• University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Ulster University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Coventry University Featured Masters Courses
University of Dundee Featured Masters Courses
FindA University Ltd Featured Masters Courses
0 miles

Masters Degrees (Laboratory)

We have 2,319 Masters Degrees (Laboratory)

  • "laboratory" ×
  • clear all
Showing 1 to 15 of 2,319
Order by 
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

 A. Advancement in Knowledge and Skill

  • ​To develop specialists in their respective professional disciplines to enhance their career paths;
  • To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
  • To provide a laboratory environment for testing problems encountered at work.

 Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:

  • ​To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
  • To introduce students to advances in selected areas of diagnostic laboratory techniques;
  • To develop in students an integrative and collaborative team approach to the investigation of common diseases;
  • To foster an understanding of the management concepts that are relevant to clinical laboratories; and
  • To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development

  • ​To provide channels for practising professionals to continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.


Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities; basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.


This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme structure

To be eligible for the MSc in Medical Laboratory Science (MScMLS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • Dissertation (9 credits)
  • 3 Core Subjects (9 credits)
  • 2 Elective Subjects (6 credits)

Apart from the award of MScMLS, students can choose to graduate with the following specialism:

  • MSc in Medical Laboratory Science (Molecular Diagnostics)

 To be eligible for the specialism, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to the specialism, 4 Specialty Subjects (12 credits) and 1 Elective Subject (3 credits).

Compulsory Subjects

  • ​Integrated Medical Laboratory Science
  • Research Methods & Biostatistics

Core Subjects

  • Advanced Topics in Health Technology
  • Clinical Chemistry
  • Epidemiology
  • Haematology & Transfusion Science
  • Histopathology & Cytology
  • Immunology
  • Medical Microbiology
  • Clinical Applications of Molecular Diagnostics in Healthcare *
  • Molecular Technology in the Clinical Laboratory *
  • Workshops on Advanced Molecular Diagnostic Technology *

Elective Subjects

  • Bioinformatics in Health Sciences *
  • Professional Development in Infection Control Practice

* Specialty Subject

Read less
The implementation of . EU directive 2010/63/EU.  on the protection of animals used for scientific purposes has immediate consequences for scientific personnel, their training needs and the associated job market. Read more

The implementation of EU directive 2010/63/EU on the protection of animals used for scientific purposes has immediate consequences for scientific personnel, their training needs and the associated job market. The number of personnel qualified to plan, conduct and evaluate experiments on animals has been further restricted and additional training is required for a wide spectrum of professionals active in laboratory animal science.

The benefits for our absolvents are

  • detailed and specialist knowledge of laboratory animal science based on the latest scientific discoveries in order to deal with complex experimental methodology and conduct independent research.
  • Ability to independently plan, conduct, evaluate and improve animal experiments, under consideration of the latest ethical criteria and species appropriate animal husbandry, in order to positively influence the well-being of the animals in line with EU directives while generating scientific data to the highest standards.
  • Accredited M.Sc. qualification from a leading university for access to a wide range of careers in Laboratory Animal Science.
  • Access to a network of internationally renowned specialists.
  • The opportunity to study while continuing to pursue an outside career.
  • Unique broad experience with a wide range of species, from rodents to non-human primates.

Currently, laboratory animal science is not a primary focus of human or veterinary medicine. Furthermore, interdisciplinary Bachelor and Master programs in bio-medical disciplines often lack the required experimental skills, despite the potential for their graduates to access attractive careers in science or industry. Together with the accepted, on-going necessity for animal testing in medical research and development, as well as the more restrictive animal protection guidelines, there is an acute demand from industry, research institutions and the regulatory authorities for highly skilled personnel to lead and manage their laboratory animal research activities in a highly competent manner. Graduates of this M.Sc. program will be well equipped to take on leading roles and will be highly sought after. Furthermore, graduates of the RWTH Aachen, one of Germany’s Universities of Excellence, are highly regarded by employers.

The program is aimed at scientists, doctors and veterinarians, who plan, conduct and evaluate animal experiments and their facilities. The study course is conducted in English and open to national and international applicants who wish to enhance their skills for a successful career in Laboratory Animal Science. By employing a blended learning concept, incorporating e-learning and short attendance blocks, this two year, part-time course enables participants to receive the highest level of academic and practical training whilst continuing to pursue their outside careers.

Read less
You gain advanced level knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. Read more

You gain advanced level knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop relevant practical skills.

As well as studying the fundamentals of pathology, you can choose one specialist subject from

  • cellular pathology
  • microbiology and immunology
  • blood sciences.

If you choose the MSc route you also take a project module.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects, and our tutors are experts in these techniques

You develop the professional skills needed to further your career. These skills include • research methods and statistics • problem solving • the role of professional bodies and accreditation • regulation • communication.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where you are assigned to a tutor who is an active researcher in the Biomolecular Sciences Research Centre.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The professional development and research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into • cancer • musculoskeletal diseases • human reproduction • neurological disease • hospital acquired infection • immunological basis of disease.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Biomedical laboratory techniques (15 credits)
  • Professional development (15 credits)
  • Cell biology (15 credits)
  • Molecular diagnostics (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)
  • Evidence based laboratory medicine (15 credits)
  • Blood sciences (30 credits)
  • Microbiology and immunology (30 credits)
  • Cellular pathology (30 credits)


Assessment methods include written examinations and coursework, such as:

  • problem solving exercises
  • case studies
  • reports from practical work.

