• University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
Cranfield University Featured Masters Courses
OCAD University Featured Masters Courses
Coventry University Featured Masters Courses
University of Reading Featured Masters Courses
University of Leeds Featured Masters Courses
"laboratory" AND "science…×
0 miles

Masters Degrees (Laboratory Science)

We have 1,535 Masters Degrees (Laboratory Science)

  • "laboratory" AND "science" ×
  • clear all
Showing 1 to 15 of 1,535
Order by 
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

 A. Advancement in Knowledge and Skill

  • ​To develop specialists in their respective professional disciplines to enhance their career paths;
  • To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
  • To provide a laboratory environment for testing problems encountered at work.

 Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:

  • ​To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
  • To introduce students to advances in selected areas of diagnostic laboratory techniques;
  • To develop in students an integrative and collaborative team approach to the investigation of common diseases;
  • To foster an understanding of the management concepts that are relevant to clinical laboratories; and
  • To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development

  • ​To provide channels for practising professionals to continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.

Characteristics

Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities; basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.

Recognition

This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme structure

To be eligible for the MSc in Medical Laboratory Science (MScMLS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • Dissertation (9 credits)
  • 3 Core Subjects (9 credits)
  • 2 Elective Subjects (6 credits)

Apart from the award of MScMLS, students can choose to graduate with the following specialism:

  • MSc in Medical Laboratory Science (Molecular Diagnostics)

 To be eligible for the specialism, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to the specialism, 4 Specialty Subjects (12 credits) and 1 Elective Subject (3 credits).

Compulsory Subjects

  • ​Integrated Medical Laboratory Science
  • Research Methods & Biostatistics

Core Subjects

  • Advanced Topics in Health Technology
  • Clinical Chemistry
  • Epidemiology
  • Haematology & Transfusion Science
  • Histopathology & Cytology
  • Immunology
  • Medical Microbiology
  • Clinical Applications of Molecular Diagnostics in Healthcare *
  • Molecular Technology in the Clinical Laboratory *
  • Workshops on Advanced Molecular Diagnostic Technology *

Elective Subjects

  • Bioinformatics in Health Sciences *
  • Professional Development in Infection Control Practice

* Specialty Subject



Read less
The MSc in Medical Laboratory Science is equivalent to just over one year of full time study. It is designed for professional Medical Laboratory Scientists working full time so it is expected that all candidates will study part time and take three or four years to complete the degree. Read more

The MSc in Medical Laboratory Science is equivalent to just over one year of full time study. It is designed for professional Medical Laboratory Scientists working full time so it is expected that all candidates will study part time and take three or four years to complete the degree.

Careers

Suitable for Medical Laboratory Scientists interested in advancement within health-related areas.



Read less
Get a degree that's recognised worldwide and contribute to knowledge in your field. A Master of Science (MSc) will develop your technical, laboratory and academic writing skills to prepare you for a career in science. Read more

Get a degree that's recognised worldwide and contribute to knowledge in your field. A Master of Science (MSc) will develop your technical, laboratory and academic writing skills to prepare you for a career in science.

The MSc will take you between two and two and half years of full-time study or up to four years part time. In the first year of your MSc you'll take several courses related to your specialist subject area. Next, you'll carry out in-depth supervised research for 12–15 months and write a thesis. During your studies you might also author publications for peer-reviewed journals.

To do an MSc you'll need a Bachelor's degree in an appropriate field, with an average grade of B+ or higher in your subject area. You may also be able to qualify for entry if you have appropriate work or other experience.

Range of Master's programmes

Choose to complete this Master's programme or one of the specialist science Master's programmes. Most specialist programmes are 180 points and don't require a thesis.

If you have already done a BSc(Hons) you can apply to go directly into the 120-point MSc by thesis.

Available subjects

Workload

If you are studying full time, you can expect a workload of 40–45 hours a week for much of the year. Part-time students doing two courses per trimester will need to do around 20–23 hours of work a week. Make sure you take this into account if you are working.



Read less
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Read more
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Develop your skills and knowledge on our accredited course, as you collect and analyse evidence, equipping you to become a confident and effective practitioner.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

In-keeping with its industry-focus our Chartered Society of Forensic Sciences accredited course is taught by experienced forensics practitioners. We’ll immerse you in a practical environment that closely emulates a real forensics laboratory. The analytical skills and expertise you gain apply equally well in the broader scientific and technological fields as they do in forensics.

