• Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
Edinburgh Napier University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Birmingham City University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"life" AND "sciences"×
0 miles

Masters Degrees (Life Sciences)

We have 2,033 Masters Degrees (Life Sciences)

  • "life" AND "sciences" ×
  • clear all
Showing 1 to 15 of 2,033
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medicine and Life Sciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medicine and Life Sciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MRes in Medicine and Life Sciences is a one year full time programme, which provides an ideal opportunity and environment in which to gain practical training in Research Methods and to join a thriving research team within Swansea University College of Medicine. The Medicine and Life Sciences course has been developed with an emphasis on providing students with a research-oriented approach to their learning. Students are able to tailor their studies towards a career in one of the College’s internationally recognised research themes:

– Biomarkers and Genes,

– Devices,

– Microbes and Immunity,

– Patient & Population Health and Informatics.

Key Features of MRes in Medicine and Life Sciences

The Medicine and Life Sciences programme is committed to supporting the development of evidence within the areas of Health, Medicine and Life Science through the training of researchers whose findings will directly inform their own understanding and that of others. The ethos of this programme is to produce graduates with the research skill and knowledge to become effective researchers, who will contribute to the body of knowledge within their chosen area of interest that will have an impact upon the health and well-being of all.

- The advantage of a MRes over other formats is that it provides a structured yet in-depth approach, taking the taught component of FHEQ Level 7 teaching as a framework for conducting research on the candidates own practice.

- Innovative and integrated curriculum that reflects the various aspects of the research process.

- Multidisciplinary teaching team with vast experience and expertise in conducting high quality research.

- Research informed teaching.

- Teaching is supported by online learning and support.

-Flexibility for you to gain specialist knowledge.

- A one year full-time taught masters programme designed to develop the essential skills and knowledge required for a successful research career.

- This course is also available for two years part-time study.

- The opportunity to conduct an individual research project with an interdisciplinary team within a supportive environment.

- Students will be assigned a research-active supervisory team

The aim of the MRes in Medicine and Life Sciences is to provide students with a broad research training to prepare them for a research career in Medical and Life Science research with emphasis on: Biomarkers & Genes, Devices, Microbes & Immunity, and Patient & Population Health and Informatics. The course has been developed to enable graduates to pursue a variety of research careers in Medical and Life Sciences. The programme comprises both taught and research elements.

By the end of the Medicine and Life Sciences programme students will have:

Developed necessary skills to critically interpret and evaluate research evidence; Gained experience the in analysis and interpretation of research data; Advanced knowledge at the forefront of Medical and Life Science research, with the ability to integrate the theoretical and practical elements of research training; Developed the ability to conceptualise, design and implement a research project for the generation of new evidence that informs Health, Medicine and Life Science; Developed practical research skills by working with an interdisciplinary research team; The ability to confidently communicate research ideas and conclusions clearly and effectively to specialist and non-specialist audiences; Acquired transferable skills which enhance your employability and future research career.


Modules on the Medicine and Life Sciences course may include:

PMRM01 Critical Appraisal and Evaluation

PMRM02 Data Analysis for Health and Medical Sciences

PMRM03 Research Leadership and Project Management OR any topic specific FHEQ Level 7 module from the College of Medicine ’s portfolio

Mode of delivery:

The 60 credits of the taught element will be delivered face-to-face, combining formal lecturing, seminars, and group work in addition to tutor-led practical classes. The remaining 120 credits for the research element will be available as distance learning either off or on-site. Irrespective of the location for conducting the research project, students will supported through monthly online (Skype)/or face-to-face supervisory meetings.

Course Structure

Students must complete 3 modules of 20 credits each and produce a 120 credits thesis on a research project aligned to one the College’s research theme. Each taught module of the programme requires a short period of attendance that is augmented by preparatory and reflective material supplied via the course website before and after attendance.

The Medicine and Life Sciences programme is designed in two phases:

Phase 1 – Training and Application (October – January; 60 credits)

Taught modules in Research Methods and their application to Medicine and Life Science. Personalised education and training relevant to student’s research interests. Identification of research questions and how they might be addressed.Focused on students existing knowledge and research skills.

Phase 2 – Research Project (February – September; 120 credits)

The project is selected by the student in combination with an academic supervisory team. Focussed on one of the College’s four main research themes: Biomarkers and Genes, Devices, Microbes and Immunity, and Patient & Population Health and Informatics. At the end of Part 2 students submit a 40,000 word thesis worth 120 credits leading to the award of Master of Research in Medicine and Life Science.