Research project assessment involves a written report and viva voce. 


As a graduate you can start or develop your career in pathology, biomedical sciences or research labs and industry within the biomedical field. It’s also for scientists working in hospital or bioscience-related laboratories particularly as biomedical scientists who want to expand their knowledge and expertise in this area.

Read less
Why this course?. The MSc in Forensic Science is the UK’s longest established forensic science degree course, celebrating its . Read more

Why this course?

The MSc in Forensic Science is the UK’s longest established forensic science degree course, celebrating its 50th anniversary in 2016/2017.

You’ll join a global network of Strathclyde forensic science graduates in highly respected positions all over the world.

In addition to preparing you for life as a forensic scientist, you’ll also graduate with a wide range of practical skills, problem solving and investigative thinking relevant to a wide range of careers.

You'll study

  • crime scene investigation
  • legal procedures and the law
  • evidence interpretation and statistical evaluation
  • analysis of range of evidence types including footwear marks, trace evidence, and questioned documents

Following a general introduction to forensic science in semester 1, you can choose to specialise in either forensic biology or forensic chemistry. As a forensic biologist you’ll study a range of topics including:

  • body fluid analysis
  • blood pattern interpretation
  • DNA profiling
  • investigation of assaults and sexual offences

If you choose to specialise in forensic chemistry, you’ll develop expertise in:

  • analysis of fires and explosives
  • drugs of abuse
  • alcohol and toxicology

The focal point of the course is our major crime scene exercise, in which you are expected to investigate your own mock outdoor crime scene, collect and analyse the evidence, and present this in Glasgow Sheriff Court in conjunction with students training in Strathclyde Law School.


In semester 3, MSc students undertake a three-month project, culminating in the production of a dissertation.

Students may be given the opportunity to complete their project in an operational forensic science provider either in the UK or overseas (subject to visa requirements). Alternatively, students may complete their project within the Centre for Forensic Science itself, under the supervision of our team of academics.

Examples of institutions that previous Strathclyde students have been placed in to undertake their project include: 

  • Scottish Police Authority, Forensic Services
  • Centre for Applied Science and Technology (CAST)
  • Forensic Explosives Laboratory, Defence Science and Technology Laboratory (DSTL)
  • LGC Forensics
  • Cellmark Forensic Services
  • Institute of Environmental Science and Research, Auckland, New Zealand
  • Institute of Forensic Research, Krakow, Poland
  • Centre of Forensic Sciences, Toronto, Canada

The MSc in Forensic Science runs for 12 months, commencing in September. 


Teaching takes place in the Centre for Forensic Science. It’s a modern purpose-built laboratory for practical forensic training, equipped with state-of-the-art instrumentation for analysis of a wide range of evidence types. This includes a microscopy suite, DNA profiling laboratory, analytical chemistry laboratory, blood pattern analysis room, and a suite for setting up mock crime scenes.


The Chartered Society of Forensic Sciences is a professional body with members in over 60 countries and is one of the oldest and largest forensic science associations in the world.

Our MSc in Forensic Science is accredited by the Chartered Society of Forensic Sciences, demonstrating our commitment to meeting their high educational standards for forensic science tuition.


Assessment consists of written coursework, practical work assessments, oral presentations and formal written examinations. Practical work is continually assessed and counts towards the award of the degree. The project is assessed through the completion of a dissertation.

The award of MSc is based upon 180 credits.


Most forensic scientists in Scotland are employed by the Scottish Police Authority.

In the rest of the UK, forensic scientists are employed by individual police forces, private forensic science providers such as LGC Forensics and Cellmark Forensic Services, or government bodies such as the Centre for Applied Science and Technology (CAST) and the Defence Science Technology Laboratory (DSTL).

Outside of the UK, forensic scientists may be employed by police forces, government bodies or private companies.

Forensic scientists can specialise in specific areas such as crime scene examination, DNA analysis, drug analysis, and fire investigation.

Most of the work is laboratory-based but experienced forensic scientists may have to attend crime scenes and give evidence in court.

Where are they now?

Many of our graduates are in work or further study.**

Job titles include:

  • Analytical Chemist
  • Biology Casework Examiner
  • Deputy Laboratory Director
  • DNA Analyst
  • Forensic Case Worker Examiner
  • Forensic DNA Analyst
  • Forensic Scientist
  • Laboratory Analyst
  • Medical Laboratory Assistant Histopathology
  • Research & Development Chemist

Employers include:

  • Gen-Probe Life Sciences
  • Key Forensic Services Ltd
  • Lancaster Labs
  • LGC Forensics
  • Life Technologies
  • National Institute Of Criminalistics And Criminology
  • NHS
  • Seychelles Forensic Science Lab
  • University of Strathclyde

*information is intended only as a guide.

**Based on the results of the National Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Read less
Program Overview. The Master of Engineering degree is designed for students who would like to advance their knowledge and expertise in biomedical engineering. Read more

Program Overview

The Master of Engineering degree is designed for students who would like to advance their knowledge and expertise in biomedical engineering. The program requires completion of 10 three-credit courses: two core courses, a physiology course, and seven elective courses. The seven elective courses are chosen to meet the student's career objectives. The program is intended to broaden students' knowledge of the field in preparation for the biomedical technology industry or a PhD program.

Related Experience

Biomedical Engineering is a highly multidisciplinary, application-oriented field. Students are encouraged to pursue research projects in one of the many cutting-edge research labs across campus. Opportunities are also available with local clinical, research and industry partners, including Eastern Virginia Medical School, Sentara, and the nearly 20 institutions and companies that comprise Bioscience Hampton Roads.


