• University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"lidar"×
0 miles

Masters Degrees (Lidar)

We have 11 Masters Degrees (Lidar)

  • "lidar" ×
  • clear all
Showing 1 to 11 of 11
Order by 
Oxford is a wonderful place to study and it has unrivalled facilities. We have been running this part-time masters course successfully for thirteen years. Read more

Overview

Oxford is a wonderful place to study and it has unrivalled facilities. We have been running this part-time masters course successfully for thirteen years. The overwhelming response gained from our students is one of satisfaction, enjoyment and fulfilment. We have brought together a good balance of men and women, older and younger students, historic environment professionals and those with a personal or community interest in the subject. We have had some great field experiences and outstanding seminars. Although the coursework requires a solid commitment from you over two years, the course atmosphere is informal and friendly, and we aim to support every student with ideas, guidance and encouragement.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-applied-landscape-archaeology

What the course offers

The MSc in Applied Landscape Archaeology is a part-time modular course over two years, leading to an Oxford University Postgraduate Degree in Archaeology. Students become fully matriculated members of Oxford University during their period of registration, and therefore also become a member of a college. The course is designed for the needs of students who wish to study part-time and this includes those who are in full-time employment. Those with a personal or professional interest in landscape archaeology are welcome to apply.

Landscape Archaeology is an increasingly popular and widely-understood concept. Using a multi-period systematic approach, it is concerned with understanding past human impacts on the resources, topography and environment of the whole landscape, from uplands to coasts, and from farmed landscapes to urban/industrial areas.

Many methods of research are being developed in landscape archaeology, including geophysical survey, digital mapping and remote-sensing techniques such as LiDAR. These take their place alongside fieldwalking, historic landscape analysis, aerial photography and selective excavation to provide an effective armoury of techniques for the researcher. Skills such as survey and resource assessment are becoming essential for anyone involved in the management of the historic environment. Effecive communication and presentation of the value and potential of the historic landscape is vital in the world of planning, tourism, outreach and education.

The course involves a combination of academic study and field practice - survey and geophysics form a central theme, and we enjoy the support of Bartington Instruments Ltd for this.

This course is designed to appeal to those who already have experience of studying archaeology (or a closely-related subject) at undergraduate degree or diploma level and who wish to expand their academic, practical and professional skills in landscape archaeology. With a strong (but not exclusive) emphasis on the archaeology of Britain, it focuses on the applications of research methods in varying landscape situations. The course format is flexible and enables students to pursue their own research interests leading to a 15,000 word dissertation.

College affiliation

All students studying for a degree (including the DPhil) must be a member of a college. A number of Oxford colleges accept applications from part-time postgraduates whereas others do not: please consult the graduate prospectus or enquire with individual colleges. The majority of part-time DPhil students in Archaeology have chosen to apply to Kellogg College and most of the tutors and lecturers are members of the College. Kellogg is dedicated to graduate part-time students and has developed a unique expertise in attending to the intellectual, social, IT and welfare needs of part-time, mature graduate students. If a college choice is not specified on your application, it will be automatically sent to Kellogg if places are still available there.

Course structure

The course is divided into two one-year modules, Year A and Year B, which are run in alternate academic years (from October to September):

Year B begins in October 2015
Year A begins in October 2016

All students attend both modules, but they may be done in any order depending on year of admission. Because the course is modular there is no advantage to one combination over the other. Students normally study two consecutive modules and this is regarded as the best way to experience the course. However, in exceptional cases, regulations permit a student to intermit between modules (by permission of the Board of Studies only).

Both one-year modules have one core paper and two advanced papers spread over three terms.

Year A:

- Core Paper: Method and Theory in Landscape Archaeology
- Advanced Paper (Artefacts and Ecofacts in the Landscape)
- Advanced Paper (Archaeological Prospection)

Year B:
- Core Paper: Managing Historic Landscapes in the 21st Century
- Advanced Paper (Digital Landscapes)
- Advanced Paper (Reading the Historic Landscape)
- Field Training Week

Instead of one advanced paper, students may choose to opt for a ‘flexi-placement’ comprising at least 14 days spread over approximately one year to be spent working at an organisation which is involved in an aspect of landscape archaeology. The Course Director will supply details of these.

