• University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of Strathclyde Featured Masters Courses
University of Leeds Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Leeds Featured Masters Courses
"life" AND "sciences"×
0 miles

Masters Degrees (Life Sciences)

  • "life" AND "sciences" ×
  • clear all
Showing 1 to 15 of 2,046
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Medicine and Life Sciences at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Medicine and Life Sciences at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MRes in Medicine and Life Sciences is a one year full time programme, which provides an ideal opportunity and environment in which to gain practical training in Research Methods and to join a thriving research team within Swansea University College of Medicine. The Medicine and Life Sciences course has been developed with an emphasis on providing students with a research-oriented approach to their learning. Students are able to tailor their studies towards a career in one of the College’s internationally recognised research themes:

– Biomarkers and Genes,
– Devices,
– Microbes and Immunity,
– Patient & Population Health and Informatics.

Key Features of MRes in Medicine and Life Sciences

The Medicine and Life Sciences programme is committed to supporting the development of evidence within the areas of Health, Medicine and Life Science through the training of researchers whose findings will directly inform their own understanding and that of others. The ethos of this programme is to produce graduates with the research skill and knowledge to become effective researchers, who will contribute to the body of knowledge within their chosen area of interest that will have an impact upon the health and well-being of all.

- The advantage of a MRes over other formats is that it provides a structured yet in-depth approach, taking the taught component of FHEQ Level 7 teaching as a framework for conducting research on the candidates own practice.
- Innovative and integrated curriculum that reflects the various aspects of the research process.
- Multidisciplinary teaching team with vast experience and expertise in conducting high quality research.
- Research informed teaching.
- Teaching is supported by online learning and support.
-Flexibility for you to gain specialist knowledge.
- A one year full-time taught masters programme designed to develop the essential skills and knowledge required for a successful research career.
- This course is also available for two years part-time study.
- The opportunity to conduct an individual research project with an interdisciplinary team within a supportive environment.
- Students will be assigned a research-active supervisory team

The aim of the MRes in Medicine and Life Sciences is to provide students with a broad research training to prepare them for a research career in Medical and Life Science research with emphasis on: Biomarkers & Genes, Devices, Microbes & Immunity, and Patient & Population Health and Informatics. The course has been developed to enable graduates to pursue a variety of research careers in Medical and Life Sciences. The programme comprises both taught and research elements.

By the end of the Medicine and Life Sciences programme students will have:

Developed necessary skills to critically interpret and evaluate research evidence; Gained experience the in analysis and interpretation of research data; Advanced knowledge at the forefront of Medical and Life Science research, with the ability to integrate the theoretical and practical elements of research training; Developed the ability to conceptualise, design and implement a research project for the generation of new evidence that informs Health, Medicine and Life Science; Developed practical research skills by working with an interdisciplinary research team; The ability to confidently communicate research ideas and conclusions clearly and effectively to specialist and non-specialist audiences; Acquired transferable skills which enhance your employability and future research career.

Modules

Modules on the Medicine and Life Sciences course may include:

PMRM01 Critical Appraisal and Evaluation

PMRM02 Data Analysis for Health and Medical Sciences

PMRM03 Research Leadership and Project Management OR any topic specific FHEQ Level 7 module from the College of Medicine ’s portfolio

Mode of delivery:

The 60 credits of the taught element will be delivered face-to-face, combining formal lecturing, seminars, and group work in addition to tutor-led practical classes. The remaining 120 credits for the research element will be available as distance learning either off or on-site. Irrespective of the location for conducting the research project, students will supported through monthly online (Skype)/or face-to-face supervisory meetings.

Course Structure

Students must complete 3 modules of 20 credits each and produce a 120 credits thesis on a research project aligned to one the College’s research theme. Each taught module of the programme requires a short period of attendance that is augmented by preparatory and reflective material supplied via the course website before and after attendance.

