• Birmingham City University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Leicester Featured Masters Courses
Cranfield University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"life" AND "science"×
0 miles

Masters Degrees (Life Science)

We have 2,003 Masters Degrees (Life Science)

  • "life" AND "science" ×
  • clear all
Showing 1 to 15 of 2,003
Order by 
The cell is the building block of life, the smallest unit with the molecular characteristics of living systems. Increased knowledge of the mechanisms of the biomolecular and biochemical processes in the cell can lead to better medicines, new methods for combating diseases. Read more

The cell is the building block of life, the smallest unit with the molecular characteristics of living systems. Increased knowledge of the mechanisms of the biomolecular and biochemical processes in the cell can lead to better medicines, new methods for combating diseases.

What does this master’s programme entail?

The basis of the two-year master’s programme in Life Science and Technology is formed by research carried out in the life sciences and chemistry groups of the Leiden Institute of Chemistry (LIC). Researchers take a science-based approach in finding tailored solutions for complex societal problems as encountered in personalized medicine, systems biology and sustainable use of biological sources. Starting from day one, and during the whole master programme you are a member of a research team in the LIC. Guided by a personal mentor, the student assembles a tailor-made educational programme for optimal training to become a life sciences professional.

Read more about our Life Science and Technology programme.

Why study Life Science and Technology at Leiden University?

  • You can design your own tailor-made programme adjusted to your own interests and ambitions related to Life Sciences, biomedicine and Chemical Biology.
  • You have the possibility to be part of research training projects within the Faculty of Science, Leiden University Medical Center, Netherlands Cancer Institute, Erasmus Medical Center or abroad.
  • You will receive personal guidance by a mentor of choice, who is a member of one of our international and young research groups.

Find more reasons to study Life Science and Technology at Leiden University.

Life Science and Technology: the right master’s programme for you?

If you are interested in Life Science and you are looking for a programme with ample of opportunities to assemble your own study path, our Life Science and Technology programme is the right choice. The programme addresses societal problems on a molecular and cellular level. You can also choose a specialisation where you combine one year of Life Science and Technology research with one year of training in business, communication or education.

Read more about the entry requirements for Life Science and Technology.

Specialisations



Read less
Goal of the pro­gramme. Life Sciences.  is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (. Read more

Goal of the pro­gramme

Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE).

The Master's Programme is offered by the Faculty of Science. Teaching is offered in co-operation with the Faculty of Medicine and the Faculty of Biological and Environmental Sciences. As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics. As a graduate of the LSI programme you will:

  • Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors
  • Competence to work as a member of a group of experts
  • Have understanding of the regulatory and ethical aspects of scientific research
  • Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting
  • Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme
  • Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information
  • Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge
  • Have the ability to report results in a clear and understandable manner for different target groups
  • Have good opportunities to continue your studies for a doctoral degree

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic bioinformatics with the Genome-scale algorithmicsCombinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied bioinformaticsjointly with The Institute of Biotechnology and genetics.Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics with the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group. 

Biostatistics and bioinformatics is offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational GeneticsComputational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.  

Eco-evolutionary Informatics with ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems biology and medicine with the Genome-scale Biology Research Program in BiomedicumThe focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.



Read less
The master's Communication, Health and Life Sciences in Wageningen trains academics to understand, facilitate and drive societal change in complex societal settings related to life science or health issues. Read more

The master's Communication, Health and Life Sciences in Wageningen trains academics to understand, facilitate and drive societal change in complex societal settings related to life science or health issues.

What makes the master's unique?

  • Unique focus on life sciences, health and their interaction with complex societal challenges.
  • Learn to build bridges between science and society, science and health professionals and experts and citizens.

Study programme

During the master's Communication, Health and Life Sciences students learn to understand the role of communication in addressing complex social challenges and opportunities regarding life science and health issues from various perspectives. Learn more about the full study programme.

