information flows, the role of technology in evolving supply chains and the key issues in managing this transition process. This module aims to provide an integrative view of the complex inter- and intra-organisational dynamics which contribute to sustained organisational success and maximisation of competitive advantage. Exploring the sustainable supply chain from a global and local perspective.

- Commercial Relationships (20 credits)
This module explores the
 theory and practical application that underpins the processes involved in
formation of commercial agreements and relationships with external organizations.The module will examine the
current and relevant approaches to achieve an effective commercial agreements
by identifying with and critically evaluating the activities and documentation involved; the legal processes and terms and the main contractual arrangements required for a commercial agreements and relationship with customers and / or suppliers.

- Strategic Operations Management (20 credits)
This module aims to provide an appreciation of operational processes, techniques, planning and control systems with reference to both manufacturing and service industries from a qualitative and quantitative perspective.

- Globalisation of Logistics and Supply Chain Management (20 credits)
This module aims to identify the key drivers and trends that are increasing the globalisation of industries, markets and sectors, including the role of the SME. Also explore the structure and management and main activities of a global and international logistics and supply networks.

- Strategic Systems Thinking (20 credits)
This module aims to develop and enhance the skills and knowledge explored to enable participants to actively consider how they may personally make a difference in the different strategic contexts which may confront them. In particular, students will focus on innovative practices and an inclusive social approach to business and organisational development.

- Economies, Markets and Decision Making in International Contexts (20 credits)
The module aims to develop the ability to analyse the macroeconomic and micro frameworks within which strategic decisions are made. To develop the ability to solve problems which relate to management decision-making in the context of changing economic and market conditions.

- Project Management and Consultancy Skills (20 credits)
This module aims to critically explore and examine project management and consultancy skills in a business and supply chain context. Enabling students to understand and explore relevant and key project management techniques and principles and the impact that they have on operations, supply chain and business processes. Students will be able to use consultancy skills to reflect, monitor and evidence the ‘management of self’ in a marketing and business context.

- Research Methods (20 credits)
The module aims to develop your understanding and research skills in a management and/or professional development context; critically reviewing a range of research methodologies and methods of providing management information for decision making.

- Management Project (20 credits)
The module explores the concept, theories and practice of project management and consultancy skills. This module builds on the research methodology skills and requirements of critical debate established throughout the program and shows how these key skills are vital within a business context to ensure rigorous decision making. It examines combining the traditional research skills with project management and consultancy skills to enable an evidenced based approach to problem solving within an organisation.

Route Two

- Sustainable Supply Chain Management (20 credits)
The module will explore the strategic need, role and value for logistics, purchasing and supply chain research within organisations in order to achieve sustainable supply chain networks in the future. Examining the major changes that are currently affecting logistics and supply chain strategies and how management in the future will be influenced by new structures, reconfiguration of material and information flows, the role of technology in evolving supply chains and the key issues in managing this transition process. This module aims to provide an integrative view of the complex inter- and intra-organisational dynamics which contribute to sustained organisational success and maximisation of competitive advantage. Exploring the sustainable supply chain from a global and local perspective.

- Strategic Operations Management (20 credits)
This module aims to provide an appreciation of operational processes, techniques, planning and control systems with reference to both manufacturing and service industries from a qualitative and quantitative perspective.

- Globalisation of Logistics and Supply Chain Management (20 credits)
This module aims to identify the key drivers and trends that are increasing the globalisation of industries, markets and sectors, including the role of the SME. Also explore the structure and management and main activities of a global and international logistics and supply networks.

- Strategic Systems Thinking (20 credits).
This module aims to develop and enhance the skills and knowledge explored to enable participants to actively consider how they may personally make a difference in the different strategic contexts which may confront them. In particular, students will focus on innovative practices and an inclusive social approach to business and organisational development.

- Economies, Markets and Decision Making in International Contexts (20 credits)
The module aims to develop the ability to analyse the macroeconomic and micro frameworks within which strategic decisions are made. To develop the ability to solve problems which relate to management decision-making in the context of changing economic and market conditions.