Our course combines practical skills with high-level theoretical knowledge of the wide range of forensic techniques you need to apply at all stages of an investigation. Going further still, you’ll be trained to design and execute your own research project in a relevant area, which particularly interests you. This will include guidance on research methods, good practice, presentation and the application of your research.

Full-time - January start, 15 months. September start, 12 months.
Part-time - January start, 33 months. September start, 28 months.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

This course will provide you with:
• the opportunity to acquire Masters level capabilities, knowledge and skills in diverse areas of forensic science from the crime scene to the court
• training in the design and execution of science based research in an appropriate area of forensic science
• the opportunity to undertake a formal research programme in an appropriate area of forensic science

The intention is to immerse you in an environment that is as realistically close to that of a practising forensic science laboratory as is possible in an academic institution. The experience and background of Anglia Ruskin's staff, their intimate knowledge and working relationships with the industry and the availability or new or relatively new purpose-built laboratory facilities places this course in a strong position to deliver such an experience.

This course is suitable for candidates who wish to specialise in Forensic Science as a progression from their first degree in forensic science and for candidates coming into Forensic Science with a strong background in traditional analytical science. This course is accredited by The Forensic Science Society

On successful completion of this course you will be able to:
• demonstrate deep and systematic knowledge of several major areas of forensic science, including either chemical or biological criminalistics.
• apply theoretical and experimentally based empirical knowledge to the solution of problems in forensic science
demonstrate that you are cognisant with the best ethical practices, validation and accreditation procedures relevant to forensic science.
• demonstrate a comprehensive understanding of the theory and practice of advanced analytical techniques, as used and applied in forensic science.
• devise, design, implement and, if necessary, modify a programme of basic research directly related to the solution of practical problems in the broad field of forensic science.
• assimilate the known knowledge and information concerning a particular problem/issue and erect testable and viable alternative hypotheses, from theoretical and empirical/experimental view points.
• demonstrate a level of conceptual understanding that will enable information from a wide range of sources and methodologies to be comprehensively and critically appraised.
• operate competently, safely and legally in a variety of complex, possibly unpredictable contexts and be able to apply appropriate standards of established good practice in such circumstances.
• demonstrate that you are able to exercise initiative in your work tasks, but yet be able to exercise your responsibility so as not to move beyond the scope of your expertise.
• search for and obtain information from a wide range of traditional, non-traditional and digital/electronic sources and be able to synthesis it into a coherent argument.
• present the results of your work in a number of forms (reports, papers, posters and all forms of oral presentation) at a level intelligible to the target audience (highly trained/specialised professional to informed lay-person).
• organise your own time and patterns of work to maximum effect and be able to work competently either autonomously or as part of groups and teams as required.

Careers

Our course is enhanced by our excellent working relationships with most of the major employers in the forensic science industry, including the police and fire services.

This focus on theory and good laboratory practice, analytical measurement and research and management skills, together with our industry contacts will make you an attractive candidate for employment. It’ll open up career opportunities in specialist forensic science laboratories in the chemical, biological, environmental, pharmaceutical and law enforcement industries.

You’re also in the perfect position to continue your academic career and move up to our Forensic Science PhD.

Core modules

Evidence Collection and Management
Mastering Forensic Evidence
Mastering Forensic Analysis
Specialist Topics
Research Methods
Research Project

Assessment

Your progress will be assessed using a variety of methods including laboratory reports, court reports (including witness statements), presentations, exams, essays and reports.

Facilities

Wide range of advanced microscopy instruments. SEM with EDS. Full range of organic analysis (GC, GC-MS, HPLC and ion chromatography). FT-IR and Raman spectrometers. Gene sequencing and other DNA analytical equipment. Comprehensive collection of specialist forensic equipment including GRIM, VSC and MSP. Dedicated crime scene facility with video equipment.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Specialist facilities

Our facilities include a wide range of advanced microscopy instruments – SEM with EDS, a full range of organic analysis (GC, HPLC and ion chromatography). FT-IR and Raman Spectrometers, gene sequencing and other DNA analytical equipment. A comprehensive collection of specialist forensic equipment includes GRIM, VSC and MSP and we also have a dedicated crime scene facility with video equipment.

Read less
Get a degree that's recognised worldwide and contribute to knowledge in your field. A Master of Science (MSc) will develop your technical, laboratory and academic writing skills to prepare you for a career in science. Read more

Get a degree that's recognised worldwide and contribute to knowledge in your field. A Master of Science (MSc) will develop your technical, laboratory and academic writing skills to prepare you for a career in science.