Biomedical engineering is a fast growing occupation according to the US Bureau of Labor Statistics. Biomedical engineers design the next generation of systems and treatments that will advance the quality of life for patients. They develop medical devices, materials, and computer models that detect and treat disease. Biomedical engineers are responsible for the creation of artificial organs, automated patient monitoring, blood chemistry sensors, advanced therapeutic and surgical devices, application of expert systems and artificial intelligence to clinical decision making, design of optimal clinical laboratories, medical imaging systems, computer modeling of physiological systems, biomaterials design, and biomechanics for injury and wound healing, among many others.

There are a wide variety of job opportunities in fields such as:

  • Cellular, Tissue, Genetic, Clinical, and Rehabilitation Engineering
  • Bioinstrumentation
  • Biomaterials
  • Biomechanics
  • Drug Design and Delivery
  • Medical Imaging
  • Orthopedic Surgery
  • Pharmaceuticals
  • Systems Physiology

Featured Classes & Facilities

The Master of Engineering program requires completion of 10 three-credit courses: two BME fundamentals courses, a graduate physiology course, and seven technical electives. The seven technical electives should be chosen to meet the student's career objectives.

Affiliated Research Labs, Institutes, & Centers

  • Advanced Signal Processing in Engineering and Neuroscience (ASPEN) Laboratory
  • Applied Research Center
  • Biomechanics Laboratory
  • Biomachina Laboratory
  • Cardiac Electrophysiology Laboratory
  • Cellular Mechanobiology Laboratory
  • Center for Brain Research and Rehabilitation
  • Frank Reidy Research Center for Bioelectrics
  • Medical Imaging, Diagnosis and Analysis (MIDA) Laboratory
  • Medical Simulations Laboratory
  • Micro-Devices & Micromechanics Laboratory
  • Microfluids Laboratory
  • Plasma Engineering and Medicine Institute (PEMI)
  • Systems Analysis of Metabolic Physiology and Exercise (SAMPE) Laboratory
  • Virginia Institute for Imaging and Vision Analysis (VIIVA)
  • Virginia Modeling, Analysis and Simulation Center (VMASC)
  • Xu Lab

You can request more information here: https://odugrad.askadmissions.net/emtinterestpage.aspx?ip=graduate

Read less
Biomedical engineering is a fast evolving interdisciplinary field, which has been at the forefront of many medical advances in recent years. Read more

Biomedical engineering is a fast evolving interdisciplinary field, which has been at the forefront of many medical advances in recent years. As such, it is a research-led discipline, which sits at the cutting edge of advances in medicine, engineering and applied biological sciences.

This MSc programme is designed to provide an advanced biomedical engineering education and to develop specialist understanding; the programme contains a large project component which allows you to develop advanced knowledge and research skills in a specialist area.

The programme also aims to develop a multidisciplinary understanding of the subject, which can be applied in a variety of clinical, biomedical and industrial settings. All subjects are taught by biomedical/medical engineers and clinical scientists. This allows you to gain the related skills and experience in healthcare science and technology, engineering principles and manufacturing, and management of various industry standard medical devices.

Cutting-edge research feeds directly into teaching and various student projects, ensuring your studies are innovative, current and focused with direct relation to related industries. All academic staff are research active and very enthusiastic, leading to research led/taught core modules with an excellent pass rate.

What you will study

Core Modules

Option Modules

  • Regenerative Medicine
  • Genomic Coding
  • Clinical Biomechanics
  • Clinical Diagnostics
  • Polymer and Materials Engineering
  • Risk Assessment & Management
  • Engineering Computational Methods
  • Biomaterials with Implant Design & Technology

Learning and assessment

  • Formal and informal lectures
  • Tutorials
  • Laboratory practicals
  • Workshop skills
  • Seminars
  • Group and individually assessed projects


Tissue characterisation laboratory, incorporating three state-of-the-art atomic force microscopes (AFM), which enables the nano- and microstructure of various tissues and other biomaterials to be characterised in great detail. This facility enables the mechanical, physical and biological performance characteristics of tissue/biomaterials to be better understood.

Modern cell/tissue engineering laboratory for in-vitro culturing of various cells/tissues such as skin, bone, cartilage, muscle, etc, and wound repair.

State-of-the-art human movement laboratory, which enables the movement and gait of patients to be analysed in great detail. In particular, the laboratory incorporates a new VICON motion capture facility.

Prosthetic/orthotic joint laboratory containing several state-of-the-art test machines, including a friction hip/knee simulator, for evaluating the performance of artificial hip and knee joints.

Human physiology laboratory for evaluating human physiological performance including EMG, ECG, Blood Pressure, Urine, skin analysis and Spirometry (lung function) tests, etc.

World-class bioaerosol test facility for performing microbiological experiments. This facility comprises a class two negatively pressurised chamber, into which microorganisms can be safely nebulised, thus enabling infection control interventions to be evaluated.

Electrostatics laboratory for evaluating the impact of electrical charge on biological and medical systems.

Medical Electronics Laboratory equipped for the design and manufacturing of Medical diagnostic devices such as Electrocardiography (ECG), Pacemaker, Oximeter and Heart Rate Monitoring, etc.

Other Engineering Laboratories for related subjects such as materials testing and characterisation. Labs and Workshops shared with Mechanical Engineering undergraduate and postgraduate students.