Specialisations

There are two specialisations that students can choose from:

  1. Communication in Innovation in which you study the role of communication in social change with several fields of the life sciences, including nature, environment, water, nutrition and health, biotechnology and food production.
  2. Health and Society in which students become context-sensitive experts in the domains of science and health promotion.

Your future career

The master Communication, Health and Life Sciences aims to deliver professionals who understand complex processes of communication and change, and are able to apply these insights to enhance societal problem solving and innovation in areas related to life science or health issues. Read the stories of our alumni.

Related programmes:

MSc International Development Studies

MSc Development and Rural Innovation

MSc Management, Economics and Consumer Studies



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical and Health Care Studies at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Medical and Health Care Studies at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The research and innovation arm of Swansea University’s Medical School is the Institute of Life Science (ILS). The vision for ILS is to advance medical science through interdisciplinary research and innovation to improve the health wealth and well-being of the people of Wales and beyond.

The Institute of Life Science

- is a unique example of successful collaboration between the NHS, academia and industry in the life science and health sector.

- enjoys close links with the Colleges of Engineering and Science especially through the Centre for NanoHealth.

- is Wales’ premier purpose-built medical research facility.

- is a collaboration between Swansea University and the Welsh Government, together with Abertawe Bro Morgannwg University Health Board, and industry and business partners.

Our research within Medical and Healthcare Studies focuses around four themes:

Biomarkers and Genes

Devices, Microbes and Immunity

Patient and Population Health

Informatics

Thanks to the interdisciplinary ethos of the Institute of Life Science, researchers dedicated to four theme areas work together seamlessly on complex medical problems that have both biological and social impacts. Candidates for the Medical and Health Care Studies programme are asked to nominate their preferred research area.



Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
Our MSc Science Communication course is ideal if you are interested in science, technology, medicine, mathematics or engineering and want to work in the field of science communication. Read more

Our MSc Science Communication course is ideal if you are interested in science, technology, medicine, mathematics or engineering and want to work in the field of science communication.

You will develop the skills required to work in a range of sectors, including media, science policy, filmmaking, science outreach, public relations, museums and science centres, science festivals, and other public engagement fields.

Developed by the Centre for the History of Science, Technology and Medicine and Manchester Institute of Innovation Research , the course features masterclasses and project support from leading professionals in a wide range of sectors, together with experienced science communicators from across the University.

You will spend time building up practical communication skills, and thinking about the broad range of challenges that science communicators face. Does science communication matter for society? Whose interests are furthered by science news? What are the ethical issues in the communication of health research? When we talk about public engagement, what kind of public do we mean?

You will consider these and other questions through insights drawn from history, innovation and policy research, media studies, and the first-hand experience of long-serving communicators, and link these to practical skills.

Special features

Real world learning

We bring practitioners into the classroom and enable you to participate in the various forms of science communication that take place in Manchester to complement your academic learning with real life experiences.

Teaching and learning

You will learn through a mixture of lectures, small-group seminars, discussions and practical exercises. Activities will be included in the taught elements for both individual students and groups.

You will engage with primary and secondary academic literatures, professional literatures, and mass media products about science, technology and medicine.

You will also learn at special sites of science communication, such as museums, media institutions, and public events.

We encourage participation and volunteering to help you further your own interests alongside the taught curriculum. All students will meet regularly with a mentor from the Centre's PhD community, with a designated personal tutor from among the staff and, from Semester 2, a dissertation supervisor.

Applicants may informally request examples of study materials to help you test your ability to engage effectively with the course from the Course Director.

Coursework and assessment

All units are assessed by academic and practical tasks set in parallel. You should expect both written and spoken assessments that use a format appropriate to the relevant professional group or medium.

You may choose your own topic or medium for many of the assessments. Assessed work also includes a piece of original science communication research.

The final assessment is a project created under the supervision of a science communication professional (the mentored project).

Course unit details

The full-time version of the course runs for 12 months from September. There is also a part-time alternative, covering half the same classes each semester over two years. Part-time study involves a limited number of days' attendance per week and can be combined with part-time employment.

