• Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Durham University Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Imperial College London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Aberdeen University Featured Masters Courses
"magnetic"×
0 miles

Masters Degrees (Magnetic)

We have 119 Masters Degrees (Magnetic)

  • "magnetic" ×
  • clear all
Showing 1 to 15 of 119
Order by 
Take your clinical skills in Magnetic Resonance Imaging forward in a range of settings of increasing complexity. Read more
Take your clinical skills in Magnetic Resonance Imaging forward in a range of settings of increasing complexity.

Who is it for?

The MSc Medical Magnetic Resonance has been designed for Qualified Radiographers working in or rotating through Magnetic Resonance Imaging who wish to advance their clinical practice and understanding of this modality.

Objectives

This course has been designed to:
-Enhance the professional practice and personal development of practitioners.
-Provide opportunities for discussion and shared experience between practitioners.
-Enhance critical, analytical, professional, research and communication skills and promote the ability to relate these skills to individual clinical practice.
-Further develop the skills necessary for life-long independent learning.
-Prepare you to take on the professional roles of advanced practitioners.
-Encourage autonomous planning and implementation of tasks at a professional level.
-Encourage the development of originality in the application of knowledge to clinical practice.
-Enhance your understanding of how established techniques of research and enquiry are used to interpret knowledge in your field.

Placements

Students should be working as a radiographer in a Magnetic Resonance Imaging department at least thre days per week (or equivalent). City is unable to provide a clinical placement.

Teaching and learning

You will learn through a mix of lectures, class discussions, seminars, presentations, case study analyses, interactive computer-based exercises, a virtual learning environment, guided independent learning and individual supervision.

You will be taught by City Academics who specialise in Computed Tomography, Radiologists, Industry Professionals and Radiographers.

Assessment
You are assessed on a range of areas including your project dissertation, exams, written assignments, oral presentations and posters.

Modules

Core and elective module diet will vary depending on which certificate is undertaken.

Core modules
Year One (PGCert):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two.

Year Two (PGDip):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits)- year two, term one.

The remainder of the course will be selected from elective modules.

Year Three (MSc):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits)- year two, term one
-APM002 Dissertation (60 credits)- year two, terms one and two.

The remainder of the course will be selected from elective modules.

Elective modules
-RCM005 Evidence Based Practice (15 credits – distance learning)
-RCM010 Student Negotiated Module 1 (15 credits – distance learning)
-CHM003 Comparative Imaging (30 credits – distance learning)
-CHM002 Education in the Workplace (15 credits – distance learning)
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits – 36 hours classroom based) only suitable for students with some CT rotation
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits – 36 hours, classroom based). Only suitable for students with some CT rotation.

Career prospects

The postgraduate programme in Medical Magnetic Resonance will enable you to work towards advancing your practice and support a rationale for more senior roles in the profession including specialist clinical practice, management and research.

The programme is accredited by the College and Society of Radiographers.

Previous students have gone on to take positions overseas, in research, management and advance clinical practice. Some of our students have taken their skills and continued to study to PhD level.

Read less
This part-time programme is designed to be studied over an eleven month period, commencing in early September and being completed in July of the following year. Read more
This part-time programme is designed to be studied over an eleven month period, commencing in early September and being completed in July of the following year. The programme consists of two 30 credit core modules.

The MRI theory module, delivered in the first semester, is designed to give students an understanding of the scientific principles behind magnetic resonance imaging and the knowledge to explore the relationship between technical parameters and anatomical and pathological appearances. This theoretical module may also be accessed by students who are not registered for the full MRI certificate course as an option within the MSc in Medical Imaging programme.

The second module, clinical MRI, is delivered in semester two and is designed to provide the student with a structured and monitored experiential learning opportunity in their workplace. It is designed to enable students to critically evaluate MRI protocols used in clinical practice with respect to the evidence base in order to inform service delivery and practice.

The programme sits within the MSc in Medical Imaging programme and the Faculty of Health Studies SSPRD framework, and upon successful completion of this MRI course students can continue their studies by registering for additional modules from the Medical Imaging or School module portfolio, to obtain a postgraduate Diploma or Master's Degree.

Why Bradford?

The Magnetic Resonance Imaging (MRI) programme was first validated in 1996 and since then it has proved to be a popular choice of study demonstrating its continued clinical relevance. The programme is delivered in partnership with clinical and scientific experts working within MRI to ensure it remains clinically relevant and of value to radiographers in developing the knowledge, understanding and skills, in MRI, that are required of a professional who aspires to work at an advanced level.

Modules

-Magnetic Resonance Imaging
-Clinical Magnetic Resonance Imaging

Learning activities and assessment

A 'block' attendance format is utilised in the delivery of the academic learning and this mode of delivery has proved to be popular with students who benefit academically from the concentrated period of time that can be devoted to their studies and learning with their peers. There are 5 blocks of academic learning and these are delivered in the first 6 months of the course.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
This module aims to enable you to. -Critically evaluate the Magnetic Resonance (MR) protocols used in clinical practice with respect to the evidence base in order to inform service delivery and practice policy. Read more
This module aims to enable you to:
-Critically evaluate the Magnetic Resonance (MR) protocols used in clinical practice with respect to the evidence base in order to inform service delivery and practice policy
-Develop your ability to evaluate MR images within a structured and monitored experiential learning environment

The learning in the module will utilise the knowledge and understanding gained in the Magnetic Resonance Imaging module, which is a pre-requisite and apply it to your own clinical practice. Evidence-based content will be delivered by Faculty experts with support from the technical and clinical fields.