Career prospects

Biomedical Engineering is a growing, increasingly important field, with many significant diagnostic and therapeutic advances pioneered by biomedical engineers. It is highly interdisciplinary in nature and requires engineers who are flexible, able to acquire new skills, and who have a broad knowledge base. In particular, given the research-lead nature of the discipline, there is demand for engineers who can work effectively in a research-lead environment and who can push forward technological boundaries.

Consequently, there is need for people with advanced knowledge and skills, who have a good appreciation of developments in the clinical and biological fields. The MSc in Advanced Biomedical Engineering programme is designed to give you this. 

There is a shortage of professionally qualified engineers in both routine clinical and medical research activities in hospitals, industrial research centres and companies that design, maintain, repair and manufacture electronic medical devices and equipment for public and private health services

We aim to produce postgraduates who aspire to challenging careers in industry, the National Health Service (NHS), commerce and the public sector or to developing their own enterprises. You should therefore be able to move directly into responsible roles in employment with a minimum of additional training. This aim is achieved by:

  • Providing a supportive, structured environment in which students are encouraged to develop independent learning and research skills
  • Developing subject knowledge and understanding, developing discipline skills and developing personal transferable skills, to enable graduates to pursue programmes of advanced study, or to move directly into responsible employment

Various local and national companies including NHS trusts are invited for graduate careers/schemes and for providing placement year specific to biomedical/medical engineering students.

Study support

You will be allocated a personal tutor who is someone with whom you will be able to talk about any academic or personal concerns. There are time-tabled personal tutorial hours per week throughout the academic year, including feedback sessions for all assignments and group/individual projects.

Programme leaders are available for any related matters and advice is given regularly towards curriculum and progression.

University central services are rich with support teams to assist students with every aspect of their journey through our degree programmes. From our Career and Employability Service, through our strong Students' Union, to our professional and efficient Student Finance team, there are always friendly faces ready to support you and provide you with the answers that you need.


At Bradford, you’ll be taught only by lecturers who are involved in cutting edge research and you'll work in their research laboratories, using top-class facilities.

Read less
A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad. Read more

A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad.

Modules encompass the full range of groundwater studies and are supported by practical field sessions and computing and hydrogeological modelling based on industry standard software.

Course details

This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). It is important to have a good knowledge of mathematics.

The lecture component of the programme encompasses the full range of hydrogeology. Modules cover drilling, well design, aquifer test analysis, laboratory test analysis, groundwater flow, hydrogeophysics, inorganic chemistry of groundwaters, organic contamination of groundwater, contaminated land and remediation, groundwater modelling, contaminant transport, hydrology, and groundwater resources assessment. 

These lecture modules are supported by practical field sessions, and by computing and hydrogeological modelling based on industry standard software. Integration of concepts developed in the taught programmes is facilitated through student-centred investigations of current issues linked to a diverse range of hydrogeological environments. 

Examinations are held in January and April. From May onwards, you undertake a project, a report on which is submitted in September. 

Projects may be field-, laboratory-, or modelling- based, and are usually of an applied nature, although a few are research-orientated. Our chemical (inorganic and organic), rock testing, computing, geophysical and borehole-logging equipment is available for you to use during this period. 

Career openings include those with consulting engineering and environmental firms, government scientific services and regional water companies, both in this country and abroad. Demand for hydrogeologists is substantial and students from the course are highly regarded by employers.

Learning and teaching

Hydrogeology is the study of groundwater; an essential component of the world’s water supply. More than 2 billion people depend on groundwater for their daily needs (approximately 30% of water supplied in the UK is groundwater). 

The aim of our Hydrogeology MSc Course is to provide students who have a good scientific or engineering background with a comprehensive training in the fundamentals of groundwater science and engineering, together with considerable practical experience.

The School is well supported and you will have the use of all equipment and facilities appropriate to your work: 


You will have access to the multiple clusters of PCs in the University Learning Centre and Library, and the School-based Earth Imaging Laboratory. The MSc course also has its own dedicated room for teaching and study with six PCs for convenient access to email, web and on-line learning resources.

The University based computers have an extensive range of software installed that covers the needs of students of all disciplines, but in common with the School-based PCs, specialist software packages used routinely by professional hydrogeologists are installed for our MSc students. These include industry standard groundwater flow modelling, contaminant transport modelling, geochemical modelling, geophysical interpretation and field and laboratory hydraulic test analysis packages. You can also register for more specialist software on the University high speed BlueBEAR computing facility if your individual project requires it. Research software developed within the Water Sciences research group is also available.


The School is well equipped for inorganic and organic chemical analysis of field and laboratory samples. Facilities include: Total Organic Carbon analysis, Gas Chromatography, ICP Mass Spectrometry, Ion Chromatography, Stable Isotope Mass Spectrometry and Luminescence and UV/visible spectroscopy. These facilities have been used in a wide range of MSc projects, for both standard geochemical analysis of groundwater samples and for more specific purposes including studies of persistent organic pollutants and toxic heavy metals in the environment, and denitrification in river beds. 

The School also has a dedicated microbiology laboratory equipped with an autoclave for sterilizing media and equipment, a class II safety cabinet for handing microbial samples, and incubators. 

Facilities are also available within the School and elsewhere for geological material analysis, including thin section preparation and microscopy, a wide range of electron microscopy techniques, XRD, pore size distribution determination, and surface area measurement.


The School has two field sites on campus for use by MSc students and research staff. Both consist of arrays of boreholes drilled into the underlying sandstone aquifer to depths of up to 60m.