Attendance Pattern

Students are required to attend the University for 1 week (5 consecutive days) for each module in Phase One. Attendance during Phase Two is negotiated with the supervisor.

You are also encouraged to attend the Postgraduate Taught Induction Event during the induction week and any programme associated seminars, together with Postgraduate research events.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity


Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
The master's Communication, Health and Life Sciences in Wageningen trains academics to understand, facilitate and drive societal change in complex societal settings related to life science or health issues. Read more

The master's Communication, Health and Life Sciences in Wageningen trains academics to understand, facilitate and drive societal change in complex societal settings related to life science or health issues.

What makes the master's unique?

  • Unique focus on life sciences, health and their interaction with complex societal challenges.
  • Learn to build bridges between science and society, science and health professionals and experts and citizens.

Study programme

During the master's Communication, Health and Life Sciences students learn to understand the role of communication in addressing complex social challenges and opportunities regarding life science and health issues from various perspectives. Learn more about the full study programme.


There are two specialisations that students can choose from:

  1. Communication in Innovation in which you study the role of communication in social change with several fields of the life sciences, including nature, environment, water, nutrition and health, biotechnology and food production.
  2. Health and Society in which students become context-sensitive experts in the domains of science and health promotion.

Your future career

The master Communication, Health and Life Sciences aims to deliver professionals who understand complex processes of communication and change, and are able to apply these insights to enhance societal problem solving and innovation in areas related to life science or health issues. Read the stories of our alumni.

Related programmes:

MSc International Development Studies

MSc Development and Rural Innovation

MSc Management, Economics and Consumer Studies

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms both in ancient and contemporary populations, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and electives complement the Medical Life Sciences curriculum.
Evolutionary biology will train you in thinking from cause to consequence. Molecular paleopathology and ancient DNA research tell you a lot about disease through human history. These insights help to fight disease today, which is why evolutionary medicine is becoming a cutting-edge research field. Whether you want to focus on ancient populations and paleopathology or on specific disease indications nowadays, here you get the tools and skills to do both.
To lay the foundation for working in medical research, Medical Life Sciences includes courses on clinical manifestations of diseases, molecular pathology and immunology. Hands-on courses in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it.. That biomedicine has many facets to discover is the great thing that keeps students fascinated and well-equipped for finding a job in academia or the industry.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.


To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum.

Read less
From the discovery of new energy sources to the design of enzymes to produce new medicines, most cutting-edge research requires knowledge of molecular processes. Read more

From the discovery of new energy sources to the design of enzymes to produce new medicines, most cutting-edge research requires knowledge of molecular processes. The two year MSc Molecular Life Sciences study programme focuses on the molecular aspects within the fields of nutrition, health, nature and the living environment. 

This MSc programme consists of four specialisations that are based upon a unique combination of three main disciplines: biology, chemistry and physics. Research is an important part of the programme and there is a wide variety of research subjects to choose from in order to carry out your thesis and internship during your second year. The combination of chemistry, physics and biology is especially appealing to many employers.

Programme summary

Discoveries through chemistry are based on research conducted by motivated people. Furthermore, a combination of disciplines is needed to be at the forefront of the field of science. Wageningen University offers all that and more. Wageningen University graduates are able to conduct high level research and perform in an interdisciplinary environment. It is here that theory is put to practice and it will give you a strong background for employment in industry, government or universities.

On the programme of Molecular Life Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.


Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

The labour market for Molecular Life Sciences graduates is still looking good: the large majority finds a job within a few months. About 80% starts a PhD research. In the Netherlands you get a salary for doing a PhD; in Dutch this job is called AIO = "assistant in opleiding". After finishing your PhD you get the Dutch Doctor title; you are allowed to put Dr. in front of your name. 

Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Food Technology 

MSc Bioinformatics

MSc Nutrition and Health

MSc Plant Biotechnology

MSc Biology

Read less
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project. Read more
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project.

This course provides an opportunity for students from biological subjects to begin research in life sciences. Research may be conducted in a broad range of topics in biology and life sciences and as a researcher in the School, you will have the opportunity to collaborate with academics working on studies and projects.

The School undertakes research at molecular, cellular, organism and population levels in order to answer fundamental questions in molecular biology and biomedical science, forensic science and microbiology, animal and plant biology, and evolution and ecology.