The dissertation (15,000 words) is the student’s own project which develops throughout the course and is submitted at the end of the second module. It can be based on a piece of fieldwork, or a methodological or artefactual study. Each student will be assigned a tutor who will supervise their dissertation. A dissertation workshop is held each year to help students work together on this essential course element.

In addition, once every two years (in late June - early July of Year B) a compulsory field survey training week will take place. Each student will also have a series of tutorials with the course director and tutors; these may take place in person or on-line.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/courses/msc-applied-landscape-archaeology/

Read less
This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment. Read more

This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment.

This programme can be tailored to your interests and career goals, offering hands-on experience in geographical problem solving. A field trip to Perthshire focuses on techniques for capturing geospatial information.

Applicants who applied after 12 December 2016 receiving an offer of admission, either unconditional or conditional, may be required to pay a tuition fee deposit. Please see the fees and costs section for more information.

Programme structure

Courses reflecting the industry’s needs prepare you for employment.

Compulsory courses typically will be:

  • Research Practice and Project Planning
  • Spatial Modelling and Analysis
  • Technological Infrastructures for GIS
  • Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses. We particularly recommend:

  • Active Remote Sensing: Radar and Lidar
  • Atmospheric Quality and Global Change
  • Business Geographics
  • Data Integration and Exchange
  • Data Mining and Exploration
  • Ecosystem Services 1: Ecosystem Dynamics and Functions
  • Ecosystem Services 2: Ecosystem Values and Management
  • Environmental Impact Assessment
  • Forests and Environment
  • ICT for Development
  • Introduction to Environmental Modelling
  • Introduction to Three Dimensional Climate Modelling
  • Land Use/Environmental Interactions
  • Marine Systems and Policies
  • Object Orientated Software Engineering: Spatial Algorithms
  • Passive Earth Observation: New Platforms, Sensors, and Analytical Methods
  • Participation in Policy and Planning
  • Principles and Practice of Remote Sensing
  • Principles of Geographical Information Science
  • Technologies for Sustainable Energy
  • Water Resource Management

Courses are offered subject to timetabling and availability and are subject to change.

Career opportunities

Demand for GIS expertise is growing at an unprecedented rate. The proven ability of our graduates means our internationally recognised programme is held in high regard by employers.

Graduates work worldwide in public and private sector organisations, such as Microsoft, Google, General Electric Aerospace, The World Bank, British Antarctic Survey, The World Conservation Monitoring Centre, Unisys, British Airways, the Forestry Commission, DEFRA and Registers of Scotland.

The programme is accredited by the Royal Institution of Chartered Surveyors.

Related programmes

You may also be interested in the following programmes:

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
The "Heritage Science" MSc develops professional skills required in a variety of careers in heritage science, building conservation and landscape characterisation. Read more
The "Heritage Science" MSc develops professional skills required in a variety of careers in heritage science, building conservation and landscape characterisation. To enable heritage practitioners to record, analyse and report on historic buildings, monuments and landscapes, foundation modules offer an intensive training programme in digital data capture, including heritage applications of GIS, GPS, Lidar, and spatial analyses and 3D visualization techniques. All modules are 'hands-on' and elective modules cover practical and scientific skills in evaluating natural and cultural heritage environments. Students also undertake an internship in collaboration with a conservation/heritage organization, or professional, and prepare a major report or dissertation.

Read less
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. Read more
The Environmental Mapping MSc is designed to appeal to students looking to map and understand the environment. It provides the opportunity to study at an advanced level the ways in which spatial data can be collected, processed and analysed to qualify and understand environmental issues across a wide range of applications.

Degree information

Students receive core training in mapping science, analytical methods, geographic information systems (GIS), image processing, and other fundamentals of geomatics. They develop techniques for the acquisition of data including satellite remote sensing, global navigation satellite systems (GNSS) and LIDAR, alongside techniques for the analysis, processing, interpretation, and display of spatial data.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (60 credits), optional modules (60 credits) and a research project (60 credits). A Postgraduate Certificate (60 credits), full-time 12 weeks, part-time one year is offered.

Core modules
-Analytical and Numerical Methods
-Scientific Computing
-Mapping Science
-Principles and Practice of Remote Sensing

Optional modules - options may include the following:
-Climate Modelling
-Airborn Data Acquisition
-Surface Water Modelling
-Terrestrial Carbon: Monitoring and Modelling
-Global Monitoring of Environment and Society
-Image Understanding
-Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, transferable skills training, compulsory computer training and research supervision. Assessment is through unseen written examinations, coursework, and a dissertation (including a poster presentation).