All students take three course units consisting of weekly lectures and discussion seminars:

  • Introduction to Science Communication (30 credits)
  • Communicating ideas in science, technology and medicine (15 credits)
  • Introduction to Contemporary Science and Medicine (15 credits)

All students also attend a series of intensive one-day schools on science communication practice and science policy, with sessions led by invited contributors including journalists, documentary filmmakers, museum professionals, policy analysts, outreach officers and other relevant experts. From these day schools, you will choose two of the following four areas to specialise in for assessed work (although you can sit in on all these units):

  • Science, media and journalism (15 credits)
  • Science museums, Science Centres and Public Events (15 credits)
  • Ideas and issues in science communication studies (15 credits) ¿ Science, government and policy (15 credits)

The course is completed by two more open-ended elements allowing you to specialise towards your preferred interests.

  • The science communication research project (30 credits) gives more scope for independent investigation and includes new research on a particular science communication topic.
  • The mentored project (60 credits), completed over the summer at the end of the course, involves working with support from a science communication professional on developing and analysing an activity close to professional practice.

Our course teaches the current trends in science communication, so details of our units may vary from year to year to stay up to date. This type of change is covered within the University's disclaimer , but if you are in doubt about a unit of interest, please contact us before accepting your offer of a place.

What our students say

Read about graduate Amie Peltzer's experience of the course on the Biology, Medicine and Health Student Blog .

Facilities

You will have use of a shared office in the Centre for the History of Science, Technology and Medicine, including networked computer terminals and storage space, and use of a dedicated subject library housed in the PhD office.

You will also be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 



Read less
This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches. Read more

This two-year master’s programme Computer Science offers stimulating, significant and innovative research at an internationally renowned institute and combines theoretical, experimental and applied approaches.

What does this master’s programme entail?

The two-year master’s programme in Computer Science offers six specialisations which combine excellent theoretical teaching with possibilities for applied work with industrial relevance. This is achieved by intensive collaboration with companies at the Leiden Centre of Data Science. Course themes include topics such as Evolutionary Algorithms, Neural Networks, Databases and Data Mining, Swarm-Based Computation, Bayesian Networks, Multimedia Systems, Embedded Systems and Software, Advanced Compilers and Architectures, Bio-Modeling and Petri Nets.

Read more about our Computer Science programme.

Why study Computer Science at Leiden University?

  • Interdisciplinary research opportunities as well as industrial applications provide you with exciting possibilities. The industrial application areas and interdisciplinary activities include, among others: Bioinformatics and Life Sciences, Medicine, Pharma, Physics, Engineering Applications, Logistics Applications, Energy and Utility related Applications and Financial Applications.
  • You will benefit from our diverse collaborations and the possibilities for internships and projects with our partners such as BMW, ING and Strukton.
  • You have ample of opportunities to assemble your own study path: an individually tailored programme will be designed for each student.

Find more reasons to choose Computer Science at Leiden University.

Computer Science: the right master’s programme for you?

The programme is open for students with an internationally recognized bachelor’s degree in computer science or equivalent. You will be trained as an independent researcher, equipped with the necessary skills to advance your career as a computer scientist.

Read more about the entry requirements for Computer Science.

Specialisations



Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The two-year master’s programme Statistical Science for the Life and Behavioural Sciences provides you with a thorough introduction to the general philosophy and methodology of statistical modelling, data analysis and data science. Read more

The two-year master’s programme Statistical Science for the Life and Behavioural Sciences provides you with a thorough introduction to the general philosophy and methodology of statistical modelling, data analysis and data science.

What does this master’s programme entail?

The two-year master’s programme in Statistical Science provides you with a thorough introduction to the general philosophy and methodology of statistical modelling and data analysis. The programme consists of a core programme shared by all students, and specialisation specific courses, electives, an internship or research project and master’s thesis. You can specialise in either life and behavioural sciences, where the emphasis is on the application in multidisciplinary environments, or in data sciences where you focus more on data mining, pattern recognition and deep learning.