Research Areas, Projects & Topics

Research is conducted within six substantial research groups. Scientists in Animal Behaviour, Cognition and Welfare explore the causes, functions and evolution of animal behaviour and the impact this has on animal welfare.

Those in Evolution and Ecology examine population dynamics and evolutionary processes at all levels of biological organisation. Researchers in Drug Design and Delivery focus on the application and efficacy of novel therapeutics, while academics working in Molecular Basis of Disease aim to understand disease at a molecular level in order to improve diagnosis and treatment.

Example Research Areas:
-Management of Native River Fish
-Forensic Analysis of Burnt Bones
-Public Perception of Dog Breed Types.

Example Research Projects:
-Peptide-guided drug delivery
-Cognitive phylogenetics in parrots
-Sexual selection dynamics in humans
-Protein Biochemistry with the development of cardiovascular disease
-Reconstruction of patterns of habitat colonisation using genetic methods.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.


Students have the chance to develop their professional and technical skills in specialist laboratories equipped for research in biomedical, forensic and pharmaceutical science, chemistry, microbiology, molecular biology and animal and plant biology.

Minster House, adjacent to the laboratories, provides specialist facilities for the study of animal behaviour. Our links with local, national and international partners may provide postgraduate students with opportunities for further collaboration with scientists in industry, government and academia.

Career and Personal Development

Postgraduate-level research provides you with the opportunity to advance your knowledge and develop your practical and intellectual skills. Graduates may pursue careers in research and science-related roles, while others may choose to move on to research at doctoral level.

Read less
Introduction. Working at the interface of Chemistry, Biology and Medical science. In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Read more


Working at the interface of Chemistry, Biology and Medical science

In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Working at the interface of chemistry, biology and medical science, you will not only explore the basic principles of molecules and cells, but also their role in health and disease. This combination of scientific topics translated into medical implications and solutions is unique in the Netherlands.

See the website http://www.ru.nl/masters/mls

Specialisations within the Master's in Molecular Life Sciences

The Master's programme in Molecular Life Science is closely associated with chemistry and medical biology. You can choose a specialisation in Chemistry or in Medical Biology

- Chemistry for Life

- Clinical Biology

- Medical Epigenomics

- Neuroscience

Career prospects

Most graduates go on to do a PhD in Nijmegen, at another Dutch university or abroad. Each year our research institutes have a number of PhD vacancies. Some find a job as a researcher or manager in the pharmaceutical industry, in the private commercial sector or in research organisations.

Our research in this field

- Top scientists

The programme is closely associated with two institutes that have an excellent international reputation:

- the Institute of Molecules and Materials

- the Nijmegen Centre for Molecular Life Sciences.

You will enter a dynamic research environment, work with top scientists, learn about the latest developments in your discipline and conduct research in state-of-the-art laboratories. Thanks to cooperation with the neighbouring University Medical Centre, there is continuous exchange between Lab and Clinic.

- Great freedom and personal tutor

You will be given considerable freedom to follow your own interests. Two internships are central to the programme. You choose a specialisation and you join a related research group, for example Anthropogenetics, Molecular Biology, Pharmacology, Neurobiology or Bioinformatics. You will have your personal tutor who will help you decide which subjects and research to follow. Your second internship will be with a different research group or related to your variant. You can also choose to follow an internship abroad or within a company. In making your choice, you will be able to benefit from the extensive international networks of our scientists.

- The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/mls

Radboud University Master's Open Day 10 March 2018

Read less


The Master in Molecular and Cellular Life Sciences (MCLS) is research oriented and takes a multidisciplinary approach to study related to health and disease in cells and organisms. By the end of the programme you will gain sufficient fundamental knowledge to start working on applications in the field of medical and biotechnological issues. These applications may include the development of new medicines and vaccines, new strategies for crop improvement, or the development of enzymes to be used in industry. 


MCLS is the ideal Master’s programme if you are interested in molecules as the basis of life and disease and if you want to know how chemistry, biology, biomedical sciences, and physics contribute to our understanding of how these molecules work. The interplay of molecules in cells and organisms is the central focus of the programme. 

The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands.


You will develop extensive knowledge about cellular processes such as cellular signaling, membrane biogenesis and intracellular transport. You will also learn skills and methods to study the molecules involved in these processes by using biochemistry, structural biology, cell biology, biophysics, computational biology, proteomics and genomics. The programme offers you the flexibility to choose any specialisation within the field of molecular and cellular life sciences.