The MSc by thesis will take you between 12 and 15 months to complete. You'll carry out in-depth supervised research and write a thesis. During your studies you might also author publications for peer-reviewed journals.

To do an MSc by thesis you'll need an Honours degree or postgraduate diploma in an appropriate field, with an average grade of B+ or higher in your subject area.

Available subjects

Workload

If you are studying full time, you can expect a workload of 40–45 hours a week for much of the year. Part-time students will need to do around 20–23 hours of work a week. Make sure you take this into account if you are working.



Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. Read more

Program overview

Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. The curriculum, leading to a master of science degree in color science, educates students using a broad interdisciplinary approach. This is the only graduate program in the country devoted to this discipline and it is designed for students whose undergraduate majors are in physics, chemistry, imaging science, computer science, electrical engineering, experimental psychology, physiology, or any discipline pertaining to the quantitative description of color. Graduates are in high demand and have accepted industrial positions in electronic imaging, color instrumentation, colorant formulation, and basic and applied research. Companies that have hired graduates include Apple Inc., Benjamin Moore, Canon Corp., Dolby Laboratories, Eastman Kodak Co., Hallmark, Hewlett Packard Corp., Microsoft Corp., Pantone, Qualcomm Inc., Ricoh Innovations Inc., Samsung, and Xerox Corp.

The color science degree provides graduate-level study in both theory and practical application. The program gives students a broad exposure to the field of color and affords them the unique opportunity of specializing in an area appropriate for their background and interest. This objective will be accomplished through the program’s core courses, selection of electives, and completion of a thesis or graduate project.The program revolves around the activities of the Munsell Color Science Laboratory within the College of Science. The Munsell Laboratory is the pre-eminent academic laboratory in the country devoted to color science. Research is currently under way in color appearance models, lighting, image-quality, color-tolerance psychophysics, spectral-based image capture, archiving, reproduction of artwork, color management, computer graphics; and material appearance. The Munsell Laboratory has many contacts that provide students with summer and full-time job opportunities across the United States and abroad.

Plan of study

Students must earn 30 semester credit hours as a graduate student to earn the master of science degree. For full-time students, the program requires three to four semesters of study. Part-time students generally require two to four years of study. The curriculum is a combination of required courses in color science, elective courses appropriate for the candidate’s background, and either a research thesis or graduate project. Students require approval of the program director if they wish to complete a graduate project, rather than a research thesis, at the conclusion of their degree.

Prerequisites: The foundation program

The color science program is designed for the candidate with an undergraduate degree in a scientific or other technical discipline. Candidates with adequate undergraduate work in related sciences start the program as matriculated graduate students. Candidates without adequate undergraduate work in related sciences must take foundation courses prior to matriculation into the graduate program. A written agreement between the candidate and the program coordinator will identify the required foundation courses. Foundation courses must be completed with an overall B average before a student can matriculate into the graduate program. A maximum of 9 graduate-level credit hours may be taken prior to matriculation into the graduate program. The foundation courses, representative of those often required, are as follows: one year of calculus, one year of college physics (with laboratory), one course in computer programming, one course in matrix algebra, one course in statistics, and one course in introductory psychology. Other science courses (with laboratory) might be substituted for physics.

Curriculum

Color science, MS degree, typical course sequence:
First Year
-Principles of Color Science
-Computational Vision Science
-Historical Research Perspectives
-Color Physics and Applications
-Modeling Visual Perception
-Research and Publication Methods
-Electives
Second Year
-Research
-Electives

Other admission requirements

-Submit scores from the Graduate Record Examination (GRE).
-Submit official transcripts (in English) for all previously completed undergraduate and graduate course work.
-Submit two professional recommendations.
-Complete an on-campus interview (when possible).
-Have an average GPA of 3.0 or higher.
-Have completed foundation course work with GPA of 3.0 or higher (if required), and complete a graduate application.
-International applicants who native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 94 (internet-based) are required. International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.

Additional information

Scholarships and assistantships:
Students seeking RIT-funded scholarships and assistantships should apply to the Color Science Ph.D. program (which is identical to the MS program in the first two years). Currently, assistantships are only available for qualified color science applicants to the Ph.D. program. Applicants seeking financial assistance from RIT must submit all application documents to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Computer Science is at the cutting edge of modern technology, is developing rapidly, and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Theoretical Computer Science enables students to pursue a one year individual programme of research. The

Theoretical Computer Science programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Theoretical Computer Science MSc by Research programme, you will be fully integrated into one of our established computer science research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features of Theoretical Computer Science

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally in computer science. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. The Department of Computer Science also strongly encourages students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.