The groundwater group is well stocked with field equipment, which is used extensively in research projects, for teaching, and particularly on individual MSc projects. This equipment includes pumping test equipment (submersible pumps, generators, packers, digital pressure transducers, data loggers, divers, dip meters, pipe-work and installation frames); chemical sampling and tracer transport equipment (depth samplers, sampling pumps, tracer test equipment and field fluorimeter, hand held EC, pH and EH probes, portable chemical lab kit); geophysical equipment (resistivity imaging, electromagnetic surveying, ground penetrating radar, and borehole logging); and a secure, towable, mobile laboratory for off-site testing.

Fieldwork and projects transform theory into practice and form a large part of the course. They are supported by extensive field, laboratory and technical facilities.

A weeklong course of practical work and site visits is held in Week 7 of the Autumn Term. The content varies from year to year, but typically includes pumping tests, small-scale field tests, chemical sampling, and geophysics using the research boreholes on campus. Visits to landfill sites, water resources schemes, wetlands, and drilling sites are also arranged in collaboration with the Environment Agency, consultants and landfill operators. During the Spring Term, field demonstrations are provided by chemical sampling equipment distributors and manufacturers. You will gain further field experience either during your own 4.5 month project or when helping your colleagues on other projects.

Read less
Infertility is a common problem with approximately 1 in 7 couples of reproductive age being diagnosed as infertile - equating to 72.5 million people globally - and there is an increasing demand for assisted reproductive technology (ART). Read more
Infertility is a common problem with approximately 1 in 7 couples of reproductive age being diagnosed as infertile - equating to 72.5 million people globally - and there is an increasing demand for assisted reproductive technology (ART). This course will provide a robust and wide ranging education in human clinical embryology and ART.

Professor Barratt, Programme Director of the new programme MSc Human Clinical Embryology and Assisted Conception has been confirmed as one of the lecturers at the forthcoming Campus Workshop "From gametes to blastocysts – a continuous dialogue" to be held in Apex City Quay Hotel, Dundee, 7-8th November 2014. This programme is organised by the ESHRE Special Interest Group Embryology.

Why study Human Clinical Embryology and Assisted Conception at Dundee?

The MSc in Human Clinical Embryology and Assisted Conception is a new taught master’s programme which has been designed to provide a robust and wide ranging education in human clinical embryology and ART (assisted reproductive technology). Students will gain a systematic understanding of clinical embryology and ART whilst developing high level laboratory skills in various aspects of clinical embryology, andrology and ART.

The emphasis of the course is on humans and clinical ART/embryology and offers practical experience in handling and preparing HUMAN gametes.


Follow us at https://www.facebook.com/mscembryologyassistedconception/ to keep up to date with our latest news

The University of Dundee has excellent clinical links and a close working relationship with the NHS and students will benefit from a scientifically rigorous programme with teaching drawn from experienced embryologists, scientists and clinicians.

A key benefit of the programme is that it offers a unique opportunity to gain substantial exposure to an NHS IVF clinic (NHS Tayside). This will allow students to observe the practice and management of a working IVF clinic and benefit from teaching by staff involved in ART, and will be of considerable benefit for those wanting a clinical based career. The NHS Tayside IVF clinic has recently benefitted from a substantial investment in its facilities which has created a high quality clinical environment.

The blend of scientific, practical skills and the integration with an NHS facility giving students first hand experience and exposure to the workings of an NHS IVF clinic will provide students with an excellent base to enter a career in ART either in a clinical or research setting.

How you will be taught

The MSc is full time programme (September to August) and will consist of 5 taught modules and a research project. The course consists of a combination of lectures, seminars, tutorials, discussion and journal clubs as well as self-directed study. The research project will be carried out under either in the research laboratory or in the IVF clinic.

What you will study

The course is divided into 6 modules:

Module 1: Fundamental science (Semester1)
Module 2 Advanced Applied laboratory skills in ART (Semester 1 and 2)
Module 3: Statistics (Semester 1)
Module 4: Running a successful ART laboratory and clinical service (Semester 2).
Module 5: Clinical Issues and Controversies in ART (Semester 2)
Module 6: Research Project (Semester 3)

How you will be assessed

The programme is assessed using a variety of traditional and more innovative approaches. We use essays, portfolios, folders of evidence, research proposals, learning contracts, exams, OSCEs, and assessed online activities such as debates and team work.


Due to the increased demand for infertility treatment there has been a substantial growth in the demand for high quality laboratory and clinical staff in this area.

Approximately 1:7 couples are infertile and IVF is the predominant treatment for infertility contributing ~2% of the births in the UK and up to 5% in some EU countries. IVF is a rapidly growing field and as an example of this the number of cycles treated in the UK has increased by almost 30% in the last 4 years (http://www.hfea.gov.uk).

Following successful completion of the MSc students could apply for a training position in ART e.g. in embryology and/or andrology. Alternatively the MSc would be an ideal preparation for undertaking a PhD or applying for a research position. Clinically qualified graduates would gain valuable skills to enable them to specialise in reproductive medicine and assume responsibility within an ART clinic.