You will be encouraged to identify the evidence base and critique clinical practice and protocols. In the clinical workplace you will undertake clinical MRI examinations of a wide range of anatomical regions/systems for a variety of clinical indications, gaining experience of advanced practice where applicable.

Tutorials will be used to facilitate peer learning and sharing of information by students. Case scenarios will facilitate group discussion and enhance your confidence in debating and justifying imaging techniques.

Why Bradford?

Postgraduate provision in Medical Imaging at the University of Bradford has long been established and is known for its quality and success in supporting development of healthcare professionals in their diverse roles, with students coming from around the UK, and full time international students choosing to study here. The modules are delivered by an experienced radiography team, clinical specialists and medical physicists, and a research informed curriculum ensures it is relevant to current and innovative practice.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Achievement of the learning outcomes will be demonstrated through the completion of a portfolio, to include reflective journal entries, work-based case studies, a presentation and a log of clinical experience as part of the learning process. All assessments within a module must achieve 40% to pass.

Career support and prospects

The module is designed to support healthcare practitioners develop the knowledge, understanding and skills in medical imaging that are required of a professional who aspires to work at an advanced level of practice.

Read less
This module aims to enable you to. -Gain a comprehensive understanding of the physical principles and technology underpinning the acquisition, production and presentation of magnetic resonance (MRI) images. Read more
This module aims to enable you to:
-Gain a comprehensive understanding of the physical principles and technology underpinning the acquisition, production and presentation of magnetic resonance (MRI) images
-Develop your ability to critically analyse and evaluate a broad range of magnetic resonance (MRI) imaging applications and protocols
-Develop your ability to comment on normal and variant anatomy seen in common MRI examinations

Lectures will introduce the students to the physical principles of MRI technology and the clinical applications of MRI, delivered by Faculty experts with support from the technical and clinical fields.

Students will be exposed to current MRI technology and its applications in clinical practice, encouraging reflection on existing practice.

Tutorials will be used to facilitate peer learning and sharing of information and directed study based on critiquing up to date literature and practice will be used to further stimulate the student's learning.

Why Bradford?

Postgraduate provision in Medical Imaging at the University of Bradford has long been established and is known for its quality and success in supporting development of healthcare professionals in their diverse roles, with students coming from around the UK, and full time international students choosing to study here.

The modules are delivered by an experienced radiography team, clinical specialists and medical physicists, and a research informed curriculum ensures it is relevant to current and innovative practice.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

Achievement of the learning outcomes will be demonstrated through the completion of a written examination based on the physical principles, and a second examination which involves responding to questions based on case studies with accompanying medical images.

All assessments within a module must achieve 40% to pass.

Career support and prospects

The module is designed to support healthcare practitioners develop the knowledge, understanding and skills in medical imaging that are required of a professional who aspires to work at an advanced level of practice.

Read less
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography. Read more
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography.

The Nuclear Medicine and Radiation Safety strands are offered in parallel on a bi-annual basis, the Magnetic Resonance Imaging and CT strand are offered on alternate years. In September 2013, the MRI and CT strands will commence.

The main aim of the programme is to train and qualify Radiographers in the practice of Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging or Computed Tomography.

The course is intended for qualified Radiographers with a clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department. It is a course requirement that the student must spend a minimum of 15 hours per week on clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department as appropriate to fulfill the requirements of the course.

The M.Sc. in Medical Imaging will be run over 12 months on a part-time basis.

In the M.Sc. in Medical Imaging, there are 4 separate strands: Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and Computed Tomography. Students will choose one of the 4 options.

The taught component of the course is covered in the first 8 months. The student may opt to exit the programme upon completion of the taught component with a Postgraduate Diploma in Medical Imaging.

From May to September, students undertake an independent research project. Successful completion of the research component of the programme leads to the award of M.Sc. in Medical Imaging.

The list of common core modules currently available to students of the Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and CT strands are:

Medico-Legal Aspects, Ethics and Health Services Management (5 ECTS)
Clinical Practice (10 ECTS)

The additional modules in the Nuclear Medicine strand are:

Physics and Instrumentation, and Computer Technology Radiation Protection and Quality Control in Nuclear Medicine (15 ECTS)
Clinical Applications of Nuclear Medicine and Hybrid Imaging (15 ECTS)
Anatomy, Physiology and Pathology applied to Nuclear Medicine (5 ECTS)
Radiopharmacy (5 ECTS)

The additional modules in the Radiation Safety strand are:

Radiation Protection Legislation (10 ECTS)
Practical Aspects of Radiation Protection (5 ECTS)
Physics and Instrumentation and Computer Technology (10 ECTS)
Quality Management and Quality Control (15 ECTS)

The additional modules in the Magnetic Resonance Imaging strand are:

Physics and Instrumentation of MR and computer technology (15 ECTS)
Anatomy, Physiology and Pathology applied to MR (10 ECTS)
Safety in MR and Quality Control (5 ECTS)
MR Imaging Techniques and Protocols (15 ECTS)