Read less
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. Read more
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. The programme also develops critical, analytical and transferable skills that prepare you for professional, academic and research careers in the exciting and rapidly advancing area of archaeological science or in non-cognate fields.

The programme places the study of the human past at the centre of archaeological science enquiry. This is achieved through a combination of science and self-selected thematic or period-based modules allowing you to situate your scientific training within the archaeological context(s) of your choice. The programme provides a detailed understanding of the foundations of analytical techniques, delivers practical experience in their application and data processing, and the ability to design and communicate research that employs scientific analyses to address archaeological questions. Upon graduation you will have experience of collecting, analysing and reporting on data to publication standard and ideally equipped to launch your career as a practising archaeological scientist.

Distinctive features

The MSc Archaeological Science at Cardiff University gives you access to:

• A flexible and responsive programme that combines training in scientific enquiry, expertise and vocational skills with thematic and period-focused archaeology.

• Materials, equipment, library resources and funding to undertake meaningful research in partnership with a wide range of key heritage organisations across an international stage.

• A programme with core strengths in key fields of archaeological science, tailored to launch your career in the discipline or to progress to doctoral research.

• A department where the science, theory and practice of archaeology and conservation converge to create a unique environment for exploring the human past.

• Staff with extensive professional experience in researching, promoting, publishing, and integrating archaeological science across academic and commercial archaeology and the wider heritage sector.

• An energetic team responsible for insights into iconic sites (e.g. Stonehenge, Çatalhöyük), tackling key issues in human history (e.g. hunting, farming, food, and feasts) through the development and application of innovative science (e.g. isotopes, residue analysis, DNA, proteomics)

• A unique training in science communication at every level - from preparing conference presentations and journal articles, to project reports, press releases and public engagement, our training ensures you can transmit the excitement of scientific enquiry to diverse audiences.

• Support for your future career ambitions. From further study to science advisors to specialists – our graduates work across the entire spectrum of archaeological science as well as moving into other successful careers.

Structure

There are two stages to this course: stage 1 and stage 2.

Stage 1 is made up of:

• 40 credits of Core Skills and Discipline-Specific Research Training modules for Archaeology and Conservation Master's students
• A minimum of 40 credits of Archaeological Science modules
• An additional 40 credits of Archaeological Science or Archaeology modules offered to MA and MSc students across the Archaeology and Conservation department

Stage 2 comprises:

• 60 credit Archaeological Science Dissertation (16-20,000 words, topic or theme chosen in consultation with academic staff)

Core modules:

Postgraduate Skills in Archaeology and Conservation
Skills and Methods for Postgraduate Study
Archaeological Science Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant local resources such as the National Museum Wales and local heritage organisations.

Lectures take a range of forms but generally provide a broad structure for each subject, an introduction to key concepts and relevant up-to-date information. The Archaeological Science Master's provides students with bespoke training in scientific techniques during laboratory sessions. This includes developing practical skills in the identification, recording and analysis of archaeological materials during hands on laboratory sessions. These range from macroscopic e.g. bone identification, to microscopic e.g. material identification or status with light based or scanning electron microscopy, to sample selection, preparation and analysis e.g. isotopic or aDNA and include health and safety and laboratory management skills. Students will be able to develop specialist practical skills in at least one area of study. In workshops and seminars, you will have the opportunity to discuss themes or topics, to receive and consolidate feedback on your individual learning and to develop skills in oral presentation.

This programme is based within the School of History, Archaeology and Religion and taught by academic staff from across Cardiff University and by external speakers. All taught modules within the Programme are compulsory and you are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study.

Assessment

The 120 credits of taught Modules within Stage 1 of the Programme are assessed through in-course assessments, including:

Extended essays
Oral presentations
Poster presentations
Statistical assignments
Critical appraisals
Practical skills tests
Data reports
Research designs

You must successfully complete the taught component of the programme before progressing to Stage 2 where assessment is:

Dissertation (16-20,000 words)

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments. You will be able to pursue a wide range of professional careers, within commercial and academic archaeology and the wider heritage sector. Career paths will generally be specialist and will depend on the choice of modules. Graduates will be well placed to pursue careers as a specialist in isotope analysis, zooarchaeological analysis or human osteoarchaeology. They will also be in a position to apply for general laboratory based work and archaeological fieldwork. Working within science communication and management are other options. Potential employers include archaeological units, museums, universities, heritage institutions, Historic England and Cadw. Freelance or self-employment career routes are also common for animal and human bone analysts with postgraduate qualifications.

