• Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
OCAD University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"lte"×
0 miles

Masters Degrees (Lte)

We have 16 Masters Degrees (Lte)

  • "lte" ×
  • clear all
Showing 1 to 15 of 16
Order by 
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This new programme is for students who want to pursue a career shaping and defining the new generation of converged networks, responding to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices. It will educate the next generation of network engineers in the fundamental science, mathematics and key technologies that underpin global networking.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking.
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation.
-Provide advanced communications theory to underpin the science.
-Address probabilistic methods for network performance evaluation, and network security.
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced.
-Address the new areas of sensor networks and Internet of Things.
-Teach you Java programming.
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.

We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.
Facilities

The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
-Provide advanced communications theory to underpin the science
-Address probabilistic methods for network performance evaluation, and network security
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
-Address the new areas of sensor networks and Internet of Things
-Teach you Java programming
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.
-We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
-We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
-As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.

Facilities
The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
Today virtually every aspect of modern life depends on the integrity, reliability and efficiency of computer networks – from personal communication to the functioning of the world's economy – which is why the sector is experiencing major investment and qualified professionals are in huge demand. Read more
Today virtually every aspect of modern life depends on the integrity, reliability and efficiency of computer networks – from personal communication to the functioning of the world's economy – which is why the sector is experiencing major investment and qualified professionals are in huge demand.


Why study MSc Computer Networks and Network Design at Middlesex?

Our course is designed to equip you to deal with the ever-changing needs of the business world and ever-developing threats to security – combining both theory and intensive practical experience with a strong emphasis on professional skills.

We make the most of our strong links with companies like Microsoft and Siemens and work hard to ensure our course remains highly relevant to the workplace. Practical work is an important part of every module, and unless you're already in employment, we'll help you find a work placement for up to 12 weeks, during which you'll work on your independent research project.

Our award-winning technology centre has five specialist laboratories equipped with the latest industry-standard hardware and software, including OPNET, Wireshark, MATLAB, Simulink, OpNet Modeller 17.0, OMNeT++ , National Instruments and Cisco technology such as Packet Tracer. While studying for this qualification you will work with our LTE test bed and Blade Server, and you will learn how to access and configure cloud-based networks. As part of your studies, you'll also have the opportunity to work towards a Cisco CCNA professional certification, worth £1,600 and considered the gold standard in the industry.

Course highlights

- Spend a minimum of 78 hours gaining practical experience in our industry-standard networking labs
- We encourage students to explore new concepts and developments and were delighted when three of our students were crowned winners at the Young Professional Engineering Challenge
- Middlesex University is an official Cisco Academy licensed to provide CNNA certification training and equipped with the latest industry-standard equipment
- Our strong research profile ensures our courses remain innovative. We have developed our own WSN, Senso LAB, and have also undertaken notable research in areas such as MIMO, LTE and LTE Advanced
- Course Leader Aboubaker Lasebae is a former design engineer at the Research and Development Centre in Tripoli
- The course is suitable for both recent graduates and IT professionals who wish to further their knowledge.

Read less
Computer networks underpin almost every aspect of modern business. Their competent management is crucial to a company's success and experts who can fulfil this role are highly sought-after. Read more
Computer networks underpin almost every aspect of modern business. Their competent management is crucial to a company's success and experts who can fulfil this role are highly sought-after. Network management is a rapidly-evolving specialism for which you need leadership, problem-solving and organisational skills as well as the technical ability.


Why study MSc Network Management and Cloud Computing

We make the most of our strong links with companies in the IT sector to ensure that we offer a highly relevant course with a marked emphasis on professional and applied skills. Practical work is an important part of every module, and unless you're already in employment, we'll encourage (and help) you to find a placement for up to 12 weeks, during which you'll work on your independent research project.

Our award-winning technology centre has five specialist laboratories equipped with the latest industry-standard hardware and software, including OPNET, Wireshark, MATLAB, Simulink, OpNet Modeller 17.0, OMNeT++ , NI and Cisco technology such as Packet Tracer. While studying for this qualification you will work with our LTE test bed and Blade Server, and you will learn how to access and configure cloud-based networks. As part of your studies, you'll also have the opportunity to work towards a Cisco CCNA professional certification, worth £1,600 and considered the gold standard in the industry.