- Research Methods (20 credits)
The module aims to develop your understanding and research skills in a management and/or professional development context; critically reviewing a range of research methodologies and methods of providing management information for decision making.

- Dissertation in Purchasing, Logistics, Supply Chain (60 credits)
You’ll be required to produce an extended piece of written postgraduate research, involving a significant piece of student-directed learning, based on a detailed investigation into a key area.

Learning and teaching methods

You can study the MSc International Logistics and Supply Chain Management full-time, part-time or online. The full-time programme starts in September and February.

Full-time: Full-time students study Stages One and Two in an academic year, followed directly by the dissertation. Part-time students usually complete one stage each academic year followed by the dissertation.

Part-time: We offer part-time weekend delivery, where you come to the University for one weekend every six weeks. For those who want to tailor a programme that suits their needs, we can be flexible in terms of when, where and how often lectures take place. This is useful for organisations and associations.

Online: The University of South Wales also offers online delivery through our partners the Chartered Institute of Logistics and Transport (CILT). Please note that CIPS accreditation is not available through our online course.

Work Experience and Employment Prospects

Graduates are able to demonstrate specialist knowledge to help them manage and adapt their global supply chains to respond to the dynamic needs of 21st century business. You will also be able to lead logistics and supply chain management in a growing field, and develop a specialist role in multinational enterprises. The additional professional accreditations associated with this Masters course will enable you to make a significant step in developing your professional career moving forward.

Assessment methods

Part-time students usually complete one stage each academic year followed by the dissertation, which can be completed in nine months.

Read less
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols. Read more
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols.

This programme benefits from the research that experts in our 5G Innovation Centre are undertaking to lead the world in the race to the next generation of communications networks.

PROGRAMME OVERVIEW

Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions.

Some of our students undertaking their project are able to work on one of our wide range of testbeds, such as internet technologies, wireless networking, network management and control, and internet-of-things (IoT) applications.

We also have specialist software tools for assignments and project work, including OPNET, NS2/3, and various system simulators.

PROGRAMME STRUCTURE

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Object Oriented Design and C++ (+Lab)
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Speech and Audio Processing and Recognition
-Internet of Things
-Applied Mathematics for Communication Systems
-Data and Internet Networking Compulsory
-Advanced Signal Processing
-Mobile Communications B
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced 5G Wireless Technologies
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin communications, networks and software
-Be able to analyse problems within the field of communications, networks and software and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within communications, networks and software
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within electronic and electrical engineering that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Workshop and laboratory skills. Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard. Read more
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard.

The Masters in Satellite Communications Engineering is a leader in Europe in equipping students with the necessary background to enter the satellite industry or to continue on to a research degree.

PROGRAMME OVERVIEW

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Space Dynamics & Missions
-Space Systems Design
-Antennas and Propagation
-Principles of Telecommunications & Packet Networks
-Satellite Communications Fundamentals
-RF Systems & Circuit Design
-Data & Internet Networking
-Advanced Guidance, Navigation & Control
-Launch Vehicles & Propulsion
-Network & Service Management & Control
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Standard Project

FACILITIES, EQUIPMENT AND SUPPORT

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin satellite communications engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within satellite communications engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
See the department website - http://saunders.rit.edu/graduate/mba_program.php. The master of business administration degree provides students with the capabilities for strategic and critical thinking needed for effective leadership in a global economy where creative management of both people and technology is vital. Read more
See the department website - http://saunders.rit.edu/graduate/mba_program.php

The master of business administration degree provides students with the capabilities for strategic and critical thinking needed for effective leadership in a global economy where creative management of both people and technology is vital. The curriculum begins with a solid grounding in the functional areas of business and combines that foundation with the flexibility that allows students to specialize in one or two areas of expertise. In the classroom, students learn the latest theories and concepts, and how they can be immediately applied to solve problems in the workplace.

Plan of study

The MBA program requires 48 credit hours and consists of 16 courses, 11 of which are devoted to core functional areas and five available in concentration areas and as electives.

- Concentrations

An MBA concentration is a sequence of three courses in one discipline, giving you in-depth knowledge in that subject matter. In addition to the program's core courses, at least one area of concentration must be selected to complete the MBA program.