Within this Master’s programme you can choose one of four tracks:

Read less
The AIV Master is a 2-year. international program. designed to help students prepare their career in science and to find their way in research. Read more

The AIV Master is a 2-year international program designed to help students prepare their career in science and to find their way in research. At AIV, we believe that the future of Biology-related disciplines lies in the interaction with the other sciences - Mathematics, Physics, Chemistry, Engineering and so on. We teach students to speak a common language of science, and to interact with experts from different fields in order to tackle research questions with a multifaceted, comprehensive approach.

It is hosted in the Center for Research and Interdisciplinarity (CRI) of Paris, an international environment that fuels creativity and openness, both in Science and in Education.

You will study of Life Sciences with an innovative, interdisciplinary approach based on the convergence of Biology, Physics, Computer Science and many other disciplines, to answer research questions in a more comprehensive way.

You will gain substantial, meaningful research experience thanks to our program, rich in internships (4 over the course of the 2 years).

You will be trained by prominent researchers from different backgrounds, who experience innovative teaching methods.

You will work in an international environment that promotes teamwork and collaborations. You will build long-lasting ties with prominent researchers and fellow students from all over the world.

Do you want to be trained in Systems and Synthetic Biology? Do you want to build the skills you need to achieve your PhD? Do you want to help us building an open and collaborative scientific community and be part of something unique and special? If the answer to any of these question is yes, apply now!

Course content

Our students learn both hard and soft skills fundamental to be scientists, while gathering a significant amount of research experience in labs, start-ups or companies. The Master is designed to adjust around the student's needs for building his or her desired portfolio of experience. It is also possible to integrate the program with courses from the other two AIRE tracks, Learning and Digital Sciences.

Master 1

The first year of the AIV Master is designed to teach you primarily Systems, Synthetic and Computational Biology. The first semester is entirely devoted to full-time courses, in which students will also familiarize with the main tools that will help them study Life Sciences in an interdisciplinary way (Mathematical modelling, Physics, Statistics). After the core courses of the first semester, you will have the chance of learning through research with a 6-months internship in the lab of your choice. You can also choose to participate in the iGEM competition, an international competition in Synthetic Biology.

Master 2

The second year of the Master is designed to emphasizes training in scientific reasoning, critical analysis and project development. It includes a rotation of three 3-months research internships in labs of your choice, to give you the opportunity to taste different aspects of science, be trained in different disciplines and topics, and to let you build your own set of skills for whatever you choose to undertake after the end of your Master. Students joining directly in Master 2 have also the opportunity of following some courses of their choice from Master 1.

A few things we are proud to share

  • Our Master program hosts for the academic year 2017-2018 students from 14 different nationalities, and our gender balance is of 55% women to 45% men
  • Our teachers are researchers in the most prominent research institutes of France (CNRS, INSERM, Institut Pasteur, Institut Curie and so on)
  • Our iGEM team is the oldest in France! Last year we celebrated its 10th anniversary!
  • We highly value students' feedback and we dedicate time and resources to their pedagogic follow-up
  • Our hosting institution, the Center for Research and Interdisciplinarity (CRI), is located in a brand new building which will be inaugurated in September 2018 in the Marais neighbourhood, in the very heart of Paris

Career opportunities

The AIV Master is design to adapt to the career choices of the student; although most of our students (70%) decide to continue their studies with a PhD in academia, others prefer to work in the private sector. About 80% of our students find an employment within 3 months from their graduation.

Application information

Here is the timeline for the application to AIV:

  • February 1st - May 31st 2018 : online application
  • Early June 2018: convocation for interviews with the jury
  • Mid-June 2018: interviews in Paris (or skype if abroad)
  • Early July 2018: final admission results

Documents required:

  • your curriculum vitae (.pdf format)
  • 2 letters of recommendation (.pdf format)
  • ID photo (jpg, jpeg, png, gif format)
  • a copy of your last diploma (English or French, .pdf format)
  • a copy of your last grades transcript (English or French, .pdf format)

Please note that you won’t need a cover letter as you’ll be asked to fill in a specific form giving us more info about who you are, your background and your training plan through our Master Program.

Over a second phase and if your application is selected, we’ll have an interview which can be set up through Skype if you’re currently abroad. The final admission results will be broadcasted over the course of July 2018.