Course highlights

Spend a minimum of 78 hours gaining practical experience in our industry-standard networking labs
We encourage students to explore new concepts and developments and were delighted when three of our students were crowned winners at the Young Professional Engineering Challenge
Middlesex University is an official Cisco Academy licensed to provide CNNA certification training and equipped with the latest industry-standard equipment
Our strong research profile ensures our courses remain innovative. We have developed our own WSN, Senso LAB, and have also undertaken notable research in areas such as MIMO, LTE and LTE Advanced
Course Leader Aboubaker Lasebae is a former design engineer at the Research and Development Centre in Tripoli
The course is suitable for both recent graduates and IT professionals who wish to further their knowledge.

Read less
From national security to the privacy of personal communications, the smooth running of societies and economies depends on the security of computer networks. Read more
From national security to the privacy of personal communications, the smooth running of societies and economies depends on the security of computer networks. With a security breach potentially costing a company millions, highly skilled experts who can provide protection are sought-after across the globe. Technology is constantly developing and security issues are too, making this a challenging and rapidly evolving specialism.


Why study MSc Network Security and Pen Testing at Middlesex?

Our course provides both intensive practical training and a profound theoretical education, extending beyond the technicalities of network security to cover strategic and organisational issues. Unless you're already in employment, we'll help you to find a placement for up to 12 weeks, during which you'll work on your independent research project.

Our award-winning technology centre has five specialist laboratories equipped with the latest industry-standard hardware and software, including OPNET, Wireshark, MATLAB, Simulink, OpNet Modeller 17.0, OMNeT++, NI and Cisco technology such as Packet Tracer. While studying for this qualification you will work with our LTE test bed and Blade Server, and you will learn how to access and configure cloud-based networks. As part of your studies, you'll also have the opportunity to work towards a Cisco CCNA professional certification, worth £1,600 and considered the gold standard in the industry.

Course highlights

Spend a minimum of 140 hours gaining practical experience in our industry-standard networking labs
We encourage students to explore new concepts and developments and were delighted when three of our students were crowned winners at the Young Professional Engineering Challenge
Middlesex University is an official Cisco Academy licensed to provide CNNA certification training and equipped with the latest industry-standard equipment
Our strong research profile ensures our courses remain innovative. We have developed our own WSN, Senso LAB, and have also undertaken notable research in areas such as MIMO, LTE and LTE Advanced
This is an intensive course but much of your study will be independent. Full-time students spend a maximum of three days a week in classes and part-time students one or two days a week
The course is suitable for both recent graduates and IT professionals who wish to further their knowledge
You can start your studies in either September or January.

Read less
We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Read more
We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. As a leading research School, we have excellent links with industry. We also employ dedicated staff to help you arrange your year in industry. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements. We are unable to guarantee all students secure an industrial placement, as our industrial partners conduct their own employment application and interview processes.

The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

Provide an in-depth understanding of the key issues in next generation, all-packet networking
Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
Provide advanced communications theory to underpin the science
Address probabilistic methods for network performance evaluation, and network security
Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
Address the new areas of sensor networks and Internet of Things
Teach you Java programming

Read less
This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years. Read more

Why this course?

This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years.

You’ll gain expert knowledge of the latest technologies that will drive the next mobile, wireless and communications revolution, and evolve our current 4G environment to 5G communications enabled systems. Applications will cover robotics & autonomous systems, UAVs, immersive systems and augmented realities, health monitoring, cyber-integrated systems, and smart grids. Data handling of the expected 50 billion IoT (internet of things) devices coming on-line to monitor traffic, weather, environment, smart agriculture, and even when your fridge runs out of milk, will also be explored.