The Medicine and Life Sciences programme is designed in two phases:

Phase 1 – Training and Application (October – January; 60 credits)

Taught modules in Research Methods and their application to Medicine and Life Science. Personalised education and training relevant to student’s research interests. Identification of research questions and how they might be addressed.Focused on students existing knowledge and research skills.

Phase 2 – Research Project (February – September; 120 credits)

The project is selected by the student in combination with an academic supervisory team. Focussed on one of the College’s four main research themes: Biomarkers and Genes, Devices, Microbes and Immunity, and Patient & Population Health and Informatics. At the end of Part 2 students submit a 40,000 word thesis worth 120 credits leading to the award of Master of Research in Medicine and Life Science.

Attendance Pattern

Students are required to attend the University for 1 week (5 consecutive days) for each module in Phase One. Attendance during Phase Two is negotiated with the supervisor.

You are also encouraged to attend the Postgraduate Taught Induction Event during the induction week and any programme associated seminars, together with Postgraduate research events.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and elective modules complement the Medical Life Sciences curriculum.

To lay the foundation for working in medical research, Medical Life Sciences (MedLife) provides basic knowledge in courses on clinical manifestations of diseases, human biology, molecular pathology and immunology. Lectures, seminars and tutorials in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it, all of which are important skills in research.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum during the entire duration of your studies.

Read less
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project. Read more
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project.

This course provides an opportunity for students from biological subjects to begin research in life sciences. Research may be conducted in a broad range of topics in biology and life sciences and as a researcher in the School, you will have the opportunity to collaborate with academics working on studies and projects.

The School undertakes research at molecular, cellular, organism and population levels in order to answer fundamental questions in molecular biology and biomedical science, forensic science and microbiology, animal and plant biology, and evolution and ecology.

Research Areas, Projects & Topics

Research is conducted within six substantial research groups. Scientists in Animal Behaviour, Cognition and Welfare explore the causes, functions and evolution of animal behaviour and the impact this has on animal welfare.

Those in Evolution and Ecology examine population dynamics and evolutionary processes at all levels of biological organisation. Researchers in Drug Design and Delivery focus on the application and efficacy of novel therapeutics, while academics working in Molecular Basis of Disease aim to understand disease at a molecular level in order to improve diagnosis and treatment.

Example Research Areas:
-Management of Native River Fish
-Forensic Analysis of Burnt Bones
-Public Perception of Dog Breed Types.

Example Research Projects:
-Peptide-guided drug delivery
-Cognitive phylogenetics in parrots
-Sexual selection dynamics in humans
-Protein Biochemistry with the development of cardiovascular disease
-Reconstruction of patterns of habitat colonisation using genetic methods.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

Facilities

Students have the chance to develop their professional and technical skills in specialist laboratories equipped for research in biomedical, forensic and pharmaceutical science, chemistry, microbiology, molecular biology and animal and plant biology.

Minster House, adjacent to the laboratories, provides specialist facilities for the study of animal behaviour. Our links with local, national and international partners may provide postgraduate students with opportunities for further collaboration with scientists in industry, government and academia.

Career and Personal Development

Postgraduate-level research provides you with the opportunity to advance your knowledge and develop your practical and intellectual skills. Graduates may pursue careers in research and science-related roles, while others may choose to move on to research at doctoral level.

Read less
Working at the interface of Chemistry, Biology and Medical science. In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Read more

Introduction

Working at the interface of Chemistry, Biology and Medical science
In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Working at the interface of chemistry, biology and medical science, you will not only explore the basic principles of molecules and cells, but also their role in health and disease. This combination of scientific topics translated into medical implications and solutions is unique in the Netherlands.