Skills that students will acquire include:

* In-depth understanding of basic reproductive physiology and a detailed knowledge of human ART;
* Sperm preparation and cryopreservation
* Recruitment of patients and donors for research
* Preparation of ethical approvals and appreciation for the ethical issues in ART
* Detailed work with human eggs and sperm (including assessment of gamete quality)
* Time lapse imaging of human embryos
* Business planning for running an ART laboratory and clinical service.
* QA and QC in the ART laboratory
* Troubleshooting in an ART lab
* The role of media and marketing in the development of an ART service.
* Detailed and practical knowledge of the HFEA and legislative and regulatory framework.
* Knowledge of basic IVF laboratory techniques e.g. preparation of dishes, witnessing
* Appreciation of the clinical diagnostic and pathways in ART

Read less
IN BRIEF. Great employer demand for graduates of this course. Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine. Read more


  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply


The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.


The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.


The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.


Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.


This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.


You may consider going on to further study in our Engineering 2050 Research Centre which brings together a wealth of expertise and international reputation in three focussed subject areas.

Research at the centre is well funded, with support from EPSRC, TSB, DoH, MoD, Royal Society, European Commission, as well as excellent links with and direct funding from industry. Our research excellence means that we have not only the highest calibre academics but also the first class facilities to support the leading edge research projects for both post-graduate studies and post-doctoral research.

Visit http://www.cse.salford.ac.uk/research/engineering-2050/ for further details.

Read less
The UBC Department of Pathology and Laboratory Medicine offers a remarkable opportunity to study with numerous world renowned faculty and research programs. Read more

The UBC Department of Pathology and Laboratory Medicine offers a remarkable opportunity to study with numerous world renowned faculty and research programs. We are recognized as national and international leaders in both basic and clinical research. Experimental Pathology refers to research in any area of biomedical investigation that is relevant to human disease. Since it is necessary to understand the normal working of the system to fully define the changes associated with disease, the areas represented at UBC cover a wide range of fields and approaches. Work at all levels of biological organization is involved, from protein to lipoprotein biochemistry and molecular biology through cell and tumour biology, animal models for studies on pulmonary and cardiovascular pathophysiology and viral and bacterial infection processes, to clinical studies on human population and the AIDS epidemic.

We train students with varied backgrounds in science and medicine including: biochemistry, physiology, cell biology and microbiology/immunology.

We are committed to effective, cutting-edge, ethical research. The results of which will reach beyond the academic realm to effect positive change in the lives of our families, communities and, ultimately, our world.

Career options

An Experimental Pathology degree opens up a world of opportunities. Because of the multidisciplinary nature of our program, graduates are working on research all over the world that is personalized to their interests. Our alumni have gone on to become national and international opinion leaders, valued staff researchers and administrators in academia or the biotechnology industry, studied clinical medicine or dived into the venture capital and equities domain.

Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more

Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students. 

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills

MSc candidates

  • Research Project

Modules offered may vary.


How you learn

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery. 

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs. 

Petroleum Experts Ltd has donated to Teesside University a network system and 10 educational licences for the IPM suite (Integrated Production Modelling software) which includes Prosper, Gap, Mbal, Pvtp, Reveal and Resolve. This £1.3m system and software is used by our students to design complete field models including the reservoir tanks, all the wells and the surface gathering system.

Petroleum laboratory facilities

Enhanced oil recovery and core analysis laboratory

The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification. 

Petrophysics laboratory

The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory

The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory

The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.


These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 

Read less
The programme provides you with strong knowledge on one or more of the following topics. design and synthesis of new drugs, radiolabelling and enhanced targeting of drugs, or screening, isolation and modification of new drug candidates from bioactive plants. Read more

The programme provides you with strong knowledge on one or more of the following topics: design and synthesis of new drugs, radiolabelling and enhanced targeting of drugs, or screening, isolation and modification of new drug candidates from bioactive plants. In addition, you will learn to master the state-of-the-art methods needed for the full identification of drug molecules and for their quantitation from different types of tissues and metabolite mixtures.

Our programme offers you three options, all covering the chemistry of drug development from slightly different perspectives: bio-organic chemistry, radiopharmaceutical chemistry and natural compound chemistry. You can either choose to learn to synthesize drugs and drug components yourself, or let them be produced by plants first and then learn how to isolate and perhaps modify the plant-derived compounds to enhance their activity. Radiochemistry is then needed to developed techniques for labelling of drug candidates so that their distribution can be first monitored in vivo by positron emission tomography (PET) techniques and then the targeting optimized by further modifications. Our approach gives you strong hands-on knowledge on medicinal chemistry, since practical laboratory work forms the soul of our programme.

Academic excellence and experience

Our approach on medicinal and radiopharmaceutical chemistry is a unique combination of research areas that are closely related, but that require different type of expertise, if you really want to master one of the areas. All of the three options we offer you are represented by well-established, top of the line research groups: Bioorganic GroupRadiopharmaceutical Chemistry Group, and Natural Chemistry Research Group. You need to choose your orientation between these groups, but you may take courses from all of them. This way you are able to specialize, but at the same time acquire wide enough knowledge on the relevant topics related to the chemistry of drug development.

The main target in studies of Bio-organic Chemistry is to master the key concepts of organic reactions, stereochemistry and physical organic chemistry. This way the student can design and execute organic syntheses and understand chemical biology. The Bioorganic Group is specialized into the synthesis of biopolymers (oligonucleotides, oligosaccharides and peptides), their interaction mechanisms at the molecular level and to the application of this knowledge into solving medicinal problems.