Careers

The MSc will appeal to individuals interested in developing research training while acquiring vocational skills for work in mapping and monitoring positions in public and private sector institutions. The quantitative skills the degree provides have proved attractive to employers, particularly the grounding in programming, data handling and analysis, image processing and report writing. These skills are generic and have allowed graduates to go into a range of careers in mapping and spatial analysis but also areas such as conservation and management and policy. Environmental Mapping graduates find jobs in diverse companies from consultants and NGOs carrying out environmental and spatial analysis, and governmental and government-affiliated agencies such as DECC and the National Physical Laboratory. The programme is also a suitable training for those wishing to undertake higher-level work as a prelude to a PhD

Employability
The range of generic, transferable skills provided by the programme has proved to be attractive to a range of employers. Students acquire fundamental understanding of the key principles of mapping and data handling and analysis, as well as the ability to communicate their ideas. These principles can and are applicable across a wide range of career options. The interdisciplinary, intercollegiate nature of the degree gives students a unique perspective, not just at UCL, but across the wider world of mapping and environmental science.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

This MSc offers students an all-round knowledge of monitoring methods and environmental understanding, including the fundamental principles, and current technological developments and applications to local, regional and global problems.

Graduates of the programme are equipped with highly developed practical skills to enable them to take leading roles in academic, governmental or industrial sectors. The degree is integrated with other Geography MSc programmes to provide greater flexibility when choosing optional modules.

Read less
The MSc is building a reputation for producing excellent scientists and highly sought after graduates. Our postgraduates have been offered employment in some of the most prestigious companies in the UK and Europe, in fields ranging from analytical toxicology to forensic DNA analysis. Read more
The MSc is building a reputation for producing excellent scientists and highly sought after graduates. Our postgraduates have been offered employment in some of the most prestigious companies in the UK and Europe, in fields ranging from analytical toxicology to forensic DNA analysis.

On this course, you can study a range of specialist areas in analytical and forensic science. It focuses on cutting edge research, the latest analytical techniques, and transferable and professional skills that will prepare you to practise as a professional analytical or forensic scientist. A 60 credit research project of your choice allows you to customise the MSc and specialise in your chosen field.

“Completing this MSc gave me a much more advanced knowledge of analytical instruments and techniques and has been a great help in preparing me for the role that I now have in toxicology. The amount of hands on practical experience in the Masters is much more extensive than in a Bachelors degree and it’s the higher level of practical work that can make the difference. Covering a variety of techniques applied to a wide range of sample types ensures you have an understanding that other graduates will not have, particularly after the completion of your dissertation by spending a considerable amount of time in the lab. The addition of the PRINCE2 qualification also makes you more employable to commercial labs. I have no doubt that without this MSc my chances of gaining a job with a career path would be significantly less.” – Laura Miles, MSc Analytical and Forensic Science graduate.

What You Will Study

You will study the following modules:
- Advanced DNA analysis
- Separation science
- Analytical toxicology
- Interpretation, evalutation and presentation of casework
- Advanced crime scene and evidence analysis
- Project design, management and enterprise
- Laboratory research project

Our tuition offers detailed training in the following areas:

- DNA Analysis
You will gain a thorough understanding of DNA analysis and interpretation techniques. There is practical training in a large range of advanced extraction techniques, quantitation, amplification and electrophoresis of DNA, through simulated case-work using our crime scene house and DNA analysis laboratory.

- Analytical Toxicology and Separation Science
You will gain knowledge of the basis and application of a number of novel analytical and extraction techniques such as chiral chromatography, supercritical fluid chromatography, solid phase microextraction and derivatisation techniques. You will also receive high level practical training in ion mobility mass spectrometry, GCMS/MS, LCMS/MS and ICP-OES. There is a particular focus on hair as a matrix for forensic toxicological analysis. You will also be fully trained in experimental design and effective method development.

- Major crime scene analysis
You will learn how to effectively process major and specialist crime scenes through our simulation facilities, and will study novel mapping techniques such as 3D scanning and LIDAR as applied to crime scene investigation.