The archaeology department has strong links and collaborations across the heritage sector and beyond. British organisations that staff currently work with include Cadw, Historic England, English Heritage, Historic Scotland, National Museum Wales, the British Museum, the Welsh archaeological trusts and a range of other archaeology units (e.g. Wessex Archaeology, Oxford Archaeology, Cambridge Archaeology Unit, Archaeology Wales). In addition, staff are involved with archaeological research across the world. You will be encouraged to become involved in these collaborations via research projects and placements to maximise networking opportunities and increasing your employability.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Data Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics

- Data Science Research Methods and Seminars

- Big Data and Data Mining

- Big Data and Machine Learning

- Mathematical Skills for Data Scientists

- Data Visualization

- Human Computer Interaction

- High Performance Computing in C/C++

- Graphics Processor Programming

- Computer Vision and Pattern Recognition

- Modelling and Verification Techniques

- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst

- Data mining Developer

- Machine Learning Developer

- Visual Analytics Developer

- Visualisation Developer

- Visual Computing Software Developer

- Database Developer

- Data Science Researcher

- Computer Vision Developer

- Medical Computing Developer

- Informatics Developer

- Software Engineer



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).



Read less
The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning. Read more

The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning.

The program is designed to build upon undergraduate studies in sports science to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes.

Upon successful completion of the Graduate Certificate in Sports Science, students are eligible to enrol in the Graduate Diploma in Sports Science and subsequent Master of Sports Science. Subjects completed in the Graduate Certificate are credited to the Diploma.

About the program

The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning.

The program is designed to build upon undergraduate studies in sports science to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes.   

The program is suitable for graduates in exercise and sports science aspiring for a career in high performance sport, or for established professionals seeking to move into specialist sports science service roles.

The program is suitable for graduates with ambitions to enter postgraduate sports science as a pathway into postgraduate specialisation in strength & conditioning and high performance science or for internationally educated strength and conditioning coaches or high performance managers requiring professional updates before applying for Australian qualification recognition. 

Placing a strong emphasis on comprehensive practical experience, the program provides exposure to authentic high performance sports science. The Graduate Certificate is delivered at the world-class Bond Institute of Health and Sport where you will gain exceptional, high-quality practical experience in our high performance gym and sports science research laboratories. You will have access to specialised technology used in research to deliver a wide range of athlete testing and performance analysis. These facilities provide sports science testing and training services to a variety of elite and sub-elite athletes, providing an exceptional learning experience.

Structure and subjects

You must complete all of the following subjects:

*Subject names and structure may change

Teaching Methodology

The Graduate Certificate in Sports Science uses a teaching methodology that involves a combination of lectures, tutorials, seminars, examinations, projects, presentations, assignments, and laboratory work. Examination formats may include objective structure practical examinations, theory papers, assignments and oral presentations.



Read less
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights. Read more
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights.

Who is it for?

This programme is for students who have a numerate first degree or can demonstrate numerate skills. Students are often at the early stages of their careers in diverse professions including economics, statistics and computer science.

Students will have a curiosity about data, and will want to learn new techniques to boost their career and be part of exciting current industry developments. The MSc in Data Science includes some complex programming tasks because of the applied nature of the course, so many students have a mathematics or statistics background and enjoy working with algorithms.

Objectives

The demand for data scientists in the UK has grown more than ten-fold in the past five years *. The amount of data in the world is growing exponentially. From analysing tyre performance to detecting problem gamblers, wherever data exists, there are opportunities to apply it.

City’s MSc Data Science programme covers the intersection of computer science and statistics, machine learning and practical applications. We explore areas such as visualisation because we believe that data science is about generating insight into data as well as its communication in practice.

The programme focuses on machine learning as the most exciting technology for data and we have learned from our own graduates that this is of high value when it comes to employment within the field. At City, we have excellent expertise in machine learning and the facilities students need to learn the technical aspects of data analysis. We also have a world-leading centre for data visualisation, where students get exposed to the latest developments on presenting and communicating their results – a highly sought after skill.

Placements

There is the opportunity to do an internship as part of the programme. The final project, which is normally three months for a full-time student, can be extended to six months if you want to study within a specific organisation. When it comes to the big data and data science area, we have established relationships with organisations including the BBC, Microsoft and The British Library so you can be confident that with City, your access to professional experience is unparalleled. One recent student undertook an internship with Google and has since secured a job within the company.