See the website http://www.ru.nl/masters/mls

Specialisations within the Master's in Molecular Life Sciences

The Master's programme in Molecular Life Science is closely associated with chemistry and medical biology. You can choose a specialisation in Chemistry or in Medical Biology
- Chemistry for Life
- Clinical Biology
- Medical Epigenomics
- Neuroscience

Career prospects

Most graduates go on to do a PhD in Nijmegen, at another Dutch university or abroad. Each year our research institutes have a number of PhD vacancies. Some find a job as a researcher or manager in the pharmaceutical industry, in the private commercial sector or in research organisations.

Our research in this field

- Top scientists
The programme is closely associated with two institutes that have an excellent international reputation:
- the Institute of Molecules and Materials
- the Nijmegen Centre for Molecular Life Sciences.

You will enter a dynamic research environment, work with top scientists, learn about the latest developments in your discipline and conduct research in state-of-the-art laboratories. Thanks to cooperation with the neighbouring University Medical Centre, there is continuous exchange between Lab and Clinic.

- Great freedom and personal tutor
You will be given considerable freedom to follow your own interests. Two internships are central to the programme. You choose a specialisation and you join a related research group, for example Anthropogenetics, Molecular Biology, Pharmacology, Neurobiology or Bioinformatics. You will have your personal tutor who will help you decide which subjects and research to follow. Your second internship will be with a different research group or related to your variant. You can also choose to follow an internship abroad or within a company. In making your choice, you will be able to benefit from the extensive international networks of our scientists.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/mls

Read less
Molecular and Cellular Life Sciences focuses on understanding molecular-level cellular function and rests at the crossroads of chemical, biological, physical and computational science. Read more

Molecular and Cellular Life Sciences

Molecular and Cellular Life Sciences focuses on understanding molecular-level cellular function and rests at the crossroads of chemical, biological, physical and computational science.

Designed to communicate this unique field of research to a new generation of students, this MSc programme is research-oriented and takes a multidisciplinary approach. You will learn a wide range of state-of-the-art techniques, including advanced methodologies in genetics, cell biology and structural biology. You will acquire extensive knowledge of molecular recognition and regulation, cell signalling, membrane biogenesis and sorting, chemical approaches to biology and genomics/proteomics.

The programme offers you considerable freedom to choose a specific field within the biomolecular sciences. A tailor-made programme can be developed to suit your personal interests.

Read less
Our MPhil/PhD in Life Sciences is a cross-disciplinary research programme designed to enable you to develop your research skills by focusing on a specialist set of research questions. Read more
Our MPhil/PhD in Life Sciences is a cross-disciplinary research programme designed to enable you to develop your research skills by focusing on a specialist set of research questions.

This MPhil/PhD programme is designed to teach you more than just how to conduct scientific research, it also aims to develop your ability to communicate your findings effectively. This MPhil/PhD programme will also provide an opportunity for you to significantly develop your oral and written communication skills.

You can benefit from training courses provided by the University to develop key skills in research. Under the guidance and advice from your PhD supervisors you will be encouraged to present talks and seminars on your work both at the University of Lincoln as well at national and international meetings and conferences. Under the guidance of your PhD supervisors you will also be expected to produce progress reports, develop your ability to write up your work for publication in peer-reviewed journals, and ultimately to effectively communicate your research and thesis.

Beyond learning how do conduct solid research science, and the specialist skills that you are expected to develop due to your subject discipline (e.g. how to work in a molecular laboratory or conduct animal cognition experiments) the process of studying for a research degree can provide transferable skills in problem solving, time management, independent and team work, and communication.

How You Study

This research programme relies on your independent study and research, supervised by an advisory panel of academic staff. The nature of this research will be specific to the subject. A PhD programme is expected to investigate a novel question and provide a novel contribution to science.

Most students are initially enrolled on an MPhil programme. After one year, if sufficient progress can be demonstrated, students have the option to transfer to a PhD programme.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors, however the regularity of these may vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

Each student will have at least one monthly formal meeting with their supervisors where progress will be discussed. After three months you are expected to provide an outline of your research proposal, which will be evaluated. After the first year you may apply for transfer to a PhD programme via a written report and you will be orally examined.