If you have any questions, do not hesitate to contact us by email: , or call us on + 33 1 76 53 11 27.

About us

Our courses in detail: https://cri-paris.org/master-aiv/aiv-general-program/

FAQ: http://cri-paris.org/master-aiv/faq/

People: http://cri-paris.org/master-aiv/people/

Visit the AIV Master page on the Center for Research and Interdisciplinarity website for more details!


Read less
Our MPhil/PhD in Life Sciences is a cross-disciplinary research programme designed to enable you to develop your research skills by focusing on a specialist set of research questions. Read more
Our MPhil/PhD in Life Sciences is a cross-disciplinary research programme designed to enable you to develop your research skills by focusing on a specialist set of research questions.

This MPhil/PhD programme is designed to teach you more than just how to conduct scientific research, it also aims to develop your ability to communicate your findings effectively. This MPhil/PhD programme will also provide an opportunity for you to significantly develop your oral and written communication skills.

You can benefit from training courses provided by the University to develop key skills in research. Under the guidance and advice from your PhD supervisors you will be encouraged to present talks and seminars on your work both at the University of Lincoln as well at national and international meetings and conferences. Under the guidance of your PhD supervisors you will also be expected to produce progress reports, develop your ability to write up your work for publication in peer-reviewed journals, and ultimately to effectively communicate your research and thesis.

Beyond learning how do conduct solid research science, and the specialist skills that you are expected to develop due to your subject discipline (e.g. how to work in a molecular laboratory or conduct animal cognition experiments) the process of studying for a research degree can provide transferable skills in problem solving, time management, independent and team work, and communication.

How You Study

This research programme relies on your independent study and research, supervised by an advisory panel of academic staff. The nature of this research will be specific to the subject. A PhD programme is expected to investigate a novel question and provide a novel contribution to science.

Most students are initially enrolled on an MPhil programme. After one year, if sufficient progress can be demonstrated, students have the option to transfer to a PhD programme.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors, however the regularity of these may vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

Each student will have at least one monthly formal meeting with their supervisors where progress will be discussed. After three months you are expected to provide an outline of your research proposal, which will be evaluated. After the first year you may apply for transfer to a PhD programme via a written report and you will be orally examined.

Both the MPhil and PhD are awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Read less
Research profile. This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. Read more

Research profile

This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. You will learn valuable research skills, biomedical laboratory techniques and a wide range of other transferable skills that will give you an advantage for the rest of your career. You can also choose two themes that best suit your interests and career goals.

The programme includes seminars, taught modules and two research projects in our world-recognised research laboratories. We will also cover a range of valuable transferable skills including critical analysis of research papers, learning how to write a project grant application and literature review, and data presentation and statistical analysis.

Programme structure

The programme includes core skills, seminars, taught modules and laboratory projects in our well-resourced laboratories which are at the cutting-edge of Biomedical research.

Students will carry out two 20-week long research projects selected from the themes available. An assessed research proposal is also required for the second project.

Project 1 (September to February)

  • Cardiovascular Biology
  • Cell Communication
  • Genomics & Biological Pathways
  • Mechanisms of Inflammatory Disease
  • Reproductive Science 1
  • Infectious Diseases
  • Stem Cells, Tissue Injury and Regenerative Medicine

Project 2 (April to August)

  • Biomedical Imaging
  • Genes & Disease
  • Genomic Technologies
  • Molecular & Cellular Mechanism of Inflammation
  • Reproductive Science 2
  • Cancer Biology
  • Biological Architecture

Students may also be able to undertake projects in Integrative Neuroscience or in other areas of Biomedical Sciences, with the permission of the Programme Director. These students would be required to attend the taught element of one of the above Themes as appropriate.

Students are also required to attend the taught element of another theme as appropriate.

Research proposal

In March, students submit a research proposal based on the work to be performed for Project 2. This takes the form of a grant application, as would be prepared for a research organisation, and is assessed.

Career opportunities

This programme is an excellent stepping-stone to a PhD, or a career in Biomedical research or industry.

In addition, every year there are vacancies for PhD studentships in the School of Biomedical Sciences and staff are always on the lookout for the outstanding postgraduate students who are on this Programme to encourage them to apply.