Read more about the Statistical Science for the Life and Behavioural Sciences programme.

Why study Statistical Sciences for the Life and Behavioural Sciences at Leiden University?

  • Each specialisation offers you a unique combination of knowledge and expertise. These allow for a thorough preparation for a career as a data scientist, researcher or statistician anywhere.
  • Job perspectives after graduation are great: statisticians and data scientists are highly sought after in various industries such as academia, marketing, banking, government, official statistics, healthcare, bioinformatics and more.
  • The Statistical Science programme is a collaborative effort. Four Leiden University Institutes closely collaborate with top research institutes such as Wageningen UR and VUMC, which means that your education is provided by experts in their respective fields.

Find more reasons to choose Statistical Science for the Life and Behavioural Sciencese at Leiden University.

Statistical Sciences for the Life and Behavioural Sciences: the right master’s programme for you?

The field of statistics, like other areas of applied mathematics, often attracts students who are interested in the analysis of patterns in data: developing, understanding, abstracting, and packaging analytical methods for general use in other subject areas. Statistics is also, by definition, an information science. Imaginative use of both computing power and new computing environments drives much current research - so an interest in computation and/or computer science can also be a start for a statistician. With the growing importance of data within our society, you’ll be highly in demand with a degree in Statistical Sciences.

Read more about the entry requirements for the Statistical Science programme.



Read less
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains. Read more
Technologies based on the intelligent use of data are leading to great changes in our everyday life. Data Science and Engineering refers to the know-how and competence required to effectively manage and analyse the massive amount of data available in a wide range of domains.

We offer a two-year Master of Science in Computer Science centered on this emerging field. The backbone of the program is constituted by three core units on advanced data management, machine learning, and high performance computing. Leveraging on the expertise of our faculty, the rest of the program is organised in four tracks, Business Intelligence, Health & Life Sciences, Pervasive Computing, and Visual Computing, each providing a solid grounding in data science and engineering as well as a firm grasp of the domain of interest.

By blending standard classes with recitations and lab sessions our program ensures that each student masters the theoretical foundations and acquires hands-on experience in each subject. In most units credit is obtained by working on a final project. Additional credit is also gained through short-term internship in the industry or in a research lab. The master thesis is worth 25% of the total credit.

TRACKS

• Business Intelligence. This track builds on first hand knowledge of business management and fundamentals of data warehousing, and focuses on data mining, graph analytics, information visualisation, and issues related to data protection and privacy.
• Health & Life Sciences. Starting from core knowledge of signal and image processing, bioinformatics and computational biology, this track covers methods for biomedical image reconstruction, computational neuroengineering, well-being technologies and data protection and privacy.
• Pervasive Computing. Security and ubiquitous computing set the scene for this track which deals with data semantics, large scale software engineering, graph analytics and data protection and privacy.
• Visual Computing. This track lays the basics of signal & image processing and of computer graphics & augmented reality, and covers human computer interaction, computational vision, data visualisation, and computer games.

PROSPECTIVE CAREER

Senior expert in Data Science and Engineering. You will be at the forefront of the high-tech job market since all big companies are investing on data driven approaches for decision making and planning. The Business Intelligence area is highly regarded by consulting companies and large enterprises, while the Health and Life Sciences track is mainly oriented toward biomedical industry and research institutes. Both the Pervasive and the Visual Computing tracks are close to the interests of software companies. For all tracks a job in a start-up company or a career on your own are always in order.

Senior computer scientist.. By personalizing your plan of study you can keep open all the highly qualified job options in software companies.

Further graduate studies.. In all cases, you will be fully qualified to pursue your graduate studies toward a PhD in Computer Science.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less
Why this course?. This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients. Read more

Why this course?

This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients.

The course is delivered by staff of the EPSRC-funded Centre for Doctoral Training in Medical Devices and Health Technologies (CDT), with colleagues from Engineering, the Life Sciences and Physical Sciences. There’s also input from clinical advisers from the NHS and elsewhere.