Both the MPhil and PhD are awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Read less
The programme provides training in research methodology starting with student-centred modules in statistics and project planning. Read more
The programme provides training in research methodology starting with student-centred modules in statistics and project planning.

The major activity of the programme is a focused research project which can be taken in the areas of biological sciences, food sciences or vision sciences. You will have the opportunity to select your project from a list approved by our highly experienced research supervisors. The projects pose cutting-edge research questions relevant to the work in which staff are currently engaged.

You will receive training in the skills required to support research but the majority of your work (75%) will be devoted to research through experimentation and hypothesis testing. Many projects feature the use of newly-developed technologies relevant to the investigation in biological or vision sciences.

The programme is deliberately flexible to provide additionality and enable attendance at lectures in subjects that underpin and support your research.

Progression Opportunities

Graduates from this programme may go on to study PhDs and progress to positions as academic researchers or consultants. Many opportunities also exist in subject-related industry.

Read less
This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. You will learn valuable research skills, biomedical laboratory techniques and a wide range of other transferable skills that will give you an advantage for the rest of your career. Read more

Research profile

This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. You will learn valuable research skills, biomedical laboratory techniques and a wide range of other transferable skills that will give you an advantage for the rest of your career. You can also choose two themes that best suit your interests and career goals.

The programme includes seminars, taught modules and two research projects in our world-recognised research laboratories. We will also cover a range of valuable transferable skills including critical analysis of research papers, learning how to write a project grant application and literature review, and data presentation and statistical analysis.

Programme structure

The programme includes core skills, seminars, taught modules and laboratory projects in our well-resourced laboratories which are at the cutting-edge of Biomedical research.

Students will carry out two 20-week long research projects selected from the themes available. An assessed research proposal is also required for the second project.

Project 1 (September to February)

Cardiovascular Biology
Cell Communication
Genomics & Biological Pathways
Mechanisms of Inflammatory Disease
Reproductive Science 1
Infectious Diseases
Stem Cells, Tissue Injury and Regenerative Medicine - new theme for September 2017

Project 2 (April to August)

Biomedical Imaging
Genes & Disease
Genomic Technologies
Molecular & Cellular Mechanism of Inflammation
Reproductive Science 2
Cancer Biology
Biological Architecture

Students may also be able to undertake projects in Integrative Neuroscience or in other areas of Biomedical Sciences, with the permission of the Programme Director. These students would be required to attend the taught element of one of the above Themes as appropriate.

Research proposal

In March, students submit a research proposal based on the work performed for Project 2. This takes the form of a grant application, as would be prepared for a research organisation, and is assessed.

Career opportunities and 'Follow-on PhDs'

This programme is an excellent stepping-stone to a PhD, or a career in Biomedical research or industry.

In addition, every year there are vacancies for PhD studentships in the School of Biomedical Sciences and staff are always on the lookout for the outstanding postgraduate students who are on this Programme to encourage them to apply.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less
The Masters in Bioscience Enterprise (MBE) programme is an intensive, taught science and business course intended for those who have an interest in enterprise and the ambition to found technology companies or take up leadership, executive or consultancy roles in the life sciences sector. Read more
The Masters in Bioscience Enterprise (MBE) programme is an intensive, taught science and business course intended for those who have an interest in enterprise and the ambition to found technology companies or take up leadership, executive or consultancy roles in the life sciences sector. Practical experience is gained through individual and group professional practice assignments, a consulting project and an internship placement, both of which are conducted with host companies.

Applicants must have a good first degree in biological, medical or physical sciences or a financial or legal background and demonstrate a strong interest in pursuing a business career in the life science sector. MBE students are based at the Institute of Biotechnology and have a close affiliation to Judge Business School, a combination that provides an unparalleled educational experience and an opportunity to learn from leading scientists, entrepreneurs and academics at the University of Cambridge.