Read testimonials from some of our successful students:

Read less
The Masters in Bioscience Enterprise (MBE) programme is an intensive, taught science and business course intended for those who have an interest in enterprise and the ambition to found technology companies or take up leadership, executive or consultancy roles in the life sciences sector. Read more
The Masters in Bioscience Enterprise (MBE) programme is an intensive, taught science and business course intended for those who have an interest in enterprise and the ambition to found technology companies or take up leadership, executive or consultancy roles in the life sciences sector. Practical experience is gained through individual and group professional practice assignments, a consulting project and an internship placement, both of which are conducted with host companies.

Applicants must have a good first degree in biological, medical or physical sciences or a financial or legal background and demonstrate a strong interest in pursuing a business career in the life science sector. MBE students are based at the Institute of Biotechnology and have a close affiliation to Judge Business School, a combination that provides an unparalleled educational experience and an opportunity to learn from leading scientists, entrepreneurs and academics at the University of Cambridge.

Learning is based on real business examples and lectures and case studies are frequently delivered by senior company executives. There are optional opportunities to gain a global perspective of the industry sector during a study tour to a international biotechnology business cluster, an event which may be planned and led by members of the class. Additional costs are incurred by students who elect to participate in these activities or incur other discretionary expenses associated with participation in the programme.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egcempbse

Course detail

The educational aims of the M.Phil. programme in Bioscience Enterprise are to:

- Enhance understanding of life sciences and related technological developments;
- Foster research and analytical skills and methodologies;
- Develop written and verbal communication skills;
- Provide knowledge of the ethical, legal and regulatory issues associated with bringing scientific advances to market;
- Develop applied business skills, including those that enable students to:
*identify potential business opportunities arising from research in life sciences and related areas;
*exploit entrepreneurial opportunities;
*undertake senior executive roles within biotechnology companies and other commercial entities.

Other aims of the programme are to:

- Provide a coherent and supportive learning environment, with students working closely with teachers drawn from both academic and biotechnology business executive backgrounds and whose teaching is informed by their own knowledge and business expertise;
- Develop new areas of teaching in response to advances of scholarship and the community;
- Continue to attract outstanding students, irrespective of race, nationality, background, gender or physical disability.

Learning Outcomes

Students gain an understanding of:

- Life sciences, including fundamental concepts of basic science and demonstration of how contemporary biological and medical research leads to exploitable science and commercial products;
- Business, including commercial and analytical skills required in biotechnology and healthcare related businesses;
- Management, including strategy, organisation, leadership, marketing and financing of technology companies;
- Technology transfer, from academia to industry and from industry to industry, including the concepts of licensing, partnering, joint ventures, mergers and acquisitions;
- Law and intellectual property frameworks, relating to companies, individuals and shareholders in different jurisdictions;
- Social and ethical issues, including fundamental constraints when applying scientific research to the development of new bioscience products;
- Global biotechnology, including comparisons of the current industry status in the UK, Europe, USA and elsewhere.


Science and technology, business and transitionary modules are taught in each term, integrating commercial know-how with advances in research and demonstrating the many complex issues associated with bringing discovery and innovation from the laboratory to the market. The programme is highly participatory and includes practical elements in the form of interdisciplinary projects, workshops, case studies and business planning activities. Students have opportunities to undertake a consulting project and a technology company internship placement, and to gain an international perspective during a (self-funded, optional, student planned and led) study tour to a biotechnology business cluster in the EU or USA.

The MBE class is taught as a single entity. There are no elective components and all students follow the same syllabus. The class offers a professional practice experience and a high level of participation is expected. All lectures and course components are mandatory.

The department is renowned for its practical and successful approach to biotechnology entrepreneurship and the exploitation of bioscience inventions. Students benefit from a unique combination of teaching and mentoring from experienced business and academic contributors. The faculty pursue a variety of research interests and the application of the resulting technologies has led to the founding of many spin-out companies. Our innovative achievements and strong Master's teaching were recognised by the Queen's Anniversary Award (2007).


In April and May of each year, MBE students spend the majority of their time working in a company placement, carrying out research with a commercial or business dimension. Students are encouraged at this time to put into practice the lessons learnt from the academic aspects of the programme as well as to demonstrate originality of research and analysis. The MBE staff provides considerable support to students in regard to both identifying suitable projects and during the placement itself.

It is important that the project undertaken relates to the field of ‘bioscience enterprise’, addresses a defined research question and affords students the opportunity to collect quantitative and qualitative data. The subsequent analysis forms the basis of a substantial dissertation and the findings are also presented at a Symposium held at the end of the year, as well as in the form of conclusions and recommendations for the host company.