Our most popular MBA concentrations are featured below. Customized concentrations can also be created that leverage graduate courses offered at Saunders, as well as the other RIT colleges, providing a wide array of disciplinary focus areas. While several examples are provided, many possibilities exist. Students may also elect to complete a second concentration, if they choose. A graduate advisor can assist in developing a customized plan of study.

- Accounting

Designed for students planning to enter corporate accounting, this concentration is also an excellent complement to a concentration in finance or management information systems.

- Entrepreneurship

The entrepreneurship concentration is designed to enable students to recognize and commercialize attractive business opportunities—either by new independent ventures or by established firms seeking growth or rejuvenation. It involves integrating all functions of business (marketing, innovation, finance, accounting, etc.) within one coordinated value-creating initiative.

The concentration requires an applied entrepreneurial learning experience that may be satisfied through either the Field Experience in Business Consulting (MGMT-753) course or an approved commercialization project. These projects may involve students developing their own businesses or working with RIT incubator companies, local start-up firms, or RIT multidisciplinary commercialization projects.

- Environmentally sustainable management

With a goal of familiarizing students with environmentally sustainable business practices, this concentration is attractive to those with an overall interest in understanding how firms can manage social and political demands for more environmentally sustainable products and operations. It may be of particular interest to those students in industries with a significant environmental impact such as the automotive, chemical, energy, transportation, or agricultural industries, where environmental issues are central to operational and strategic decision making.

- Finance

This concentration is designed to provide a foundation of knowledge in finance and allow students to choose courses appropriate for a career in investments or corporate finance. Students interested in investments will acquire advanced skills in securities evaluation and portfolio management. Those interested in corporate finance will acquire advanced skills in budgeting, planning, global financing and operations, and corporate risk management.

- International business

This concentration prepares graduates for today's global business environment. Regardless of size, nearly all enterprises operate globally: sourcing, producing, researching, and marketing worldwide. Suppliers and competitors are not only across the street, they are around the globe. Balancing the needs of local, regional, and national communities--and the benefits attained from global competition and cooperation--requires an understanding of the international dimensions of business. Managers and professionals must be able to think, market, negotiate, and make decisions designed for the diversity, complexity, and dynamism that are the hallmarks of global business.

- Management and leadership

Managers need to combine effective leadership with analytical reasoning. The management and leadership concentration provides students with the leadership skills needed to be successful managers in business, nonprofit, and public organizations. Students develop the essential analytical and decision-making skills for today's rapidly changing world. They learn why change is difficult, when to initiate change, and how to introduce and manage change in the workplace. These courses also prepare students for the demands of managing people and projects.

- Management information systems

This concentration enhances students' understanding of modern information systems. It was designed for students who may not have a background in computers or information systems.

- Marketing

The overall process of entering markets, creating value for customers, and developing profit for the firm are the fundamental challenges for today's marketing manager. Effective marketing must consider the target audience, along with the changing business environment and competitive pressures of technological and global challenges. Additionally, digital media, the Internet, and big data continue to drive the development of our global marketplace. Digital marketing is evolving quickly creating an enormous need to understand the implications of these shifts for strategic initiatives in marketing and advertising.

- Operations management and supply chain management

This concentration focuses on providing the knowledge to assist in developing, and implementing, efficient supplier systems in order to maximize customer value. Supply chain management is focused on the coordination of the associated processes required both within a business, as well as across businesses/suppliers, to deliver products and services - from raw materials to customer delivery. In addition to courses covering project management, quality control, process improvement and supply chain management, additional electives allow students to broaden their knowledge base across other relevant operations and supply chain management functions.

- Product commercialization

This concentration targets students who are interested in developing expertise in managing the marketing-related activities required to move new products and services through preliminary business and development stages to a successful launch. The commercialization of new corporate offerings is increasingly important as product life cycles get shorter.

- Quality and applied statistics

This concentration is for students interested in studying the technical aspect of managing quality (i.e., statistical quality control). Students gain an understanding of the basics of statistical process control, quality improvement, acceptance sampling, and off-line quality control techniques such as the design of experiments.