5G will provide greater capacity, improved reliability, support at higher rates of mobility, and wider geographical coverage, at even higher data speeds and throughput and many new services and facilities.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/5gadvancedcommunications/

What you’ll study

There are two semesters of compulsory and optional taught classes, followed by a three month summer research project working in a core area of 5G Communications system design, either in the Department or with an industry partner via an internship.

Facilities for research projects are extensive and these will allow you to choose to work on projects in a wide variety of areas such as physical and MAC layers (e.g. Advanced LTE) from IoT, cybersecurity, dynamic spectrum, massive-MIMO, low latency communications, or in applications such as smart agriculture, environment monitoring, computer vision, communicating radar, satellite systems, automotive, driver-less cars and of course some application domains yet to be established with the advent of 5G!

Facilities

We have an extensive set of teaching spaces and learning environments alongside a dedicated Masters Project and Study Environment for self-study and group working.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Xilinx, Texas Instruments, MathWorks, and Agilent are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – the purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – a vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – this assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

As communications now impacts on virtually all areas of society, commerce and business, job opportunities are excellent, and you will be equipped for employment across a range of sectors including mobile/wireless, IT, defence, and big data.

Professional and technical occupations with international companies such as Samsung, Xilinx, British Telecom, MathsWorks, Nokia and Texas Instruments, as well as local companies such as Cirrus Logic, Leonardo, and Stream, are available.

Globalisation of the communications sector and the evolution of many countries to 5G means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field. Read more
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field.

Degree information

Students develop an understanding of the evolving networks and applications using the internet protocol. Particular attention is given to the convergence of telecommunications and data networks into 'all IP'-carrier grade networks. The programme offers specialisms including fundamental network design, applications and services, and security and network management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules
-Introduction to Telecommunications Networks
-Mobile Communications Systems
-Software for Network and Services Design
-Internet of Things
-Introduction to IP Networks
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Communications System Modelling
-Network and Services Management
-Telecommunications Business Environment
-Optical Transmission and Networks
-Network Planning and Operations
-Wireless Communications Principles

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, guest lectures, tutorials, seminars, laboratory and workshop sessions and project work. Assessment is through unseen written examination, coursework, design exercises and the research project.

Careers

In the next 15 years, all of the facets of our life will be "online". Our health (bio-sensors, health records), entertainment (games, 3D TV, Virtual Reality), security (children GPS tracking, CCTV) and other social interactions will use fascinating internet applications that are only now being envisaged. Our graduates will be in a prime position at the forefront of this revolution by having in-depth knowledge of all of its components.

Recent graduates have gone on to become graduate engineers, R&D engineers and network services engineers at companies including France Telecom, BT, Huawei, Cisco, Motorola and PwC.

Top career destinations for this degree:
-Network Engineer, Ocado Ltd
-Research Degree: Computer Science, University College London (UCL)
-IT Development Officer, China Unicoms
-IT Network Development Engineer, BSkyB
-Software Engineer, Air Watch

Employability
The Internet Engineering MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc offers a wide variety of modules that include the physical layer (optical, wireless), the Internet layer (routing, congestion control, traffic engineering), the application layer (codecs, security) and the "business layer" (regulation, business opportunities).

Lectures are delivered by world-class researchers in all these fields with regular lectures from the main industrial leaders in the telecommunications industry.

Read less
The world of telecommunications is one of the fastest developing in the areas of science and technology. Read more
The world of telecommunications is one of the fastest developing in the areas of science and technology. The Telecommunications MSc at UCL covers various aspects of modern telecommunication systems together with the background necessary to understand such systems, and is continuously updated to reflect the rapid changes in the field.

Degree information

Students develop a comprehensive understanding of the key technologies, network architectures, and systems that make up a modern, telecommunications network. Specific topics include telecommunications systems, communications technologies, network design and planning, data networks and architectures, next generation architecture and business aspects of telecommunications.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

An exit-level Postgraduate Diploma (120 credits) is offered. An exit-level Postgraduate Certificate (60 credits) is offered.