The additional modules in the Computed Tomography strand are:

Physics and Instrumentation of CT and computer technology (10 ECTS)
Anatomy, Physiology and Pathology applied to CT (10 ECTS)
CT Imaging Techniques and Protocols (15 ECTS)
Radiation protection and quality assurance in CT (5 ECTS)

All common modules and strand-specific modules must be undertaken. The taught component thus consists of 60 ECTS.
Dissertation (30 ECTS)

Read less
Distance learning only. This is the longest-running distance-learning course of its type in the world, and one of very few dedicated solely to MRI. Read more

Campus

Distance learning only

Overview

This is the longest-running distance-learning course of its type in the world, and one of very few dedicated solely to MRI. It is led by a world-renowned MRI educator Catherine Westbrook and supported by a team of MRI experts.
Study MRI to master’s level and open up exciting opportunities in clinical, research, management and academic careers. Develop as an independent and critical thinker, continually linking what you learn to your practice in this fast-changing field. Deepen your knowledge of scientific principles, learn to critically evaluate MRI images, and
understand their emotional impact on your patient. Engage in researching and advancing the world of MRI imaging. Undertake research that leads to publication offering the chance to contribute to wider MRI practice. When you graduate, you will have the advanced experience to seek more senior roles in the imaging profession. Many of our former students have had their research and theses published widely.

Core Modules

Applied Scientific Principles of MRI (30 credits)
Essentials of MRI Clinical Practice (30 credits)
Advanced MRI Practice (30 credits)
Research Studies (30 Credits)
Major Project (60 credits)
Please note that you will need to complete all of the above core modules. This course does not have any optional modules. Modules are subject to change and availability.

Start dates

September 2017

Read less
Gain both theoretical and applied knowledge of clinical cognitive neuroscience. Read more

Gain both theoretical and applied knowledge of clinical cognitive neuroscience. Cognitive neuroscience combines techniques and skills including psychometric testing, electroencephalography (EEG), eye tracking and imaging techniques – for application to neuropathological and healthy groups in clinical, academic or biomedical settings. Various neurobiological mechanisms of cognitive and perceptual functions with demonstration of practical recordings, as well as psychology experimental software are taught on the course.

This course is ideal if you

  • are a graduate with an applied or pure science degree including psychology, biosciences and nursing, and want to pursue a research, clinical or biomedical career in neuroscience
  • work in a related area and wish to formalise and develop your skills, knowledge and expertise as part of continuing professional development
  • want to open alternative career pathways
  • are an EU or international student with the appropriate background and qualifications.

The course gives you the knowledge and skills to evaluate cognitive and brain function and dysfunction in healthy and neuropathological groups. You learn to understand the important ethical issues involved in neuroscientific research targeted at various age groups and people with range of cognitive abilities, as well as developmental disorders.

You have an opportunity to learn psychophysiological recording techniques, including electrocardiogram (ECG), Skin Conductance (SC), performance speed and accuracy, as well as perceptual mechanisms using Eprime, Martlab and other specialist software.

We also build your research skills enabling you to work as an independent researcher in this area. You have the opportunity to attend workshops run by experts from relevant professions and fields of work. Examples include private clinical consultants, NHS neuropsychologist, teaching staff from the Doctorate in Clinical Psychology course at the University of Sheffield and alumni from our course working in academia and the private sector.

Our specialist learning resources include psychometric measures for assessing cognitive function and 3D model brains for understanding neuroanatomy. You learn to use specialist equipment including • EEG • transcranial magnetic stimulation • analysis of Biopack • structural magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) data • visuo-psychophysics equipment.

Some lectures are taught by guest tutors including clinical psychologists and neuroimaging experts.

You are automatically affiliated with our Brain, Behaviour and Cognition Research Group, which

  • delivers targeted neuroscience workshops
  • organises subject specific presentations
  • has regular research meetings
  • has strong collaborative links with other institutions.

International students are most welcome on this course. At Sheffield Hallam University we provide international students with a wealth of support, from pre-arrival right up to, and including, study support while you are studying here. Please see the International Experience Team webpage for more information.

Course structure

Full-time – one year

Part-time – typically one day per week for two years

Core modules

  • Neursopsychopharmacology
  • Neuron to neuropathology
  • Cognitive neuroscience methods
  • Electrophysiology
  • Perception and cognition across the lifespan
  • Research dissertation

Assessment

  • coursework
  • seminar activities
  • examinations
  • dissertation

Employability

This course gives you the skills to work in both academic and clinical settings with healthy population and diverse neuropathological groups.

Graduates have the skills and knowledge to work in roles involved in assessing and evaluating cognitive function and dysfunction in healthy ageing across the lifespan and patient groups including people with Parkinson’s disease, head injury, dementia, and other neuropathological conditions.

During the course you benefit from employability sessions, where our alumni currently working in academia or industry, clinical psychologists and professionals from private research companies discuss possible career choices.

You may find roles in academic and clinical contexts using methods of neuroscience such as • functional magnetic resonance imaging (fMRI) • structural magnetic resonance imaging (MRI) • electroencephalogram (EEG) • transcranial magnetic stimulation • eye tracking techniques • visual psychophysics.

You can also complete further cognitive neuroscience postgraduate academic work.