A 10,000 word dissertation is an important aspect of course assessment. Passing this element of the course is crucial to attainment of the degree. The work is based on data collected during a research placement in a company, the analysis of which forms the basis of the work. The dissertation should show evidence of innovative thinking and must not be simply a review and subsequent extrapolation of previously published work.

Written submissions include in-depth science and technology in business papers, up to 10 essays of no more than 4000 words, a number of short reports and critical appraisals, a consulting project report and a dissertation of no more than 10,000 words based on research and analysis conducted during the internship placement. At the conclusion of the dissertation students make an assessed presentation. The Examiners may ask candidates to take an oral exam at the conclusion of the course.

Attainment is continuously assessed, with particular emphasis on practical activities, participation and learning through team-work in the research, preparation, and delivery of presentations. Where possible group work reflects the activities of a professional business environment.

Students are also encouraged to participate in extracurricular enterprise activities, including entrepreneurial competitions within the University and further afield, and submit a business development plan as one of the course assignments.


Students completing this course usually continue their career in the life sciences commercial sector but a number also at the conclusion of the course apply for PhD research programmes in either science or management disciplines.

Find out how to apply here http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Students normally fund their studies through savings, loans, by a grant from their employer or by securing a scholarship from either a Cambridge Trust or other awarding body. The competition for scholarship awards is intense and candidates are advised that only a small percentage of the highest-achieving applicants are successful.

A limited number of bursaries are available to MBE students through the generosity of the Chris R. Lowe Carpe Diem Bursary programme and at times from other sources associated with the course. Candidates who meet the eligibility criteria set by the donors and are offered a place to study on the course will be automatically considered for these awards as part of their application process. Usually these awards are made to students on the basis of economic need, or those who live in or have studied in and intend to pursue their future careers in the UK.

Please note that the programme bursaries, whilst at times substantial, are not intended to cover all the costs associated with living and studying at Cambridge and therefore applicants must ensure they have access to sufficient funds to cover the balance of their tuition and College fees and maintenance needs.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Understanding the molecular basis of disease. Read more

Understanding the molecular basis of disease

Aspiring to contribute to the development of new therapies for metabolic, infectious and immunological diseases or cancer? Radboud University's internationally acclaimed Research Master's programme in Molecular Mechanisms of Disease provides an excellent foundation for a career in academic or commercial research.

Only by dissecting the molecular mechanisms that trigger and advance diseases and dysfunctions can we design effective treatments and medicines. The Research Master's in Molecular Mechanisms of Disease (MMD) offers you an intensive two-year programme that provides you with in-depth knowledge and research experience of disease-related molecular mechanisms. In addition, you will acquire skills such as academic writing and presentation skills and learn how to successfully apply for grants and market yourself.

Passion for molecular biomedical research

As an MMD student you will be part of the unique research community that is found within the Radboud Institute for Molecular Life Sciences (RIMLS). Like you, RIMLS researchers have a strong passion for research. They will assist you throughout the programme with guidance and expertise, supporting you in acquiring knowledge and developing excellent research skills. The RIMLS is one of the research institutes of the Radboud university medical center, so their research is closely linked to the clinic and thus aimed at translating results into treatments for patients. Examples include the translation of insights into the biology of antigen-presenting cells into new immunological cancer therapies and understanding the mutations underlying blindness into the development of gene therapies for patients with inherited blindness.

See the website http://www.ru.nl/masters/mmd

Why study Molecular Mechanisms of Disease at Radboud University?

- You will follow a broad biomedical programme that allows you to specialise in your specific field-of-interest.

- You will have intense daily contact with established researchers.

- You will participate in group-oriented education and be part of a small group of highly motivated national and international students.

- A personal mentor will help you to reflect on your study programme and career perspective.

- You will do two 6-months research internships one of which will be abroad.

- There is a 92% pass rate of MMD students within the two years.

- International MMD students can apply for scholarships from the Radboudumc Study Fund.

Career prospects

There is considerable demand for experts in the molecular biomedical sciences as well as in their application to the development of treatments for diseases such as cancer, autoimmune and inflammatory disorders, and metabolic diseases.

Graduates in MMD are equipped with cutting-edge knowledge of multidisciplinary research in the mechanisms of disease and in state-of-the-art diagnostic methods and technologies. During the programme, you will develop a highly critical, independent approach to problem-solving. You will also acquire the basic management skills needed to lead R&D projects in the biotechnology and pharmaceutical industries.