Core modules
-Introduction to Telecommunications Networks
-Mobile Communications Systems
-Software for Network and Services Design
-Telecommunications Business Environment
-Introduction to IP Networks
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Broadband Technologies and Components
-Communications Systems Modelling
-Internet of Things
-Optical Transmission Networks
-Network and Services Management
-Network Planning and Operations
-Wireless Communications Principles

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, laboratory and workshop sessions, seminars, tutorials and project work. All of the programme lecturers carry out leading research in the subjects they are teaching. Student performance is assessed through unseen written examination, coursework, design exercises and the dissertation.

Careers

On completion of this programme students pursue careers as network or telecommunications engineers, consultants or systems architects in networking technologies.

Top career destinations for this degree:
-Consulting Engineer, China Mobile
-Graduate Engineer, Cable and Wireless Worldwide
-IT Graduate, Siemens
-Technical Specialist - Telecommunications, BSB Sky C
-Software Engineer, Motorola Mobility

Employability
The Telecommunications MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards, etc.). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc programme is taught by UCL's telecommunications experts with contributions from industrial and government specialists, and is dedicated to the task of training engineers and managers in the telecommunications industry.

Read less
This course encourages students to develop in-depth knowledge and critical awareness of theoretical, as well as practical, solutions to problems at the forefront of the communication and processing of signals. Read more
This course encourages students to develop in-depth knowledge and critical awareness of theoretical, as well as practical, solutions to problems at the forefront of the communication and processing of signals.

Communications and signal processing are closely intertwined, and together provide the basis of modern information engineering. Areas of application include:

3G/4G/LTE wireless networks
broadcast and computer communication
robotic vision
audio and video recording
radar and sonar detection
biomedical signal processing
computer vision
medical imaging
remote sensing

Read less
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. Read more
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. This prestigious programme offers significant research content alongside taught courses strongly linked to industrial requirements.

Degree information

Students develop an advanced understanding of the architecture and components that are used to construct a broadband network. The programme offers an overview of the network structures used to build telecommunications networks, enables students to specialise in a specific area of telecommunications, and includes a substantial research project.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a research project (105 credits).

Core modules
-Introduction to Telecommunications Networks
-Professional Development Module: Transferable Skills

Optional modules
-Broadband Technologies and Components
-Communications Systems Modelling
-Introduction to IP Networks
-Mobile Communications Systems
-Wireless Communications Principles
-Network and Services Management
-Optical Transmission and Networks
-Software for Network Services and Design
-Telecommunications Business Environment
-Antennas and Propagation
-RF Circuits and Devices
-Photonic Sub-systems
-Radar Systems
-Network Planning and Operations
-Advanced Photonic Devices
-Internet of Things

Dissertation/report
All students undertake a substantial research project working in association with one of the research groups at UCL or a collaborating industrial research laboratory.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and workshops. Student performance is assessed through unseen written examination, coursework (written and design assignments) and the substantial research project, which is assessed by dissertation and presentations.

Careers

Recent graduates have gone on to become university researchers, and senior software engineers and research scientists at companies including Nokia UK Ltd and QinetiQ.

Employability
The Telecommunications MRes programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885. The department has more than a century of tradition of internationally leading research, from Professor Sir Ambrose Fleming, the inventor of the thermionic valve and the left-hand and right-hand rules, to Professor Charles Kao, PhD alumnus and 2009 Nobel Prize in Physics recipient for his research in communication with optical fibres that began whilst studying at UCL.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions. Read more

Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions.

Some of our students undertaking their project are able to work on one of our wide range of testbeds, such as internet technologies, wireless networking, network management and control, and internet-of-things (IoT) applications.

We also have specialist software tools for assignments and project work, including OPNET, NS2/3, and various system simulators.

Read about the experience of a previous student on this course, Efthymios Bliatis.