Students of Radiopharmaceutical Chemistry can specialize into radiochemistry, i.e. the synthesis and use of short-lived, isotopically labelled positron emitting organic tracers. These tracers are used in positron emission tomography (PET) that enables imaging of biochemical processes in vivo in both health and disease. The synthesis of radiotracers involves both low molecular weight small molecules as well as macromolecules, typically peptides, proteins and their fragments. Teaching of radiopharmaceutical chemistry takes place in close collaboration with the Turku PET Centre, a National Institute jointly owned by the University of Turku, the Åbo Akademi University and the Hospital District of Southwestern Finland.

With Natural Compound Chemistry you learn to master numerous chromatographic and mass spectrometric techniques together with other methods used for characterization and activity measurement of plant-derived biomolecules. The Natural Chemistry Research Group is specialized into the screening of the plant kingdom for bioactive molecules, especially large polyphenols such as ellagitannins. The screening phase can be accompanied by purification of active substances and measuring their structure/activity relationships, or developing new activity methods.

The facilities of Medicinal and Radiopharmaceutical Chemistry are state-of-the-art. We have direct access to the Turku PET Centre preclinical and clinical groups. The PET Centre has four cyclotrons for radionuclide production and 25 hot cells for radiotracer synthesis. At the Department of Chemistry we have recently updated NMR facilities with modern 500 and 600 MHz magnets with cryo-probes that facilitate operation at low drug concentrations. We have direct access to UPLC-MS/MS instruments with both triple quadrupole and high-resolution mass spectrometry detectors. An efficient ECD spectrometer complements the equipment needed for the accurate identification of the produced and purified drug candidates. To know how to master these equipment and techniques is a true advantage to the chemist who graduates from our programme.

Master's thesis and topics

Studies in Medicinal and Radiopharmaceutical Chemistry combine theory and practise in an optimal manner so that you have ample chances of gaining hands-on knowledge on different aspects of chemistry of drug development. This is obtained by many courses having lab practicals and by the Oriented Laboratory Project that is a five-week period of laboratory work on some specific challenge related to one of the three thematic research areas.

After the Oriented Laboratory Project you have an excellent chance to use your gained knowledge and expertise in the Master’s Laboratory Project that will form the basis for your Master’s Thesis as well. This five months lasting laboratory project is a crucial and customized part of a true research project taking place in one of the thematic research groups. Alternatively, you have a chance to do the Master’s Laboratory Project in some other Finnish University or abroad, depending on the project details and collaborators available for the project.

After the Master’s Laboratory Project is finalized, you will prepare the Master’s Thesis on the very same or similar topic as the lab project. All this is naturally done under the guidance of a supervisor. Your thesis writing process will benefit from the simultaneous Thesis Seminars, where students discuss of challenges related to their projects, and will present their results both orally and via poster presentations.

Examples of thesis topics:

  • Fluorescent oligonucleotide probes for screening high-affinity nucleobase surrogates
  • Solid-supported NOTA and DOTA chelators useful for the synthesis of 3′-radiometalated oligonucleotides
  • Solution-phase synthesis of short oligo-2′-deoxyribonucleotides using clustered nucleosides as a soluble support
  • 18F-labelled nitrogen-fluorine-bond containing radiolabeling precursors
  • Production of 11C-methylated radiopharmaceuticals
  • New quantitation methods for and screening of anthocyanin-tannin adducts in 300 red wine varieties
  • Isolation, purification and structure/activity studies on rare ellagitannins of the Onagraceae plant family
  • Enhancement of anthelmintic activities of plant metabolites by chemical modifications

Read less
MSc Environmental Monitoring, Modelling and Reconstruction focuses on analysing past, present, and future dynamic environments, providing you with the skills for a career in environmental management or consultancy, and a firm grounding for research in the environmental sciences. . Read more

MSc Environmental Monitoring, Modelling and Reconstruction focuses on analysing past, present, and future dynamic environments, providing you with the skills for a career in environmental management or consultancy, and a firm grounding for research in the environmental sciences. 

Concerns over the human impact on the environment have stimulated demand from governments and industry for the monitoring, analysis and modelling of natural processes in environmental systems. This is essential if we are to improve understanding of the interrelation of environmental variables in order to predict and manage their responses to anthropogenic perturbations.

Studying this course, you will gain:

  • advanced theoretical knowledge and practical expertise in order to collect, interpret and analyse contemporary and past environmental data.
  • modelling skills, in order to investigate the interrelationships between environmental variables, and to predict their responses to changing internal and external conditions.
  • intellectual and practical skills, in order to design and undertake field and/or laboratory experiments in contemporary environmental process-monitoring, or palaeoenvironmental reconstruction, and to design and test appropriate environmental models with the data you collect.

We also use the proximity of Manchester to the upland areas of the Peak District; several past MSc students completed dissertation work in close collaboration with various organisations responsible for land management in the Peak District, giving their work direct policy relevance.


Teaching focuses on training in theory, concepts and research skills in the first semester, and practical applications and research experience in the second semester.

We teach course units in small-group interactive styles with a mix of lectures, tutorials, seminars, practicals and presentations. A range of physical geographers provide training in their specialised fields, covering both content and practical research methods.

In a typical week, expect to spend some time in the library, preparing for seminars; in the laboratory, completing practicals; in the dedicated postgraduate computer laboratory, or writing reports; and in the classroom.

The second semester in particular gives you increased opportunities to go out into the field, both for practicals and to gain research experience by doing field research with members of staff. We maintain an intensively monitored catchment on the moors near the Snake Pass in the Peak District and this is the focus of several practical exercises, as well as a source of data to support dissertation work.