Most of our graduates will enter an international PhD programme to continue with research in academia or industry.

PhD opportunities

The MSc Molecular Mechanisms of Disease aims to provide all skills and knowledge necessary to rapidly enter an international PhD programme. In the Netherlands and many places in Europe, it is impossible to start a PhD programme directly after obtaining a Bachelor's degree. This research Master’s programme seriously increases your chances for obtaining an excellent PhD training position by giving you a mature perspective and a broad range of experimental approaches. In fact, over 90% of our graduates has started a (funded) PhD project.

The Radboud Institute for Molecular Life Sciences (RIMLS) recruits about fifty PhD students a year. MMD graduates are excellent candidates for these positions. Furthermore, the Radboud university medical centre offers the opportunity for its research-oriented Master's students to write their own research project. The best candidates are awarded a fully funded four-year PhD studentship at the department of their choice.

Our approach to this field

The molecular regulation of cellular processes is crucial for human development, and maintenance of health throughout life. It's evident that cellular malfunction is the cause of common multi-factorial diseases such as diabetes, immune and inflammatory disorders, renal disease, cardiovascular, metabolic and neurodegenerative diseases as well as obesity and cancer.

The Radboud Institute for Molecular Life Sciences (RIMLS) Graduate School plays a key role in developing new therapies for the fight against such diseases. RIMLS aims to improve diagnostics and develop new treatments by generating basic knowledge in the molecular biomedical life sciences and translating it into clinical application and experimental research in patients.

The RIMLS – which is part of Radboud university medical center – offers an exclusive Master's programme in Molecular Mechanisms of Disease. Top researchers and clinicians teach the programme.

Key themes

The MMD programme is organised along three major educational themes which reflect the main research areas present in the RIMLS and which each include both a fundamental and a disease-related aspect:

- Theme 1 Infection, Immunity and Regenerative Medicine / Immunity-related Disorders and Immunotherapy

- Theme 2 Metabolism, Transport and Motion / Metabolic Disorders

- Theme 3 Cell Growth and Differentiation / Developmental Disorders and Malignancies

See the website http://www.ru.nl/masters/mmd

Radboud University Master's Open Day 10 March 2018

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics

Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators

Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more

Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce. It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

  • The programme will cover the principles which underpin the emerging science at the interface between genetics and pharmacology and the clinical evaluation of the resultant new medicines, taught by internationally recognised experts.
  • The aim of this programme is to train researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside
  • The University of Glasgow has a global reputation in the field of clinical trials and stratified medicine. You will be taught by a multidisciplinary team of world leading scientists and clinicians within the College of Medical, Veterinary and Life Sciences.
  • Students will gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments.
  • Students on the programme will undergo theoretical and practical training in state-of-the-art research processes available to researchers in Glasgow, enabling an appreciation of how to apply novel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
  • We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business which will help you understand the science, methodology and terminology used by scientists and clinicians from different disciplines. You will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to research and treatment in the 21st century.
  • Students will learn how all of the above techniques are applied by academic and industrial researchers in the development of new medicines.
  • Scholarships available

Programme structure

Students will undertake core courses which will account for 90 credits and a further 30 credits from options, which will enable students to personalise their degree to better align it with their future career aspirations. Students will also be offered a choice of project.

Core courses

  • Topics in Therapeutics: General Topics and Cardiovascular Disease
  • Pharmacogenomics and Molecular Medicine: Fundamentals of Molecular Medicine 
  • Medical Statistics 1
  • Evidence Based Research in Medicine 
  • Drug Disposition
  • Clinical Trials: Principles and Methods

Optional courses

  • Pharmacogenomics & Molecular Medicine: Applied Pharmacogenomics and Molecular Medicine
  • Topics in Therapeutics: Commonly Used Drugs
  • Pharmaceutical Medicine
  • Medical Statistics 2
  • Established and Novel Techniques in Cardiovascular & Medical Sciences Research

Project and assessment

The project will account for the remaining 60 credits. The programme will include an opportunity for all students to present the outcomes of their projects to an audience of other students and academics. Assessment will consist of submission of a dissertation and a viva examination.

Career prospects

Graduates of this programme will be competitive applicants for the positions in the commercial life sciences sector, or for PhD study in an academic or combined commercial/academic environment.

Read less

Show 10 15 30 per page

Cookie Policy    X