Learning is based on real business examples and lectures and case studies are frequently delivered by senior company executives. There are optional opportunities to gain a global perspective of the industry sector during a study tour to a international biotechnology business cluster, an event which may be planned and led by members of the class. Additional costs are incurred by students who elect to participate in these activities or incur other discretionary expenses associated with participation in the programme.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egcempbse

Course detail

The educational aims of the M.Phil. programme in Bioscience Enterprise are to:

- Enhance understanding of life sciences and related technological developments;
- Foster research and analytical skills and methodologies;
- Develop written and verbal communication skills;
- Provide knowledge of the ethical, legal and regulatory issues associated with bringing scientific advances to market;
- Develop applied business skills, including those that enable students to:
*identify potential business opportunities arising from research in life sciences and related areas;
*exploit entrepreneurial opportunities;
*undertake senior executive roles within biotechnology companies and other commercial entities.

Other aims of the programme are to:

- Provide a coherent and supportive learning environment, with students working closely with teachers drawn from both academic and biotechnology business executive backgrounds and whose teaching is informed by their own knowledge and business expertise;
- Develop new areas of teaching in response to advances of scholarship and the community;
- Continue to attract outstanding students, irrespective of race, nationality, background, gender or physical disability.

Learning Outcomes

Students gain an understanding of:

- Life sciences, including fundamental concepts of basic science and demonstration of how contemporary biological and medical research leads to exploitable science and commercial products;
- Business, including commercial and analytical skills required in biotechnology and healthcare related businesses;
- Management, including strategy, organisation, leadership, marketing and financing of technology companies;
- Technology transfer, from academia to industry and from industry to industry, including the concepts of licensing, partnering, joint ventures, mergers and acquisitions;
- Law and intellectual property frameworks, relating to companies, individuals and shareholders in different jurisdictions;
- Social and ethical issues, including fundamental constraints when applying scientific research to the development of new bioscience products;
- Global biotechnology, including comparisons of the current industry status in the UK, Europe, USA and elsewhere.

Format

Science and technology, business and transitionary modules are taught in each term, integrating commercial know-how with advances in research and demonstrating the many complex issues associated with bringing discovery and innovation from the laboratory to the market. The programme is highly participatory and includes practical elements in the form of interdisciplinary projects, workshops, case studies and business planning activities. Students have opportunities to undertake a consulting project and a technology company internship placement, and to gain an international perspective during a (self-funded, optional, student planned and led) study tour to a biotechnology business cluster in the EU or USA.

The MBE class is taught as a single entity. There are no elective components and all students follow the same syllabus. The class offers a professional practice experience and a high level of participation is expected. All lectures and course components are mandatory.

The department is renowned for its practical and successful approach to biotechnology entrepreneurship and the exploitation of bioscience inventions. Students benefit from a unique combination of teaching and mentoring from experienced business and academic contributors. The faculty pursue a variety of research interests and the application of the resulting technologies has led to the founding of many spin-out companies. Our innovative achievements and strong Master's teaching were recognised by the Queen's Anniversary Award (2007).

Placements

In April and May of each year, MBE students spend the majority of their time working in a company placement, carrying out research with a commercial or business dimension. Students are encouraged at this time to put into practice the lessons learnt from the academic aspects of the programme as well as to demonstrate originality of research and analysis. The MBE staff provides considerable support to students in regard to both identifying suitable projects and during the placement itself.

It is important that the project undertaken relates to the field of ‘bioscience enterprise’, addresses a defined research question and affords students the opportunity to collect quantitative and qualitative data. The subsequent analysis forms the basis of a substantial dissertation and the findings are also presented at a Symposium held at the end of the year, as well as in the form of conclusions and recommendations for the host company.

Assessment

A 10,000 word dissertation is an important aspect of course assessment. Passing this element of the course is crucial to attainment of the degree. The work is based on data collected during a research placement in a company, the analysis of which forms the basis of the work. The dissertation should show evidence of innovative thinking and must not be simply a review and subsequent extrapolation of previously published work.