Programme structure

This programme is studied full-time over 12 months or part-time from 24 to 60 months. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme 

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin communications, networks and software
  • Be able to analyse problems within the field of communications, networks and software and more broadly in electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within communications, networks and software
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Facilities, equipment and support

We have a full range of software support for assignments and project work, including:

  • Matlab/Simulink, C, C++ and up-to-date toolboxes, systemsview, OPNET and NS2/3 (you will be able to access system simulators already built in-house, including 3GPP, BGAN, DVB-S2-RCS, GSM, UMTS, DVB-SH, WCDMA, GPRS, WiMAX, LTE, HSPA and HSDPA)
  • Our Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment and roof-mounted antennas to pick up satellites (a security test-bed also exists for satellite security evaluation)
  • A fully equipped RF lab with network analyser, signal and satellite link simulations
  • A small anechoic chamber for antenna measurements (a wideband MIMO channel sounder is available for propagation measurements)
  • SatNEX is a European Network of Excellence in satellite communications, and a satellite platform exists to link the 22 partners around Europe (this is used for virtual meetings and to participate in lectures and seminars delivered by our partners)
  • A fully equipped UHF/VHF satellite ground-station facility is located on campus, which is being expanded to S-band and is supported by the ESA GENSO project (at present, the station tracks amateur satellites and CubeSats)
  • Our wide coverage experimental wireless network test-bed is based on IPv4, and IPv6 for testing new networking protocols for mobility, handover, security, cognitive radio and networking can be carried out (most networking protocol projects use this test-bed, with the help of PhD students and staff)
  • We are the only university in the UK that has an IP-Multimedia Subsystem (IMS) test-bed for developing and experimenting with advanced mobile/wireless services/applications – you can use this to carry out your services and application-based projects for mobile multimedia, such as multi-mode user interface, service mobility, service discovery and social networking services
  • Our wireless sensor test-bed is unique; advanced routing protocols, middleware architectures, air interface and networking protocols for wireless sensor networks can be developed and tested

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
This course is designed to equip graduates with the specialist skills in modern wireless communication systems such as 3G, Wi-Fi, mobile WiMAX and LTE, space-time coding, software defined radio, and reconfigurable analogue and digital RF systems. Read more

This course is designed to equip graduates with the specialist skills in modern wireless communication systems such as 3G, Wi-Fi, mobile WiMAX and LTE, space-time coding, software defined radio, and reconfigurable analogue and digital RF systems. It also provides knowledge in the use of wireless and DSP techniques in many application areas including Internet of Things, medical, geophysical, aerospace, automotive and environmental systems.

The degree provides a placement in either industry or research. Our dedicated Knowledge Business Centre maintains links to over 500 partner companies to ensure that students can apply their knowledge and skills in a real-world industry. Graduates from this course are actively sought after by employers in mobile and wireless industries.



Read less
Wireless communications is a ubiquitous technology which will be critical to establishing the Internet of Things. On this course you will combine taught material central to your research as well as advanced knowledge obtained from your research project. Read more
Wireless communications is a ubiquitous technology which will be critical to establishing the Internet of Things. On this course you will combine taught material central to your research as well as advanced knowledge obtained from your research project. The Aston Adaptive Communications Research Group has expertise in LTE, machine to machine communication, multimedia transmission and ad-hoc networking. The course will enhance your employability throughout the wireless communications industry.

This programme trains aspiring academic and industrial research scientists. The programme consists of a training aspect of taught components (equivalent to 3 modules approximately during the first 3 months) and a significant interdisciplinary research project.

In additional to the research skills module (ISI4001), students will study approximately 20 credits of material relevant to their research topic and experience. This material will be determined through a training needs analysis undertaken in collaboration with their project supervisor.

Exemption from these modules may be arranged through APL or APEL, provided this is done prior to enrolment. In Electronic Engineering we can supervise projects in the following areas. In addition, applicants may also suggest their own project.

Personal Development

Students will have the opportunity to carry out a research project in collaboration with industry and through this learn about the application context of technology and the interaction between research and business.

Facilities & Equipment

Students will get access to appropriate computational and experimental facilities. Aston University offers Wi-Fi connection, modern lecture/tutorial rooms, computer labs, lounge area, good learning resources and publications are available in the library and many electronically.

Read less

Show 10 15 30 per page



Cookie Policy    X