- Expert witness techniques
To improve your employment prospects, you will also learn about the law as it relates to the forensic scientist and their relationship with the police, lawyers and courts, and the role of the expert witness. You will receive training from professional case working forensic scientists in how to draft expert witness statements and how to give testimony in court.

- Data analysis and Prince 2 qualification
For added benefit, there will be guest lectures from eminent analytical scientists and forensic practitioners, and you will be encouraged to observe courtroom proceedings and visit analytical laboratories. You will receive training in advanced data analysis techniques which is very desirable for potential employers. You will even complete a PRINCE 2 foundation certificate as part of this course, which will stand you in good stead for the management of major projects in laboratories. The PRINCE 2 award is a prestigious, internationally recognized qualification. Please note additional fees apply.

- Additional Fees:
There is an additional fee of £1,500 for this course which covers the Prince2 Project Management course and laboratory costs.

Learning and teaching methods

Modules are studied sequentially throughout the course. There are periods of self directed learning where you will study online material including journals, research notes and recommended books before engaging in hands on laboratory training, lectures and seminars on campus.

The course is available as a one year full time option, or 2 years part time option. All students complete a research project in your chosen area of specialisation.

Work Experience and Employment Prospects

There are many exciting employment opportunities in the analytical and forensic science sector. Key recruitment areas are DNA profiling, analytical chemistry and toxicological analysis. In these competitive fields, a postgraduate qualification will really make you stand out from the crowd. We have had an excellent response to the MSc analytical and forensic science from science companies across the UK. Major national companies have even contacted the University specifically asking for our MSc Analytical and Forensic Science graduates to apply for positions with them.

Our MSc graduates have been offered employment in toxicology, DNA and forensic science companies across the UK. An MSc award in Analytical and Forensic Science will demonstrate to employers the highest level of achievement and training.

Work experience

Students have the opportunity to undertake a work placement with Synergy Health Laboratories where they will undertake laboratory training. There is also an opportunity to conduct your research project in collaboration with Synergy Health with the possibility of working towards developing UKAS accredited methods of analysis -the ultimate standard in analytical science and a huge boost to your C.V.

Assessment methods

You will complete 120 credits of taught modules across the course, and an original laboratory research project (60 credits). For this, you will apply and extend your practical skills and knowledge in a key area of analytical or forensic science that interests you.

Read less
The course is designed for students who wish to develop an understanding and working knowledge of the principles and applications of a variety of surveying devices and techniques. Read more

About the course

The course is designed for students who wish to develop an understanding and working knowledge of the principles and applications of a variety of surveying devices and techniques.

Versions of this course have been running at The University of Nottingham in the UK for almost 20 years. This course runs entirely at The University of Nottingham Ningbo China (UNNC), providing students with the ability to appreciate and apply state-of-the-art engineering surveying techniques within a practical context. It includes the principles underpinning surveying, such as reference systems and geodesy, as well as the techniques and equipment used in engineering surveying, photogrammetry and satellite positioning systems such as GPS. UNNC is located in an excellent GNSS coverage area, from which both BeidouI+II/Compass and QZSS satellites can be observed.

In addition to the formal part of the course, we run practical classes that allow students to see and learn how to use and operate a very wide variety of state-of-the-art surveying equipment and software, including laser scanners, servo driven total stations, RTK and Network RTK GPS, digital and analogue photogrammetry, LiDAR, SAR and InSAR.

Students studying this course will be develop the ability to:

- Apply their skills directly within the surveying industry
- React quickly to new technologies and innovations
- Communicate ideas effectively in written reports, verbally and through making presentations to groups
- Exercise original thought, as well as gain interpersonal, communication and professional skills
- Plan and undertake an individual project

The course is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institution of Civil Engineering Surveyors (ICES).

Course structure and content

The course consists of 120 credits of taught modules along with a 60 credit major individual research-based project undertaken over the summer term. It is also available as a postgraduate diploma which covers the same taught modules, but does not include the research project. Please be aware modules are subject to change.

Modules

Autumn semester:

Analytical methods
Geodetic reference systems
Fundamentals of satellite positioning
Engineering surveying

Spring semester:

Advanced satellite positioning
Photogrammetry and remote measurement
Physical Geodesy

Individual project

Once you have completed the modules, you will undertake a supervised research project over the summer term. Students receive dedicated supervision from staff members. This is a key component of the degree, affording students the opportunity to conduct independent research which may be related to their future employment.