Written submissions include in-depth science and technology in business papers, up to 10 essays of no more than 4000 words, a number of short reports and critical appraisals, a consulting project report and a dissertation of no more than 10,000 words based on research and analysis conducted during the internship placement. At the conclusion of the dissertation students make an assessed presentation. The Examiners may ask candidates to take an oral exam at the conclusion of the course.

Attainment is continuously assessed, with particular emphasis on practical activities, participation and learning through team-work in the research, preparation, and delivery of presentations. Where possible group work reflects the activities of a professional business environment.

Students are also encouraged to participate in extracurricular enterprise activities, including entrepreneurial competitions within the University and further afield, and submit a business development plan as one of the course assignments.

Continuing

Students completing this course usually continue their career in the life sciences commercial sector but a number also at the conclusion of the course apply for PhD research programmes in either science or management disciplines.

Find out how to apply here http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Students normally fund their studies through savings, loans, by a grant from their employer or by securing a scholarship from either a Cambridge Trust or other awarding body. The competition for scholarship awards is intense and candidates are advised that only a small percentage of the highest-achieving applicants are successful.

A limited number of bursaries are available to MBE students through the generosity of the Chris R. Lowe Carpe Diem Bursary programme and at times from other sources associated with the course. Candidates who meet the eligibility criteria set by the donors and are offered a place to study on the course will be automatically considered for these awards as part of their application process. Usually these awards are made to students on the basis of economic need, or those who live in or have studied in and intend to pursue their future careers in the UK.

Please note that the programme bursaries, whilst at times substantial, are not intended to cover all the costs associated with living and studying at Cambridge and therefore applicants must ensure they have access to sufficient funds to cover the balance of their tuition and College fees and maintenance needs.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This new taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce. It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

-The programme will cover the principles which underpin the emerging science at the interface between genetics and pharmacology and the clinical evaluation of the resultant new medicines, taught by internationally recognised experts.
-The aim of this programme is to train researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside.
-University of Glasgow is rated in the top 1% of universities worldwide, and has a global reputation in the field of clinical trials and stratified medicine. You will be taught by a multidisciplinary team of world leading scientists and clinicians within the College of Medical, Veterinary and Life Sciences.
-Students will gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments.
-Students on the programme will undergo theoretical and practical training in state-of-the-art research processes available to researchers in Glasgow, enabling an appreciation of how to apply novel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
-We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business which will help you understand the science, methodology and terminology used by scientists and clinicians from different disciplines. You will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to research and treatment in the 21st century.
-You will be taught by a multidisciplinary team of world leading scienctists and clinicians within the College of Medical, Veterinary and Life Sciences.
-Students will learn how all of the above techniques are applied by academic and industrial researchers in the development of new medicines.

Career prospects

Graduates of this programme will be competitive applicants for the positions in the commercial life sciences sector, or for PhD study in an academic or combined commercial / academic environment.

Read less
Aspiring to contribute to the development of new therapies for metabolic, infectious and immunological diseases or cancer? Radboud University's internationally acclaimed Research Master's programme in Molecular Mechanisms of Disease provides an excellent foundation for a career in academic or commercial research. Read more

Understanding the molecular basis of disease

Aspiring to contribute to the development of new therapies for metabolic, infectious and immunological diseases or cancer? Radboud University's internationally acclaimed Research Master's programme in Molecular Mechanisms of Disease provides an excellent foundation for a career in academic or commercial research.

Only by dissecting the molecular mechanisms that trigger and advance diseases and dysfunctions can we design effective treatments and medicines. The Research Master's in Molecular Mechanisms of Disease (MMD) offers you an intensive two-year programme that provides you with in-depth knowledge and research experience of disease-related molecular mechanisms. In addition, you will acquire skills such as academic writing and presentation skills and learn how to successfully apply for grants and market yourself.