Read less
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. Read more
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. In particular, functional magnetic resonance imaging (fMRI), electro-encephalography (EEG), magneto-encephalography (MEG) and transcranial magnetic stimulation (TMS) are now routinely used by neuroscientists to study brain-behaviour relationships. Our MSc in Brain Imaging showcases Nottingham’s multi-disciplinary environment and offers a comprehensive programme that will provide you with the theoretical knowledge and practical skills required to conduct high-quality neuroimaging work and neuroscience research. Translational in vivo neuroscience approaches in animal models will also be considered, and interested students will have the opportunity to receive research training in this area.

The MSc in Brain Imaging has a flexible course structure and offers four pathways with core modules alongside a choice of optional modules that permits tailor-made study. The options are:

MSc Brain Imaging (Cognitive Neuroscience)
MSc Brain Imaging (Neuropsychology)
MSc Brain Imaging (Integrative Neuroscience)
MSc Brain Imaging (Developmental Science)

Graduating from the University of Nottingham opens up a wide range of career options. Many of our students use this programme as a preparation for PhD study or other advanced degree positions. Others opt for science-related jobs. Our graduates are highly regarded by employers in private and public sector organisations because of the solid academic foundation and transferable skills they gain during their degree course such as analytical evaluation, data management, statistical analysis as well as presentation and writing skills. In the past, graduates of this programme have taken-up career opportunities in university, hospital and industry settings.

Please email for more information or visit the PG prospectus. Given the breadth of training available, the MSc is recommended to students with a background in psychology, neuroscience or a bioscience discipline as well as those with training in physics, engineering, mathematics, or computer sciences.

Upcoming Open Days: Wednesday 29 June and Wednesday 6 July (1.30-3 pm). Please contact us if you have specific questions about the programme. Phone: +44 (0)115 951 5361 or email:

Key facts

• Programme delivered through lectures, practicals and research project resulting in a dissertation
• Core and optional modules according to specific pathways
• Four pathways with applications in Cognitive Neuroscience, Developmental Science, Neuropsychology, and Integrative Neuroscience
• Taught by active and internationally renowned research scientists
• Interdisciplinary approach with specialist lectures and/or project supervision by scientists from: the School of Psychology; Sir Peter Mansfield Magnetic Resonance Centre; Department of Academic Radiology

Read less
Learning how to make discoveries that will contribute to a better understanding of the fundamental behaviour of molecules and materials. Read more
Learning how to make discoveries that will contribute to a better understanding of the fundamental behaviour of molecules and materials.

Most chemical research involves synthesising and characterising new molecules. So basically, a trial and error system. This specialisation goes one step further: it aims at fundamentally unravelling the properties of molecules and materials. How do pharmaceutical molecules arrange in different forms and how does this affect their efficiency as a drug? And in what way does the molecular structure of a polymer influence the mechanical strength of plastics? We try to find the answers by developing theory and applying physical set-ups for advanced spectroscopic experiments, such as high magnetic fields, free-electron lasers and nuclear magnetic resonance.

Thanks to all our research facilities being located on the Radboud campus, you’ll be able to perform your research with advanced spectroscopic methods. You get to choose the focus of your research. Some students work on biomolecules while others prefer for example solar cells, plastics or hydrogels. It’s even possible to specialise in the development of new technology.

Studying at the interface between physics and chemistry means collaborating and communicating with people from different scientific backgrounds. Moreover, you’ll be trained to work with large-scale facilities and complex devices. These qualities will be useful in both research and company environments. Jobs are plentiful, as almost all industrial processes involve physical chemistry.

See the website http://www.ru.nl/masters/science/physical

Why study Physical Chemistry at Radboud University?

- Unlike at (many) other universities, all physical and chemical Material Science departments are combined in one institute: the Institute for Molecules and Materials (IMM). Therefore, collaborating is second nature to us.
- Radboud University hosts a large number of advanced spectroscopic facilities. As a Master’s student, you’ll get the chance to work with devices that are unique in Europe and even some that cannot be found anywhere else in the world.
- We have multiple collaborations with companies that, for example, analyse complex mixtures such as biofuels, characterising hydrogels, and develop anti-caking agents for rock-salt.
- During the courses and internship(s), you’ll meet a wide group of researchers in a small-scale and personal setting: a good starting point for your future network.

Career prospects

About 75 percent of our students start their career with a PhD position. However, eventually most students end up as researchers, policy advisors, consultants or managers in companies and governmental organisations. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

Solve complex problems in a structured way
Understand the professional jargon of different disciplines and work in a multidisciplinary environment
Use mathematical computer tools
Perform measurements with complex research equipment
Graduates have found jobs at for example:
- ETH Zurich
- MIT
- UC Berkeley
- ASML
- AkzoNobel
- DSM
- Shell
- Unilever
- Various spin-off companies, like Noviotech and Spinnovation

Our approach to this field

Physical Chemistry at Radboud University goes beyond the characterisation of molecules and materials. We focus on fundamental knowledge: What do spectroscopic measurements really mean? And how can we explain the behaviour of certain molecules or materials?