The training programme equips you with the basic knowledge and terminology in current life science subjects to allow you to explore topics in your own research project with direction from your supervisor.

You'll gain practical experience in the life science techniques and an appreciation of interdisciplinary project work.

You’ll study

This credit-based modular degree comprises assessed instructional classes and project work.

You’ll also undertake a research project. You’ll choose from a list of relevant industrial or clinical projects, and submit a thesis.

Learning & teaching

The first and second semesters consist of taught classes, laboratory demonstrations, practical exercises and clinical visits.



Read less
With a master’s degree in Web Science you will be able to study and solve problems on the web. Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, studies of the law, linguistics and mathematics. Read more

About the Program

With a master’s degree in Web Science you will be able to study and solve problems on the web. Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, studies of the law, linguistics and mathematics. All mandatory courses are taught in English.

In general, our programme aims at people with a bachelor’s degree or a minor in computer science. Our programme even is free of tuition. The medium of instruction is English.

More information under: http://west.uni-koblenz.de/en/mws

Employment Outlook

Graduates from the institute WeST have found interesting positions at successful companies, started their own businesses or continued towards a Ph.D. Institute WeST has a limited number of places available each year for pursueing a Ph.D. If you excel earning a master's degree in Web Science you will be in pole position for continuing with doctoral studies.

Studying in Koblenz

Koblenz is one of the oldest and most attractive cities in Germany with its surroundings honoured as UNESCO World Cultural Heritage. The university of Koblenz-Landau has close contacts to leading companies, offering possibilities for internships, collaboration and project experiences.

Program Structure

Our interdisciplinary curriculum emphasises computer science and builds bridges to social sciences, economics, law, linguistics and mathematics. All mandatory courses are taught in English.

The curriculum is organized in seven module groups:

Foundations of Web Science (two modules) establishes the main idea of Web Science. It provides an interdisciplinary primary view of the web and of more abstract web structures.

The Computer Science track (three modules) teaches the essential technical aspects, namely web engineering, semantic web and web retrieval.

Web and Society (two out of four modules) considers interaction of the web and different user groups: citizens, customers, entrepreneurs, and interest groups.

The module group Elective Courses in Computer Science provides a wide range of technical topics. Modules may be choosen freely from all Master courses in computer science with relevance to the web given at the University of Koblenz-Landau (three modules or more, mininum 18 ECTS).

Elective Interdisciplinary Courses contain web-related modules offered by our university from other disciplines (such as economy, social sciences, linguistics, anthropology, communication theory etc.). Students have to freely elect at least two modules (12 ECTS).

Topics for seminars and research lab can be freely chosen from Web Science subjects. Furthermore, this module group contains a social skills and leadership training..

The topic of the master's thesis can also be freely chosen from any Web Science subjects.

More information about the curriculum can also be found under: http://west.uni-koblenz.de/en/mws/curriculum

Requirements

Higher Education Entrance Qualification -

It is a legal requirement in Germany that students own a Higher education entrance qualification („Hochschulzugangsberechtigung“) respectively a Master entrance qualification („Masterzugangsberechtigung“), proven by school leaving certificates or studies completed at secondary education level.

Entrance qualification is not checked by us, but uni-assist (see application process), therefore please refrain from asking us if your diploma will be accepted. Uni-assist provides some further information on higher education entrance qualification.

Academic Background in Computer Science -

You need some academic background in computer science, such as a

bachelor's degree in computer science, business informatics, Computervisualistik (as offered by the University of Koblenz-Landau), Information management (as offered by the University of Koblenz-Landau until 2012 if 60 ECTS in computer science were acquired) or similar.

Students with a minor in computer science (at least 60 European Credit Points) can apply, too. Here we have to make a decision on a by-case-basis. To get an educated guess please contact the course guidance.

Only diplomas of international accredited universities will be accepted. If you are unshure if your academic background fulfils our requirements, do not hesitate to contact us: . Non-academic, practical experience in computer science alone does not qualify you for our programme.