It provides the student with an opportunity to undertake a substantial personal project appropriate to their interests. It will normally take the form of scientific investigation whether it involves experimentation or an extensive review of work already completed by others. Typically (but not exclusively) it will include the following:

- Project definition and aim (choice of subject is at the discretion of the convenor)
- Literature review
- Practical experimentation/investigation
- Critical analysis of findings
- Presentation of results

Career options for this degree

This degree offers career opportunities in a variety of careers such as Engineering Surveying in Private and Government Sectors (e.g., Construction, Deformation Monitoring, Utility Departments and Companies), GNSS Software Engineering, GNSS Receiver Sales and Marketing, Digital Mapping, 3D Modelling, Smart City Development, Consultancy.

All our graduates of the course found good relevant jobs within 6 months after graduation – 100% employment rate!!

Postgraduate scholarships

To encourage academic excellence, The University of Nottingham Ningbo China (UNNC) offers a comprehensive and expanding range of scholarships to postgraduate students. For more information please click the link below

http://live-china-uon.cloud.contensis.com/en/study/postgraduate/masters/scholarships/index.aspx

Read less
This MSc focuses on cutting-edge research, the latest analytical techniques, and transferable and professional skills that will prepare you to practise as a professional analytical or forensic scientist. Read more
This MSc focuses on cutting-edge research, the latest analytical techniques, and transferable and professional skills that will prepare you to practise as a professional analytical or forensic scientist. The course has a reputation for producing excellent scientists – our graduates are offered employment in prestigious companies in the UK and Europe, in fields ranging from analytical toxicology to forensic DNA analysis.

You will have the opportunity to undertake laboratory training as part of a work placement with Synergy Health Laboratory Services. You could conduct your research project in collaboration with Synergy Health and work towards developing UKAS-accredited methods of
analysis – the ultimate standard in analytical science and a great boost to your CV.

Our tuition offers detailed training in DNA analysis and interpretation techniques. You will gain knowledge of the basis and application of a number of novel analytical and extraction techniques such as chiral chromatography, supercritical fluid chromatography, solid phase micro-extraction and derivatisation techniques. You will study novel mapping techniques such as 3D scanning and LIDAR, plus our simulated facilities will allow you to learn how to effectively process major and specialist crime scenes.

To improve your employment prospects, you will learn about the law in relation to the forensic scientist – this includes their relationship with the police, lawyers and courts, and the role of the expert witness. There are guest lectures from eminent analytical scientists and forensic
practitioners, and you will be encouraged to observe courtroom proceedings and visit analytical laboratories.

The student experience on this course has been designed to consolidate and extend the core knowledge base, and practical skills through research-style investigations and project work. It also incorporates the opportunity to obtain a PRINCE2TM foundation project management
qualification, an internationally recognised qualification in project management (additional costs apply – see our website for details).

Read less
Completing this Masters degree at Liverpool John Moores University will give you the knowledge and practical skills to become a specialist in Unmanned Aerial Vehicles or UAVs. Read more
Completing this Masters degree at Liverpool John Moores University will give you the knowledge and practical skills to become a specialist in Unmanned Aerial Vehicles or UAVs.

•Complete this masters degree in one year full time, two years part time
•Highly practical Masters degree
•Secure understanding of legal and regulatory frameworks
•Gain the expertise to exploit this exciting new technology in a wide range of industries in the UK, Europe and around the world
•Curriculum informed by ongoing research and consultancy in drone technology
•Build and test fly your own multi-rotor drone

This taught masters degree will give you the practical, theoretical and regulatory knowledge to lead and undertake all aspects of the implementation and operation of UAV systems within a commercial enterprise in a safe, efficient and legal manner.

You will also secure essential practical skills in constructing, flying and operating drone systems. You will build your own, professional standard, multi-rotor drone system; test fly this system and then use it for practical assignments during the programme, including undertaking a research dissertation project. At the end of the course you can take your drone system with you and use as part of your career.