- Advanced spectroscopy
Radboud University hosts a large range of advanced spectroscopic facilities. Think of the High Field Magnetic Laboratory, FELIX laboratory for free-electron lasers, NMR facility, scanning probe lab, etc. As a Master’s student in Physical Chemistry, you’ll get an overview of all these different methods, and you’ll be able to apply your knowledge as a member of a laboratory. Some of our students choose to focus on the development of new scientific methods.

- Bridging the gap between chemistry and physics
We believe in knowledge transfer between chemists and physicists. That’s why in Nijmegen all material research is combined in one institute: the Institute for Molecules and Materials (IMM). During your Master’s, you’ll experience this interplay in the lectures and internships. Once graduated, you’ll be able to understand the vernacular of both disciplines and in that way bridge the gap between chemistry and physics.

See the website http://www.ru.nl/masters/science/physical

Read less
Diagnostic radiography and medical imaging are core components of modern healthcare and rely on rapidly changing diagnostic modalities. Read more

Diagnostic radiography and medical imaging are core components of modern healthcare and rely on rapidly changing diagnostic modalities. It is widely accepted that medical imaging will remain an essential component of diagnostic services for many years to come and that the demand for imaging services will continue to rise.

Recent modernisation within the NHS has raised the profile and extended the scope of practice for allied health professionals (AHPs). Diagnostic radiographers, as one of the sixteen registered AHP groups, are now required to build and extend their scope of professional expertise within a multi-professional setting. Continuing professional development (CPD) is a requirement for all AHPs in the UK in order to secure re-registration with the Health and Care Professions Council (HCPC) and to retain the right to practise within the UK. Radiographers are therefore required to evidence their learning and to demonstrate how this learning has informed practice.

Diagnostic radiography is a profession which is both intellectually and scientifically demanding. Professional responsibility includes a need to be able to formulate imaging standards and strategies as well as assume a greater degree of autonomy within different imaging modalities. To practise effectively the radiographer needs to be able to analyse and evaluate the requirements of healthcare delivery and to be aware of the roles and skills of other healthcare professionals. To optimise patient care the diagnostic radiographer must adopt a critical approach to decision-making in the context of current practice.

This MSc provides CPD opportunities for diagnostic radiographers and other healthcare professionals, but does not lead to UK registration with the HCPC or the right to practice within the UK. Therefore, this course aims to foster an intellectual approach to personal and professional development, encouraging diagnostic radiographers to challenge and progress radiography practice in response to evolutionary change. The course aims to provide flexibility in learning with the opportunity for learners to select modules in order to support individual practice development.

Teaching, learning and assessment

This course uses a wide range of learning and teaching methods, based on a problem based learning approach with students working independently and collaboratively.  The teaching and learning strategies are designed to enable independent progress within a supportive framework.

Teaching hours and attendance

The course is modular and offers a variety of attendance pathways for study: work-based learning; online and block attendance. A range of modules related to the development and progression of the Radiography profession can be used to form the course content.

Modules

To obtain a PgCert in any route, you will study 60 credits from the profession specific modules outlined below. To obtain a PgDip, you will study a further 60 credits taken from either profession specific modules or elective modules from the QMU Postgraduate Module Catalogue.

Ultrasound

15 credits: Physics and Instrumentation of Ultrasound+/ Professional Issues Relating to Medical Imaging+

30 credits: General Medical Ultrasound in Clinical Practice*/ Obstetric Ultrasound in Clinical Practice*/ Breast Ultrasound in Clinical Practice*/ Musculoskeletal Ultrasound in Clinical Practice*/ Musculoskeletal Ultrasound in Clinical Practice for AHPs*

MRI

15 credits: Principles of Magnetic Resonance Imaging+/ Principles of Image Evaluation+

30 credits: Magnetic Resonance Imaging in Practice*/ Advanced Practice in Magnetic Resonance Imaging (negotiated study)

CT

15 credits: Principles of Computed Tomography+ / Principles of Image Evaluation+ 30 credits: Advanced Practice in Computed Tomography of the Head*/ Computed Tomography in Practice (Head, Chest, Abdomen and Pelvis)*/ Advanced Practice in Computed Tomography  Colonography*

Clinical Reporting

15 credits: Pathophysiology for Musculoskeletal Image Evaluation+/ Principles of Image Evaluation+

30 credits: Clinical Reporting of the Axial and Appendicular Musculoskeletal System* A sample of relevant elective modules are:

15 credits: Epidemiology (distance)/  Developing Professional Practice*/ Leading Professional Practice+/ Practice Development for Person-centred Cultures+

30 credits: Current Developments (distance)/ Developing Professional Practice*

45 credits: Developing Professional Practice*

To obtain an MSc, you require:

30 credits: Research Methods (distance/ contact)

60 credits: Research Project (in an area relevant to medical imaging) (distance) Key: * attendance and work-based + Block/ day release

Careers

This qualification may enhance your career prospects within the allied health professions.

Quick Facts

  • A flexible approach to learning is taken.  
  • This course is accredited by the Society and College of Radiographers. 
  • The ultrasound route is accredited by the Consortium of Sonographic Education (CASE).