- Technology management

In a constantly changing environment, the ability of an organization to innovate and renew itself is critical if it is to survive and prosper. Technology managers, who are typically responsible for the innovation and application of new technology, are central to the long-term strategy and success of their companies. To manage these processes well, managers need to understand both business and technological perspectives. Co-op or internship experience in high-technology settings may be helpful to students pursuing a specialty in technology management.

- Customized concentration options

In addition to the above concentrations, MBA students may create a customized three-course concentration utilizing graduate courses from Saunders and other RIT colleges. Some examples are listed below, while additional options may be pursued on a case by case basis. To create a customized concentration the approval of a Saunders College graduate advisor is needed, and course prerequisites may apply.

- Communication and media technologies

Communication, and the technologies for message creation and dissemination, is at the center of dramatic economic, social, and cultural changes occurring as a result of technological development and global connectedness. This concentration, offered by the College of Liberal Arts, prepares students for careers as communication experts in commerce, industry, education, entertainment, government, and the not-for-profit sector.

- Health systems administration

Specifically designed for students employed in the health care environment, this concentration, offered by the College of Applied Science and Technology, introduces up-to-date, industry-relevant content that is continually developed in response to the changing health care environment. All courses in this concentration are offered online.

- Human resource development

The field of human resource development has grown in both size and importance over the last decade, leading to a higher demand for educated and skilled human resource professionals. This concentration, offered by the College of Applied Science and Technology, provides education in training, and career and organizational development.

- Industrial and systems engineering management

Organizations need individuals who possess a blend of technical and business skills, as well as the integrated systems perspective needed to commercialize complex products and services. This concentration, offered by the Kate Gleason College of Engineering, may be significantly interdisciplinary.

- Information technology

Corporations are aware of the cost savings and performance improvement possible when information technology is applied in a systematic manner, improving organizational information flow, employee learning, and business performance. Information technology includes a mixture of computers and multipurpose devices, information media, and communication technology. Students may choose from the following areas of specialization: Web programming/multimedia, software project management, programming, or telecommunications. This concentration is offered by the B. Thomas Golisano College of Computing and Information Sciences.

- Print media

Leadership and management in the print media industry require an understanding of the cutting-edge technology and emerging markets to articulate a corporate vision that encompasses new opportunities and directions. This concentration, offered by the College of Imaging Arts and Sciences, is designed to provide a solid technical background in cross-media digital workflow processes and a keen understanding of the issues and trends in the print media industry.

- Public policy

Formulating public policy and understanding its impact are critical, whether you work in government, not-for-profit, or the private sector. This concentration, offered by the College of Liberal Arts, gives students the skills to effectively formulate public policy and evaluate its impact, particularly as related to science and technology issues. The courses focus on policy formation, implementation, and analysis.

Read less
Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?. Read more
Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?

You can find answers to these questions when you study forest sciences. You will come to view forests not only as a setting for jogging trails or as a source of wood, but rather as a source of versatile renewable resources and as complex ecological systems that are closely connected to their environment. The relationship between humans and nature and between society and natural resources is a strong feature of these studies.

The Master’s Programme in Forest Sciences offers a broad and versatile perspective on forests and their use. The studies focus on and apply knowledge in biology, business economics, environmental sciences, logistics, geoinformatics and information technology. As a graduate in forest sciences you will be a professional in forest ecology, the management and use of forest resources, forest bioeconomy business and policy, with ample career opportunities in Finland and abroad.

Come and study forest sciences at the University of Helsinki, in one of the world’s foremost degree programmes in the field. For more information in Finnish about studies in forest sciences, the field of forestry and its opportunities, see http://www.metsatieteet.fi.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

General studies in the Master’s programme provide you with skills needed for the academic world and the labour market. In advanced studies, you focus on field-specific issues and develop your professional knowledge when writing your Master’s thesis and completing courses in your field of specialisation. In addition, the studies include elective courses that allow you to diversify and deepen your knowledge.

The Master's Programme in Forest Sciences comprises three study tracks: forest ecology, the management and use of forest resources and forest bioeconomy business and policy. These study tracks include a total of 12 fields of specialisation.