Passion for molecular biomedical research

As an MMD student you will be part of the unique research community that is found within the Radboud Institute for Molecular Life Sciences (RIMLS). Like you, RIMLS researchers have a strong passion for research. They will assist you throughout the programme with guidance and expertise, supporting you in acquiring knowledge and developing excellent research skills. The RIMLS is one of the research institutes of the Radboud university medical center, so their research is closely linked to the clinic and thus aimed at translating results into treatments for patients. Examples include the translation of insights into the biology of antigen-presenting cells into new immunological cancer therapies and understanding the mutations underlying blindness into the development of gene therapies for patients with inherited blindness.

See the website http://www.ru.nl/masters/mmd

Why study Molecular Mechanisms of Disease at Radboud University?

- You will follow a broad biomedical programme that allows you to specialise in your specific field-of-interest.
- You will have intense daily contact with established researchers.
- You will participate in group-oriented education and be part of a small group of highly motivated national and international students.
- A personal mentor will help you to reflect on your study programme and career perspective.
- You will do two 6-months research internships one of which will be abroad.
- There is a 92% pass rate of MMD students within the two years.
- International MMD students can apply for scholarships from the Radboudumc Study Fund.

Career prospects

There is considerable demand for experts in the molecular biomedical sciences as well as in their application to the development of treatments for diseases such as cancer, autoimmune and inflammatory disorders, and metabolic diseases.

Graduates in MMD are equipped with cutting-edge knowledge of multidisciplinary research in the mechanisms of disease and in state-of-the-art diagnostic methods and technologies. During the programme, you will develop a highly critical, independent approach to problem-solving. You will also acquire the basic management skills needed to lead R&D projects in the biotechnology and pharmaceutical industries.

Most of our graduates will enter an international PhD programme to continue with research in academia or industry.

PhD opportunities

The MSc Molecular Mechanisms of Disease aims to provide all skills and knowledge necessary to rapidly enter an international PhD programme. In the Netherlands and many places in Europe, it is impossible to start a PhD programme directly after obtaining a Bachelor's degree. This research Master’s programme seriously increases your chances for obtaining an excellent PhD training position by giving you a mature perspective and a broad range of experimental approaches. In fact, over 90% of our graduates has started a (funded) PhD project.

The Radboud Institute for Molecular Life Sciences (RIMLS) recruits about fifty PhD students a year. MMD graduates are excellent candidates for these positions. Furthermore, the Radboud university medical centre offers the opportunity for its research-oriented Master's students to write their own research project. The best candidates are awarded a fully funded four-year PhD studentship at the department of their choice.

Our approach to this field

The molecular regulation of cellular processes is crucial for human development, and maintenance of health throughout life. It's evident that cellular malfunction is the cause of common multi-factorial diseases such as diabetes, immune and inflammatory disorders, renal disease, cardiovascular, metabolic and neurodegenerative diseases as well as obesity and cancer.

The Radboud Institute for Molecular Life Sciences (RIMLS) Graduate School plays a key role in developing new therapies for the fight against such diseases. RIMLS aims to improve diagnostics and develop new treatments by generating basic knowledge in the molecular biomedical life sciences and translating it into clinical application and experimental research in patients.

The RIMLS – which is part of Radboud university medical center – offers an exclusive Master's programme in Molecular Mechanisms of Disease. Top researchers and clinicians teach the programme.

Key themes

The MMD programme is organised along three major educational themes which reflect the main research areas present in the RIMLS and which each include both a fundamental and a disease-related aspect:
- Theme 1 Infection, Immunity and Regenerative Medicine / Immunity-related Disorders and Immunotherapy
- Theme 2 Metabolism, Transport and Motion / Metabolic Disorders
- Theme 3 Cell Growth and Differentiation / Developmental Disorders and Malignancies

See the website http://www.ru.nl/masters/mmd

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X