Read less
Clinical and Health psychology involves applying psychological understanding to difficulties connected with mental or physical health problems. Read more
Clinical and Health psychology involves applying psychological understanding to difficulties connected with mental or physical health problems. Using this understanding, clinical psychologists assess and treat people of all ages and ability levels who are experiencing psychological distress, behavioural problems or related issues. Students taking the MSc will be introduced to the theory and knowledge that underpins effective practice in clinical psychology, will explore this in relation to a range of conditions, will gain an understanding of the range of research methods used by clinical psychologists, and will conduct their own research project in a relevant area.
How the course can further your career progression

This course will be of particular interest to:
-graduates in psychology who are aiming for a career in clinical or health psychology and who do not yet have relevant work experience. Completing the MSc provides a sound basis for obtaining employment as an assistant psychologist and later gaining entry to clinical training.
-graduates in psychology who are aiming for a career in clinical and health psychology and who have already gained relevant work experience. Completing the MSc course provides evidence of academic and research skills, which is valuable when making applications for clinical training.
- graduates in psychology or closely related disciplines who are keen to pursue research in the area of clinical or helath psychology. The MSc course is accredited as providing an appropriate research training for those wishing to progress to a PhD or to employment in a research post.
- qualified health professionals with an appropriate academic background who wish to extend their understanding of clinical psychology.

Clinical psychology training in the UK involves the completion of a three-year training programme leading to a doctorate in clinical psychology and eligibility to apply for chartered clinical psychologist status. The training is funded by the National Health Service (NHS) and almost all trainees go on to work in the NHS after qualifying. Entry to these programmes is highly competitive and applicants must have good academic and research skills as well as relevant work experience, usually two years in a paid, full-time assistant psychologist position or equivalent. The MSc aims to provide students with a profile of academic knowledge and research skills which, combined with relevant work experience, will equip them to make a credible application for clinical psychology training, either in the UK or elsewhere.

About the School of Psychology
The School of Psychology at Bangor, which was ranked in the Top 20 in the UK in the most recent Research Exercise Framework with 89% of research rated either 'world-leading' or 'internationally excellent', brings together a large group of outstanding scientists with international research reputations in clinical psychology, neuropsychology and clinical and cognitive neuroscience. A number of staff also hold appointments as consultant psychologists or medical consultants with the NHS and contribute to clinical practice as well as to the training of clinical psychologists, medical students and NHS staff. The School runs its own clinical psychology training programme, leading to the Doctorate in Clinical Psychology.

Key research strengths within the clinical psychology domain include dementia, neuropsychology and rehabilitation, learning disability, developmental disorders, addictions, and cognitive-behavioural approaches. Close links with other departments and with NHS services produce tremendous opportunities for collaborative clinical psychology research. The School supports the practical implementation of research findings to improve patient care by hosting groups such as the Dementia Services Development Centre Wales.

The School has an extensive library of psychological tests and measures. Participant recruitment is facilitated through the availability of research panels for neurological patients and people with dementia, as well as student and community participation panels, supported by the School’s full-time patient co-ordinator. The School has a range of specialist laboratories and researchers in the School use a wide range of the latest techniques for understanding brain-behaviour relationships, including functional brain mapping with event related potentials (ERP), transcranial magnetic stimulation (TMS), and functional magnetic resonance imaging (fMRI).

The School has a vibrant, diverse postgraduate community. Students on our MSc programmes are drawn from a range of backgrounds and nationalities. The School is known for its friendly and informal atmosphere, which combined with excellent facilities helps to ensure that studying here is a pleasant and enjoyable experience.

Course Structure
The course includes three components: content modules, research methods modules, and a research thesis. Content and methods modules are all 20 credit modules and the research thesis is worth 60 credits. Students achieving 120 credits on the taught modules, but not completing a research thesis, may exit with a Postgraduate Diploma. The content modules are designed to provide an in-depth look at theory, evidence and practice in clinical psychology.

The course lasts one full calendar year if taken full-time and is also available part-time. During Semester 1 and Semester 2 you will combine taught modules with work on your research project. During the summer period all your time is devoted to completing and writing up the research project.

A variety of teaching approaches are used including lectures, case presentations, small-group sessions and seminars, and individual or group supervision. Assessment will include coursework and examinations, and the research thesis.

Career Prospects
This course will be of particular interest to psychology graduates aiming for a career in clinical psychology and who do not yet have relevant work experience. Completing the MSc provides a sound basis for obtaining employment as an assistant psychologist and later gaining entry to clinical training. For graduates who already have relevant work experience the course provides evidence of academic and research skills, which is valuable when making applications for clinical training. It is also an excellent preparation for graduates who are keen to pursue research in the area of clinical psychology and for qualified health professionals with an appropriate academic background who wish to extend their understanding of clinical and health psychology.

Read less
Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods. Read more

Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods.

It is a key element of oil, gas and mineral exploration, environmental and archaeological assessment, and engineering site investigation.

This course prepares you to embark on a career in resource exploration, environmental and engineering geophysics.

Running continuously for over 50 years it is very firmly established and has strong links to industry. It provides you with a broad range of practical skills, underpinned by a theoretical understanding that equips you to become a professional in your chosen field.

You will also undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.

Demand for geophysicists continues to be high and this well-established course has an exceptionally good record of job placement for both UK/EU and overseas students.

Course highlights:

  • Network with energy, geophysical acquisition, processing and software companies, who visit regularly to engage and recruit our students.
  • Complete a 4 month individual project, mostly in association with an external company or institute and often in their offices.
  • Access our state-of-the-art computer suite that runs a comprehensive range of industry-standard software on hi-spec twin-screen workstations.
  • Develop your field skills with our sector-leading portfolio of field geophysical equipment.
  • Apply for a scholarship – we have a large number of School and dedicated external (industry) scholarships for UK/EU applicants.

