• Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Leeds Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
"landslide"×
0 miles

Masters Degrees (Landslide)

  • "landslide" ×
  • clear all
Showing 1 to 5 of 5
Order by 
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering. Read more

Overview

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields within civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work. Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites. They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change. Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

• Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
• Attend a series of School seminars and wider university events. The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society
• Benefit from our strong connections with industry:
- We have been training Engineering Geologists over 40 years and maintain links with alumni who can be found in many companies across the globe.
- Industry colleagues contribute to teaching and an Industry Advisory Board informs the content of this course.

Read less
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Read more

Course Overview

We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Our research has global consequences and our academics are leaders in their field.

Our School of Civil Engineering and Geosciences has a successful research group that focuses on water resources. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Our research themes include: catchment hydrology and sustainable management; flood risk and coastal management; climate change impacts and adaptation

We supervise MPhil and PhD students in the following areas: flow and transport processes in surface and subsurface systems. This includes river mechanics and contaminant and sediment transport; planning and control of hydraulic networks; sustainable management of the water environment, including urban, rural agricultural and forestry environments; climate change impact assessment, including flood risk; environmental hazard assessment and mitigation, including landslide hazard; integrated surface and groundwater pollution controls; integrated assessment of coupled natural, technological and human systems.

Training and Skills

As a research student you receive a tailored package of academic and support elements. Your personalised programme will ensure you maximise your research and future career. The programme profile details academic subject information. Support is available through our: Postgraduate Researcher Development Programme; Doctoral training centres; Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civil-engineering-water-resources-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civil-engineering-water-resources-mphil-phd/#howtoapply

Read less
Disasters are complex events with multifaceted causes and hence disaster management needs comprehensive, multidisciplinary training to deal with both complexity and change. Read more
Disasters are complex events with multifaceted causes and hence disaster management needs comprehensive, multidisciplinary training to deal with both complexity and change. Major shifts have occurred in the way in which disasters are considered, resulting from an increasing awareness of problems internationally along with an identified need for solutions. The importance of disaster risk reduction has continued to grow both within governmental and non-governmental organisations.

This Masters course is a unique programme which will provide a balanced study of environmental hazards and disaster management, pre-event mitigation, disaster risk reduction and disaster relief, along with the development of technical and interpersonal skills. It will enable you to critically assess the effectiveness of the implementation of existing techniques, in order to evaluate good practice and apply it to new situations.

The standard Master’s tuition fees apply. However, additional costs will include the Summer School fees (currently about £1000) and the costs for any optional overseas residential fieldwork. Students may be eligible for bursaries from the University for £1500 or £2000 though conditions apply.

See the website http://courses.southwales.ac.uk/courses/800-msc-disaster-management-for-environmental-hazards

What you will study

The course will develop knowledge, technical skills, interpersonal and management skills, and expertise. You will study a range of hazards using examples from the UK and other countries. This will provide you with the experience to assess risks and vulnerabilities from desk-based research, laboratory and field situations, consider hazard management and disaster risk reduction strategies, and critically review the concept of resilience along with techniques for its development.

You will consider the dynamic and multi-faceted nature of disasters and examine a range of aspects pertinent to the operational, political and socio-cultural issues involved in disaster relief, including aspects of international law. The course will ensure a sound working knowledge and experience with one of the mostly widely used GIS platforms, extensively used by many planning authorities, GOs and NGOs, and you will develop valuable skills in the acquisition and processing of spatial datasets with a wide variety of disaster management applications, along with the ability to visualise and depict spatial information.

You will develop interpersonal skills for effective team-working, group leadership, and organisational management including the assessment of priorities, allocation of resources and co-ordination of activities through simulation experience. This range of interpersonal skills and humanitarian core competencies will enhance your employability after graduation.

Opportunities for study on residential field courses will include the use of field simulations either in Finland or in the UK, and the option to examine environmental hazards and evaluate management strategies on overseas residential field courses. Currently, the field course takes place in southern Italy to examine volcanic, seismic, landslide and tsunami hazards.

You will study the following modules:
- Principles and Concepts in Disasters
- Management of Coastal and Hydrological Hazards
- Management of Geological and Technological Hazards
- Personal Preparedness for Disasters
- Professional Development for Disasters

Plus two of the following optional modules:
- ArcGIS Principles and Practice
- Remote Sensing
- Work Based Learning
- Professional Practice in Disasters

You will also complete a Masters Dissertation Project. The literature review work and project plans will be completed before your work placements. The Master’s dissertation will be undertaken after the placement has been completed. Preparation for the Master’s project or dissertation will commence in the Spring term.

Learning and teaching methods

The course is designed in a modular format and will be offered on a full and part time basis. Delivery will be mixed-mode, with a combination of traditional lectures, practicals and distance learning with supporting tutorials. For full time students, study will take place over 14 months, and for part time students, study may typically take two to three years.

Study will utilise a range of diverse learning approaches and activities to acknowledge the rich and diverse character and content of the body of knowledge that forms this Master’s degree course. It will include:
- Attending the Summer School.
- Lectures
- Seminars and tutorials.
- Completing work packages by distance learning through the Virtual Learning Environment.
- Actively participating in computer workshops and laboratory work.
- Undertaking a range of field based studies and data collection.
- Participating in group based activities and simulations.
- One-to-one interactions with academic staff.
- Fieldwork including community-based learning.
- Self-directed study.
- Optional field or work-placement.

Work Experience and Employment Prospects

A range of study pathways are provided depending on career intentions after graduation. Options involving work, field or disaster placements are desirable for employers and will be the preferred option for students on the course. Placement settings could include:
- NGOs working on disaster risk reduction projects or disaster relief;
- Civil protection or planning authorities
- Specialist environmental consultancies
- UK or overseas research projects.

The initial arrangement of work and field placements will begin early in the course and the work/field placement will normally be expected to begin within the following Summer term. Preparation for the Master’s project or dissertation will commence in the Spring term, with literature review work and project plans to be completed before placements take place. The Master’s dissertation will be undertaken after the placement has been completed.

Assessment methods

Field trips:
Fieldwork provides unforgettable educational and social experiences, bringing to life the theory and concepts of the lecture theatre. South Wales is a fantastic study location on the edge of rural and urban environments.

Cardiff, Wales’ capital city, the Brecon Beacons National Park and the Glamorgan Heritage Coast are all close to the University. They provide exceptional fieldwork locations that can be explored in a day. We make full use of these locations across our earth and environment courses to cover the practical aspects of our modules.

Please note: the exact locations of all overseas field trips may vary each year and is based on the area’s suitability for academic study and the overall cost of the trip.

Important Information

Please be aware of the physical demands of this course which has modules with significant fieldwork elements. If you therefore have a disability which is likely to be affected by these physical demands, please get in touch with the course leader Dr Anthony Harris, as soon as possible. We will then investigate the reasonable adjustments that we can make to ensure your Health and Safety. Please note that if any Health & Safety aspects cannot be overcome, we may not be able to offer you a place on the course of your choice.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X