In today’s world, to be commercially successful in drone applications, you must be safe and operating totally with the aviation law. That’s why the programme includes a specialist module on UAV Operations and the Law. Not only will you know the legal and regulatory framework, more importantly you will learn how to interpret it so that you can design complex and challenging UAV operations within the current legal and regulatory framework.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
UAV Technology and Operations: This will teach you the basics of the technology at systems level. As part of this module you will learn to fly UAVs under experienced qualified instructors, first on simulators and then out in the field.
Drone Construction: You build your own multi-rotor drone, complete with flight controller, GPS systems and radio control system. Under the guidance of the teaching team, you will test and then fly your drone in a series of increasingly demanding exercises.
Research Methods: In order to obtain your Masters degree you will have to undertake an individual research project and write it up as a dissertation. In this module you will learn the research, presentation and critical appraisal skills you will need to successfully complete your project.
Advanced UAV Technology and Operations: Practical flying and operating experience, now in more advanced scenarios, is an important element of this module with further simulator exercises and another 5 full-day flying sessions.
UAV Operations and the Law: Its important to know the legal and regulatory framework within which UAVs operate, to become qualified for commercial UAV use its essential. Here you will learn about the law, the guidelines and get to practice your understanding with 'moot' exercises – debating complex operational scenarios.
Optical Measurement and Sensing: Of all the data gathering devices carried by UAV’s the overwhelming majority are optical and to get the best results you will need to understand this technology. Its not just video cameras; you need to fully understand technologies including stereo photogrammetry, LIDAR, structured light and shape from motion systems if you are to be effective in data gathering from drones.
Dissertation Project: On successful completion of the taught part of the programme you will complete an individual research or advanced practice project. Project topics can be self-generated, or drawn from a range of real-world applications originating from outside of the university among the research team’s industrial contacts.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
Please note this programme will be undergoing some changes for the 2017/18 entry and courses may be subject to change between now and the commencement of the programme in September 2017. Read more

Please note this programme will be undergoing some changes for the 2017/18 entry and courses may be subject to change between now and the commencement of the programme in September 2017.

This programme offers you the chance to develop a detailed understanding of the application of geographical information science (GIS) and related technologies within the field of archaeology.

The programme retains a distinctive Scottish flavour, and students will benefit from the guidance of internationally recognised staff.

The programme combines the pedigree of Edinburgh’s GIS expertise with a long-established reputation in archaeological teaching and research.

You will gain a broad understanding of the use of GIS in archaeological surveying, recording and research and will be equipped with the analytical and communication skills necessary to work in this vibrant area.

Demand for the application of GIS within archaeology is growing at an unprecedented rate, including searching for new archaeological sites, determining the societal context of existing sites and examining the interplay between successive occupations of a site.

The proven ability of our GIS graduates in employment means our programme is held in high regard by a wide range of employers.

Applicants who applied after 12 December 2016 receiving an offer of admission, either unconditional or conditional, may be required to pay a tuition fee deposit. Please see the fees and costs section for more information.

Programme structure

The programme is organised into two semesters of taught courses, delivered through lectures and seminars, after which you will work towards your individual dissertation.

Compulsory courses typically will be:

  • GIS & Spatial Analysis for Archaeologists
  • Spatial Modelling and Analysis
  • Research Practice & Project Planning
  • Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses. We particularly recommend:

  • Exploring the Past with Data Science
  • Quantitative Methods & Reasoning in Archaeology
  • Technological Infrastructures for GIS
  • Visual Analytics
  • Principles and Practice of Remote Sensing
  • Active Remote Sensing: Radar and LiDAR
  • Passive Earth Observation: new platforms, sensors and analytical methods
  • Business Geographics
  • Space , Place and Time: the archaeology of built environments
  • The Scottish Lowlands: Archaeology and Landscape before the Normans

Courses are offered subject to timetabling and availability and are subject to change. Field trip

There is a field trip focusing on techniques for capturing geospatial information. This field trip has historically taken place at the Kindrogan Field Centre, Perthshire.

Career opportunities

The expertise gained on this programme will allow you to continue to study or to pursue a career in surveying, illustration and 3D visualisation, digital archiving, heritage management, terrain modelling, database management, geomatics or consultancy.

Our GIS graduates have gained work in both public and private sector organisations, including Historic Scotland, English Heritage, the Royal Commission on the Ancient and Historical Monuments of Scotland, thinkWhere (formerly Forth Valley GIS) and CFA Archaeology.

Related programmes

You may also be interested in the following programmes:

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X