The specialisations in forest ecology focus on various types of forest and peatland ecosystems and their exploitation. Topical issues include climate change, the prevention of damage to forests caused by insects and fungi, the control of game populations, and problems related to the exploitation of tropical forests.

The specialisations in the management and use of forest resources examine the planning of forest use and the relevant collection of information, forest inventory models, wood harvesting and logistics as well as the processing of wood into bioeconomy products. Topical issues include the application of new remote sensing methods in the planning of forest resource management, the combination of different values and targets in forestry and bioeconomy, various models of silviculture, increased efficiency in logging and transportation, and generating added value in all areas of biorefining.

Studies in the business economics of forest bioeconomy are based on the sustainable use of a renewable natural resource and on the development of responsible business activities in a global environment. The focus of studies is on the globalisation of forest-based industry and business and its structural redevelopment into the bioeconomy. You will become familiar with forest-based issues of the bioeconomy in production, marketing and policy as part of the global operating environment.

Selection of the Major

Graduates from the Bachelor’s Programme in Forest Sciences at the University of Helsinki can continue their studies in the Master's Programme in Forest Sciences. There is an application process for graduates from other Bachelor’s programmes, from universities of applied sciences, and for international applicants.

In the application process, you are selected for the Master’s Programme in Forest Sciences. Upon admission you must select one of the three study tracks, and you must select your specialisation by the second year of your Master’s studies.

Study tracks, specialisations and examples of topics covered by them:
Forest Ecology
-The management and restoration of forest ecosystems: the sustainable and multitargeted use of forest, the use of peat.
-Forest soil science: the biogeochemistry and hydrology of forest soil, soil and root ecology.
-Forest pathology and mycology: the microbiology and epidemiology of forests.
-Forest zoology: the biology and ecology of forest insects, the ecology of forest pests.
-Wildlife management: game populations and society, the planning of game husbandry, mammal ecology.
-The ecology, management and use of tropical forests: methods of tropical forestry, agroforestry.

Management and Use of Forest Resources
-Forest resource management: the collection and use of forest-related information in decision-making, laser scanning, remote sensing, forest inventory.
-Forest technology and logistics: the management of forest products, terramechanics, forest bioenergy.
-Wood technology: wood science and wood as raw material, laboratories in the forest industry, the structure and properties of wood raw material.

Forest Bioeconomy Business and Policy
-Marketing and management in the forest industry: strategic management and marketing, responsibility in forestry, customer orientation, innovations.
-Forest economics: business economics of units within forest bioeconomy, economics of silviculture, forest investment and the economic impact of environmental targets.
-International forest policy: global processes and trends impacting the forest sector from the perspective of individuals, communities and nations.

Programme Structure

The Bachelor’s Programme in Forest Sciences includes two study tracks: forest ecology and the use of forest resources, and forest economics and marketing. The Master's Programme in Forest Sciences comprises three study tracks: forest ecology, the management and use of forest resources, and business economics and policies of forest bioeconomy. These study tracks include a total of 12 specialisations (see specialisations above). Upon completing the Master's Programme in Forest Sciences you will be eligible to apply for the Doctoral Programme in Sustainable Use of Renewable Natural Resources.

Career Prospects

A degree in forestry offers extensive and fairly unique professional competence on a global scale on forest and peatland ecosystems, forest management and use, forest conservation, the business economics and policies of forest bioeconomy as well as the collection, management and use of forest-related information. For more information in Finnish on the available career opportunities, see http://www.metsatieteet.fi

Internationalization

Studies in forestry offer ample opportunities for international activities. For example, you can complete your practical training or collect material for your Master’s thesis abroad. Most courses in the Master’s programme are in English, and several international students participate. You can also serve as a tutor for international exchange students and establish contacts and networks in this way. Another example of international activities is the Helsinki Summer School, which offers intensive courses on topical issues and brings together students from as many as 60 countries.

Read less
At the University of Surrey we leads the way in areas such as nanotechnology, vision and signal processing, mobile and wireless communications, multimedia engineering and space and satellite engineering. Read more
At the University of Surrey we leads the way in areas such as nanotechnology, vision and signal processing, mobile and wireless communications, multimedia engineering and space and satellite engineering.