Academic facilities

The School's computer science laboratories are equipped with the latest up-to-date hardware and software. From Oracle’s leading commercial object-relational database server to PCs with state-of-the-art NVidia GPUs for computer graphics, you will have access to an array of tools to support your learning.

The MSc Data Science programme offers two (three by mid 2016) dedicated computer servers for the Big Data module, which you can also use for your final project to analyse large data sets. We give you the opportunity to undertake training in MATLAB, the most popular numerical and technical programming environment, while you study.

Scholarships

A scholarship for the full fees of the MSc will be offered to an outstanding applicant. The scholarship is available to UK/EU and overseas students, studying full-time. To be considered for the scholarship, please include with your full application a one-page essay with your answer to the question:

'What are the challenges that Data Science faces and how would you address those challenges?'

The submission deadline for anyone wishing to be considered for the scholarship is: 1 MAY 2017

Teaching and learning

The teaching and learning methods we use mean that students’ specialist knowledge and autonomy increase as they progress through each module. Active researchers guide your progress in the areas of machine learning, data visualization, and high-performance computing, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:
-Present and exemplify the concepts underpinning a particular subject.
-Highlight the most significant aspects of the syllabus.
-Indicate additional topics and resources for private study.

Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem solving contexts.

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools.

In addition to lectures, laboratory sessions and tutorial support, you also have access to a personal tutor. This is an academic member of staff from whom you can gain learning support throughout your degree. In addition, City’s online learning environment Moodle contains resources for each of the modules from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Each module is assessed through a combination of written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply data science methods and techniques.

The individual project is a substantial task. It is your opportunity to develop a research-related topic under the supervision of an academic member of staff. This is the moment when you can apply what you have learnt to solve a real-world problem using large datasets from industry, academia or government and use your knowledge of collecting and processing real data, designing and implementing big data methods and applying and evaluating data analysis, visualisation and prediction techniques. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Course content

Data science is the area of study concerned with the extraction of insight from large collections of data.

The course covers the study, integration and application of advanced methods and techniques from:
-Data analysis and machine learning
-Data visualisation and visual analytics
-High-performance, parallel and distributed computing
-Knowledge representation and reasoning
-Neural computation
-Signal processing
-Data management and information retrieval.

It gives you the opportunity to specialise so, once you graduate, you can apply data science to any sector from health to retail. By engaging with researchers and industrial partners during the programme, you can develop your knowledge and skills within a real-world context in each of the above areas.

Core modules
-Principles of data science (15 credits)
-Machine learning (15 credits)
-Big Data (15 credits)
-Neural computing (15 credits)
-Visual analytics (15 credits)
-Research methods and professional issues (15 credits)

Elective modules
-Advanced programming: concurrency (15 credits)
-Readings in computer science (15 credits)
-Advanced databases (15 credits)
-Information retrieval (15 credits)
-Data visualisation (15 credits)
-Digital signal processing and audio programming (15 credits)
-Cloud computing (15 credits)
-Computer vision (15 credits)
-Software agents (15 credits)

Individual project - (60 credits)

Career prospects

From health to retail, and from the IT industry to government, the Data Science MSc will prepare you for a successful career as a data scientist. You will graduate with specialist skills in data acquisition, information extraction, aggregation and representation, data analysis, knowledge extraction and explanation, which are in high demand.

City's unique internships, our emphasis on machine learning and visual analytics, together with our links with the industry and Tech City, should help you gain employment as a specialist in data analysis and visualization. Graduates starting a new business can benefit from City's London City Incubator and City's links with Tech City, providing support for start-up businesses.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As an MSc by Research Computer Science student you will be guided by internationally leading researchers in the field of computer science and will carry out a large individual research project. Computer Science is at the cutting edge of modern technology, and is developing rapidly and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Computer Science degree enables you to pursue a one year individual programme of research in the field of computer science and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

The MSc by Research programmes including Computer Science MSc by Research all have a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in biosciences or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research Computer Science programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. We also strongly encourage students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Advanced Computer Science at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*

• We are 3rd in the UK for teaching quality**

• 5th in the UK overall*

• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]

• 7th in the UK overall and Top in Wales*

• High employability prospects - we are 8th in the UK for graduate prospects*

• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]

• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]

• Our Project Fair allows students to present their work to local industry

• Strong links with industry

• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017

**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!



Read less

Show 10 15 30 per page



Cookie Policy    X