Course content

You will study 8 taught modules and an individual project.

Taught modules cover a broad range of geophysical disciplines as applied to resource, environmental and engineering industries.

The individual project is the most challenging and exciting part of the course. It runs from May to September and tests your skills in applying the experiences acquired over the year to a specific problem.

Most projects have an association with an exploration company or other external organisation and you could work alongside geoscience professionals in the offices of industrial partners.

Projects typically include investigations of specific geological prospects, comparisons of novel seismic processing algorithms and integrated geophysical investigations from basin to quarry scale.

Course structure

Compulsory modules

  • Exploration Geophysics: Project and Dissertation 60 credits
  • Computational Inverse Theory 15 credits
  • Petrophysics and Petroleum Geology 15 credits
  • Seismic Reservoir Evaluation and Recent Developments 15 credits
  • Geophysical and Geological Field Methods and Geological Interpretation 15 credits
  • Gravity and Magnetic Methods 15 credits
  • Seismic Fundamentals and Acquisition 15 credits
  • Seismic Data Processing 15 credits
  • Seismic Reflection Interpretation and Sequence Stratigraphy 15 credits

For more information on typical modules, read Exploration Geophysics MSc in the course catalogue

Learning and teaching

Be taught by leading academic geoscientists, with input from industry experts throughout the course.

Learn through field-based and practical-based (individual and group) training, while your lectures and seminars are supplemented by desk-based and workstation-based practicals and fieldwork.

Facilities

The School's £23m building gives you access to world-class research, teaching and laboratory facilities.

As a Masters student you will have access to specific facilities as well as the general facilities available through the School and the University.

Ongoing investment in leading geophysical survey equipment means that you can effectively demonstrate and practise a range of techniques in the field including shooting seismic reflection surveys.

Equipment includes seismic, gravity, magnetics, GPR, resistivity/IP, EM, GPS/positioning. These datasets are subsequently used in your classroom/computer exercises to establish a practical link between field practice and data quality and interpretability.

A dedicated computer lab containing a suite of high-powered computers enhances your learning experience by providing you with access to a comprehensive range of industry-standard geophysical processing and interpretation software packages, e.g. MESA, SeisSpace/ProMAX®, KINGDOM, Petrel™, Geosoft and RokDoc.

You can use these for individual projects, or in workstation-based teaching sessions. The software will also facilitate your individual and team-based exercises designed to simulate industry practice, e.g. processing a reflection seismic line, assessing a hydrocarbon prospect for a drilling/ license bid.

Assessment

You will be assessed on your written exams, coursework (both in-class and independently completed), project report writing and group presentations.

Industry links

Strong links with industry reinforce this vocational Masters degree, helping you to develop a grounded perspective, as well as providing you with recruitment possibilities.

In addition to the industrial experience of many School staff and contributions from University of Leeds geoscience spin-out companies, you will have numerous contacts with industry representatives throughout the year.

We have many visits from energy, geophysical acquisition, processing and software companies, primarily to engage with you and recruit Masters students throughout their degree. These visits include recruitment information, technical showcases and case studies of integrated geoscience in practice, as well as opportunities for you to network with geoscience professionals.

You will have the opportunity to attend the EAGE (European Association of Geoscientists and Engineers) annual meeting in May/June. This provides you with a chance to find out about the latest technological developments and to meet industry experts, including potential employers.

Your summer project is mostly carried out either with collaborating companies or institutes. These projects are linked to current activities, representing actual problems for which a research or business outcome is sought. Some are field-based: with placements often overseas, while others result in journal publications or conference presentations. The projects finish with an Open Day where you will present your work to a range of industry visitors.

Career opportunities

Demand for geophysicists has always been high. A Masters is generally considered an appropriate level to embark on a career in resource exploration and the course at Leeds has an exceptionally good record of job placement for both UK/EU and overseas students.

Many energy, and service-sector companies target the course directly for recruitment with numerous company visits through the year. Other opportunities arise from project placements, the EAGE, or the September Open Day of project seminars and presentations, with which the programme closes.

Most students join energy or minerals companies, or geophysical acquisition, processing, interpretation or software companies. 



Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

Biomedical and Professional Topics in Healthcare Science

Imaging in Medicine

Radiation in Medicine

Computing and Electronics in Medicine

Generic Skills

Semester 2

Radiation and Radiation Physics

Nuclear Medicine and Post Emission Tomography

Magnetic Resonance Imaging

Medical Electronics and Instrumentation

Medical Image Processing and Analysis

Diagnostic Radiology and Radiation Protection

Semester 3

Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/180/medical-physics/

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Read more

Your programme of study

If you are interested in medical imaging and highly sophisticated ways of assisting in diagnostics visually the medical imaging programme comes from a long heritage of major world innovation which was led by research at Aberdeen. Did you know researchers at Aberdeen invented the first MRI scanner (Magnetic Resonance Imaging) for instance? Since this time much has been done to further work on the MRI scanner and deliver some of the most advanced forms of body visualisation tools available to the health area. If you have ever wondered how X rays work or you are interested in the latest radiotherapy techniques to provide therapeutic tools from radiographic equipment and advances this programme not only gives you the theory and practice in applying imaging in a health setting, it also gives you opportunities to think about the technologies involved and the applications. There is a lot of Physics and Maths required behind the different technologies involved in medical imaging so if you have these subjects and a life science background plus engineering or similar science disciplines this will make the programme more accessible.