PROGRAMME OVERVIEW

Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management.

We offer numerous Electronic Engineering MScs in more specialised fields of study, from space engineering to mobile communications systems, and if you wish to specialise in one of these pathways you can adjust your course accordingly.

The advanced taught technical content is in sub-disciplines of electronic engineering closely aligned with the internationally-leading research conducted in the four research centres of the Department of Electrical and Electronic Engineering.

PROGRAMME STRUCTURE

This programme is studied part-time over 48 months. It consists of eight taught modules and a standard project. Each student will undertake one short course, following which they will be provided with distance learning material in order to study for the subsequent assessment. The students may be assessed for either one or two modules from the short course they undertake.

Typically a student would complete two modules and therefore up to two short courses within the space of year, though they are at liberty to study for more modules if they have the time. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-IP Networking Protocols and Technologies
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communication
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Spacecraft System Design
-Satellite Communications
-Internet of Things
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VDHL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering
-Nanoelectronics and Devices
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-60-Credit Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resource
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Mobile telephony is reaching saturation in the most technologically advanced countries and is rapidly becoming the main telecommunications infrastructure in the rest of the world. Read more
Mobile telephony is reaching saturation in the most technologically advanced countries and is rapidly becoming the main telecommunications infrastructure in the rest of the world.

This programme gives you a thorough understanding of the engineering aspects of this rapidly developing field, as well as new emerging systems for the support of broadband mobile Internet.

PROGRAMME OVERVIEW

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-RF Systems and Circuit Design
-Internet of Things
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Advanced Signal Processing
-Advanced Mobile Communication Systems C
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Mobile Applications and Web Services
-Advanced 5G Wireless Technologies
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & -Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc in Project Management in the Built Environment is designed to meet the growing demand for project managers in the construction industry who can oversee the entire life cycle of any project, including unique and specialist developments. Read more
The MSc in Project Management in the Built Environment is designed to meet the growing demand for project managers in the construction industry who can oversee the entire life cycle of any project, including unique and specialist developments. It is ideal for anyone with ambitions for project management within the construction sector.

We consult extensively with people from a wide spectrum of companies and organisations in order to make sure that the course content remains practically relevant. For example, prominent companies in the industry are represented in our Professional Liaison Group.

The MSc is available as a one-year, full-time programme or as an open learning programme (a combination of distance learning with intensive on-campus study periods) which is normally taken over two years. There are two entry points: September and January.

See the website http://www.brookes.ac.uk/studying-at-brookes/courses/postgraduate/2015/project-management-in-the-built-environment/

Why choose this course?

- Accreditation by the Chartered Institute of Building (CIOB) and the Royal Institution of Chartered Surveyors (RICS) demonstrates professional recognition of the quality of our programme.

- Strong links with prominent companies in the sector, such as Mace, Willmott Dixon and BAM Construction who are all represented in our Professional Liaison Group (PLG), which exists to provide advice on existing and proposed courses of study, on research activities and consultancy work.

- The programme adopts a problem-based learning (PBL) approach to ensure that it is real-world focused and holistic. Not only is this more effective, it is more fun than the traditional study and examination approach.

- Students develop a whole range of management skills and knowledge including project finance, technology, law and contract by working on real-life or realistic problems as experienced by the construction industry, consultants and clients. They are also exposed to behavioural aspects of managing projects, which most project managers only experience when their careers in the construction industry are well-advanced.
- There are four intensive study weeks during the programme where full-time and open-learning students come together on campus to attend lectures, seminars and workshops and share experiences.

- Our students come from a wide range of backgrounds and locations. Many have originally studied subjects outside the realm of the built environment such as law, psychology, architecture and geography, and others have been or still are (in the case of our open-learning students) employed in project management roles. As a result, there are great opportunities to share experiences, to gain a better understanding of the industry and the range of challenges that project managers face and also to benefit from the many different approaches to problem solving that is a feature of such a diverse group of students.

- Our graduates span the globe, working in countries including Malaysia, India and USA.