Sufficient Grades in Previous Studies -

The German grading system ranges from 1 ("very good") to 6 ("insufficient"). Lower numbers mean better grades. To be eligible for our programme, the grades from your previous studies must be between 1 and 2.5. Grade conversion into the German system is done by uni-assist (cf. application procedure), so we cannot tell you if your GPA fis sufficient. For a first, non-binding estimation on your eligibility you might want to check the calculator provided by the University of Paderborn.

English Language Proficiency -

The medium of instruction for all required courses is English, some additional electives can be taken in German. Thus, we require a certain level of English proficiency such that studies can be undertaken successfully. Thus, a standardised language certificate is required – proof that your previous studies were held in English are not sufficient and not negiotiable. We accept three types of language proficiency certificates:

a TOEFL result of at least 79 (internet based), 550 (paper based) or 213 (computer based)

IELTS test with 6.5 points mininum

Cambridge certificate at level B2 or higher (find an exam center)

Proficiency of German language is not a requirement for application. However, additional elective courses are available in German, and we recommend to learn some basic German for daily life. Some hints on learning German can be found at Deutsche Welle.

Motivational Letter -

Applicants need to supply a motivational letter. Please do not send lenghty standard letters describing your general interest in computer science and your appreciation of the German education system. Instead, refer only to our specific programme and follow these guidelines:

Length should be between 150 and 300 words.

The letter must be written in English.

Specify what you learnt and found particularly interesting in your previous studies or practical experiences. Tell us how you want to deepen these previous experience in our master's programme. You can also describe what you expect to learn here for your future job. You should always refer to our curriculum, especially the module groups Foundations of Web Science, Major Subject Computer Science und Major Subject Web and Society. Make clear that you know our curriculum and point out why you have chosen our programme above others.

Further information under: http://west.uni-koblenz.de/en/mws/requirements

Read less
Introduction. Working at the interface of Chemistry, Biology and Medical science. In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Read more

Introduction

Working at the interface of Chemistry, Biology and Medical science

In Nijmegen we offer a multidisciplinary Master's programme in Molecular Life Sciences. Working at the interface of chemistry, biology and medical science, you will not only explore the basic principles of molecules and cells, but also their role in health and disease. This combination of scientific topics translated into medical implications and solutions is unique in the Netherlands.

See the website http://www.ru.nl/masters/mls

Specialisations within the Master's in Molecular Life Sciences

The Master's programme in Molecular Life Science is closely associated with chemistry and medical biology. You can choose a specialisation in Chemistry or in Medical Biology

- Chemistry for Life

- Clinical Biology

- Medical Epigenomics

- Neuroscience

Career prospects

Most graduates go on to do a PhD in Nijmegen, at another Dutch university or abroad. Each year our research institutes have a number of PhD vacancies. Some find a job as a researcher or manager in the pharmaceutical industry, in the private commercial sector or in research organisations.

Our research in this field

- Top scientists

The programme is closely associated with two institutes that have an excellent international reputation:

- the Institute of Molecules and Materials

- the Nijmegen Centre for Molecular Life Sciences.

You will enter a dynamic research environment, work with top scientists, learn about the latest developments in your discipline and conduct research in state-of-the-art laboratories. Thanks to cooperation with the neighbouring University Medical Centre, there is continuous exchange between Lab and Clinic.

- Great freedom and personal tutor

You will be given considerable freedom to follow your own interests. Two internships are central to the programme. You choose a specialisation and you join a related research group, for example Anthropogenetics, Molecular Biology, Pharmacology, Neurobiology or Bioinformatics. You will have your personal tutor who will help you decide which subjects and research to follow. Your second internship will be with a different research group or related to your variant. You can also choose to follow an internship abroad or within a company. In making your choice, you will be able to benefit from the extensive international networks of our scientists.

- The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/mls



Read less

Show 10 15 30 per page



Cookie Policy    X