By the end of the MSc programme you will have received a thorough academic grounding in Medical Imaging, been exposed to the practice of Medical Imaging in a hospital Department, and carried out a short research project. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. There are wide ranging career possibilities after graduation. You may wish to go straight into clinic settings to apply your skills within diagnostics or you may wish to study further for a PhD towards teaching or researching. There have also been spin out companies as a result of understanding and applying imaging technologies towards innovative applications. This subject also aligns with some major innovations in Photonics and other areas of medical science which you may like to explore further if you are interested in invention and innovation at the Scottish Innovation Centres: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

Radiation in Imaging

Introduction to Computing and Image Processing

Biomedical and Professional Topics in Healthcare Science

Imaging in Medicine

Generic Skills

Semester 2

Nuclear Medicine and Positron Emission Tomography

Magnetic Resonance Imaging

Medical Image Processing and Analysis

Diagnostic and Radiation Protection

Semester 3

MSc Project for Programme in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/178/medical-imaging/

Why study at Aberdeen?

  • You have the opportunity to contribute research within the department, expanding the knowledge of medical imaging technology within the largest teaching hospital and Medical School in Europe
  • You have access to a PET-CT scanner, new radiotherapy centre and linac treatment machines.
  • The university won the Queens Anniversary Prize in recognition of achievements in new medical imaging techniques
  • The MRI scanner was invented at the University over 30 years ago - a major innovation which has been global in impact

Where you study

  • University of Aberdeen
  • 12 or 24 months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
This MSc is provided jointly by the Department of Psychology and the York Neuroimaging Centre (YNiC), and recruits contributing faculty from other university departments such as The Hull-York Medical School. Read more
This MSc is provided jointly by the Department of Psychology and the York Neuroimaging Centre (YNiC), and recruits contributing faculty from other university departments such as The Hull-York Medical School. The overarching aim of the MSc in Cognitive Neuroscience at York is to provide a bridge between undergraduate study and PhD research in cognitive neuroscience, experimental psychology and imaging methods.

The course has been developed around training and research using neuroimaging techniques, and the experimental and analytical methods on which they depend. Through our specialist modules students are introduced the principles of neuroimaging, gaining hands on experience in functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), eletroencephalography (EEG) or transcranial magnetic stimulation (TMS), learning how to design, analyze and evaluate neuroimaging experiments, and how such experiments are contributing to our understanding of the brain mechanisms underpining cognition and behaviour. Along the way, students also receive training on generic statistical, writing and research skills, and are exposed to main research topics in cognitive psychology and cognitive neuroscience. Finally, students complete an extended empirical project, typically using a neuroimaging technique of their choice. The empirical project is supported by the state-of-the-art facilities at YNiC.

Content

Specialist modules place neuroimaging in the wider context of cognitive neuroscientific research and introduce students to the principles of neuroimaging the design of neuroimaging experiments and specialist methods required for the analysis of neuroimaging data. These include:
-Basic principles in neuroimaging
-Research Design and Analysis in Neuroimaging
-Topics in Cognitive Neuroscience
-Programming in Neuroimaging

Empirical project
Project enables students to participate in the design and implementation of a theoretically-motivated piece of pure or applied research in cognitive neuroscience providing hands-on training in advanced brain imaging methods, some of which are being developed at York. Topics are chosen so as to be timely and practicable within the relevant resource and time constraints. We regard it as important that the topic not only engages the interest and enthusiasm of the student, but is also a good match to the specialist expertise and knowledge of the supervisor.

Many of our students' projects are published. Each year we offer projects on a wide variety of topics linked to faculty research interests. For example students have used fMRI to investigate the processing of emotional and social cues, representation of semantic knowledge in the brain, disruption of visual cortex in patients with macular degeneration and brain mechanisms underpinning language understanding, face processing, number processing or anxiety and risky behaviour. Students have also used MEG and TMS to investigate brain mechanisms of memory for words and pictures, connectivity patterns between brain regions and auditory perception. Some of these projects are methodological in nature in that they aim to study the analytical strategies to apply in brain research, or they aim to develop the use of new imaging methods.

General research modules
These provide a solid grounding in contemporary issues in psychology and neuroscience, psychological research methods, professional and generic skills.

Assessment
Modules are assessed through a variety of different assignments and exams including practical reports, essays, multiple choice questions, critical analysis of published papers, short notes on a range of topics, dissertation on the Empirical Project, poster presentation.

Backgrounds

This challenging but rewarding course will best suit applicants who are:
-Interested in the brain and its workings (see What is cognitive neuroscience? in the overview)
-Interested in Psychology as a biological science
-Considering a career in research, especially in psychology, cognitive Neuroscience or imaging methods (many other career choices would be compatible with the general scientific, academic and professional training you will receive as part of the course)
-Comfortable with computers and statistics

Read less

Show 10 15 30 per page



Cookie Policy    X