- Our teaching is backed up by strong research activity. Many of our academic staff are involved in academic research and/or professional or commercial consultancy work. In the 2008 Research Assessment Exercise, approximately 80% of our research, with our colleagues in other Built Environment areas, was judged to be of ‘international’ quality, with approximately 40% rated as ‘internationally excellent’ or ‘world leading’.

- Many members of staff are part of Brookes' Oxford Institute of Sustainable Development (OISD), a leading research and promotional organisation noted for its work on sustainable technology in buildings and sustainable urban form.

Teaching and learning

Teaching, learning and assessment methods are to a considerable degree determined by the use of problem-based learning (PBL) which leads to a more challenging and industrially relevant course than the traditional lecture approach. Learning takes place through groups of students puzzling through problems, often adapted from real situations with much of the complexity and context intact, using published resources, or reference to experts who are available to offer advice.

Assessment is 100% coursework, which includes a great variety of types of work, including quizzes taken remotely on Moodle (Brookes online learning environment). Material can be downloaded from our virtual learning environment and closed discussions can take place. It also enables on-campus and open-learning students to remain in contact with each other.

In full-time mode, the delivery of new material is generally bi-weekly with intermediate tutorial or seminar sessions. The intensive study weeks and a European field trip, when students in both modes of study come together, complement this delivery pattern. Outside these periods, online learning is the primary mode of learning for distance-learning study. Communication with distance-learning students will be supplemented by email and telephone during the periods off-campus.

Field trips

A European field trip is a compulsory element of the PGCert modules. It typically takes place over a five-day period towards the end of January and is heavily subsidised by the department.

The aim of this field trip is to consolidate the knowledge gained in the early part of the course and to develop team and other relationships through exposing our students to European project management practices and to assess their ability to observe and report on the different approaches to project management in the UK and in a European country.

The field trip normally consists of visits to prominent construction/engineering projects and sites, plus architectural attractions, both en route and at the destination. You are introduced to the development and planning practices at the destination, as well as having the opportunity to visit major complex projects.

Student body

The programme attracts students from diverse backgrounds and locations.

Many of our current students already hold degrees in fields outside the realm of the built environment including law, psychology and geography, and have decided to contribute to the development of the built environment around us by effectively managing projects. They hail from as far afield as Nigeria and India, with backgrounds ranging from languages to architecture.

This diverse group of students bring with them individual responses to the PBL approach that is at the core of our course delivery.

Typically the distance-learning students are employed by a number of different organisations from the private and public sectors in different countries. They have the opportunity to share their experiences in order to gain better understanding of the industry, the range of challenges that project managers face, and therefore the breadth of skills that they need to develop in order to perform successfully.

Our full-time students benefit from contact with the open-learning students engaged in project management roles in a variety of built environment projects across many countries.

Careers

Graduates of the Department of Real Estate and Construction have an outstanding employment record. Local and national construction companies, developers, project managers, house builders, surveyors and housing associations regularly recruit our graduates.

Many of these companies visit the department annually to meet students for graduate positions. Our graduates are recognised as having an excellent level of communication, presentation and problem-solving skills.

All of our open-learning students are employed full-time by prominent companies in the sector.

Full-time students find similar employment shortly after graduation. They typically hold (Assistant) Project Manager positions. However, the breadth of knowledge that our students gain gives them the flexibility to function effectively in a number of different roles.

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

Our teaching is backed by strong research activity. Many of our academic staff are involved in academic research and/or professional/commercial consultancy work.

Areas of interest include:
- sustainability, adaptation and resilience to climate change
- collaborative supply networks for procurement and delivery of project
- building economics
- forecasting techniques
- risk management
- social networks in project environments
- managing complex projects
- management of knowledge and innovation as a source of competitive advantage/li>
- adaptive re-use of existing buildings
- facilities management
- health and safety.

Many members of staff are part of the Oxford Institute of Sustainable Development (OISD). This research and promotional organisation is noted for its work on sustainable technology in buildings and sustainable urban form among many on-going projects.

A recent HEFCE report into sustainable development in higher education in England suggests that the OISD is one of the key players in sustainable development research.

Read less

Show 10 15 30 per page
Featured Listing
★