Field and laboratory research are essential to your learning process in environmental monitoring, and these form integrated parts of both the taught units and dissertation work.

Teaching and learning

  • Part-time Study

Part-time students complete the full-time programme over 27 months.  There are NO evening or weekend course units available on the part-time programme, therefore if you are considering taking a programme on a part-time basis, you should discuss the requirements with the Programme Director and seek approval from your employer to have the relevant time off. Timetabling information is normally available from late August from the Programme Administrator and you will have the opportunity to discuss course unit choices during induction week with the Programme Director.

Coursework and assessment

Taught units comprise two-thirds of the course and are assessed by a wide range of project work, essays and presentations. There are no formal examinations. The remainder of your course consists of the dissertation. 

Course unit details


These typically cover:

  • Environmental Change and Reconstruction
  • Environmental Monitoring and Modelling Concepts
  • Environmental Monitoring and Modelling Practice
  • Dissertation Support.


Choose three from the following:

  • Applied Study Unit
  • Climate Change, Disasters and Urban Poverty
  • Digital Image Processing and Data Analysis
  • Environmental Impact Assessment
  • Environmental Remote Sensing
  • GIS and Environmental Applications
  • Issues in Environmental Policy
  • Planning for Environmental Change.

Availability of course units may vary from year to year.


Students are allowed to take up to 2 of the following level 4 options:

  • Hydrochemical Modelling
  • Ice Age Earth
  • Managing the Uplands
  • Climate Change and Carbon Cycling
  • Coastal Processes
  • Frozen Planet, Satellites & Climate Change.

Typical course units comprise a minimum of a one-hour lecture per week, or seminar supported by supervised laboratory time. The exact balance varies, depending on the requirements of particular units. Additional contact time is arranged on an ad hoc basis by students to discuss assignments and other matters. By the end of the course, you will have an advanced level of theoretical knowledge and practical experience in:

  • Field/laboratory monitoring techniques for analysis of environmental processes
  • Advanced techniques for analysis of environmental materials field and laboratory techniques for palaeoenvironmental reconstruction based on stratigraphical studies of sediment cores, including microfossil and pollen analysis
  • GIS and remote sensing and advanced statistical methods
  • Designing, planning, funding and executing research projects in environmental monitoring, modelling or palaeoenvironmental reconstruction
  • Processing/analysing results logically, using objective statistical methods and/or mathematical modelling techniques objective, unbiased, and impartial reporting of analytical results and their interpretation, both oral and written, particularly scientific report writing. Normally taken full-time, the course is also well suited to part-time study over two years.


The Arthur Lewis Building provides excellent resources including analytical laboratories, studio facilities, workshops, seminar rooms, an onsite café and dedicated computer clusters including GIS facilities.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Read less
This highly-regarded programme teaches the design, execution and delivery of research in conservation and conservation science via seminars and laboratory practice. Read more

This highly-regarded programme teaches the design, execution and delivery of research in conservation and conservation science via seminars and laboratory practice.


This highly-regarded programme teaches the design, execution and delivery of research in conservation and conservation science via seminars and laboratory practice. 

Taught by internationally respected researchers, it is designed to meet the needs of conservators and science graduates wishing to expand into this exciting field. 

The programme gives you flexibility to specialise in a variety of areas to suit your interests and career direction. With a focus on thought process rather than knowledge the goal is to produce problem solvers. 

Distinctive features

You will be taught by researchers with international profiles within the field of heritage science. The high profile of the Ferrous Metals Research group at Cardiff is used as a platform to teach a generic approach to research, which is transferable across the sciences and elsewhere.

Learning and assessment

How will I be taught?

We teach via lectures, seminars, group discussion, tutorials, laboratory classes, demonstrations and field trips. 

Our focus is on interaction with staff and involvement in laboratory practice. This aims to develop the skills and the critical insight necessary to generate and execute evidence-based research designs. 

The dissertation forms an important part of the programme, as does the instrumental analysis and data interpretation that accompanies laboratory practice.

How will I be supported?

You will have access to a laboratory dedicated to conservation research and a wide range of in-house analytical equipment and specialist laboratories to support your studies and research including:

  • Analytical SEM
  • Portable XRF 
  • FTIR with microscope attached
  • Portable Raman Spectroscopy
  • EIS
  • X-radiography
  • Climatic chambers 
  • Digital microscopy 
  • NdYag laser
  • Digital photographic facilitiesObject conservation laboratories
  • Microscopy laboratory
  • Computer suite

On enrolment, you are assigned your own Personal Tutor and provided with teaching and learning resources, including Postgraduate Handbook. Additional specific module resources are made available during the programme. 

We offer one-to-one time in set office hours during teaching weeks, and also welcome email contact. Additionally, you can make appointments to see your personal tutor on a one-to-one basis about any issue. Our Professional Services team is also available for advice and support.

Career prospects

Graduates of this and similar degree programmes have embarked on careers in a range of professions from academia, the heritage sector, journalism and law to media research (media, commercial, academic), teaching and publishing. A significant number choose to continue studies at PhD level. 

Recent graduate destinations include CADW, Church in Wales, Council for British Archaeology, Glamorgan Archives, Heritage Lottery Fund, National Trust, Tate Gallery, Welsh Assembly Government and a range of universities in the UK and overseas.

Read less
With our world-class reputation, renowned experts and new research facilities, we are well placed to offer dentistry and dental research opportunities of the highest international standard. Read more
With our world-class reputation, renowned experts and new research facilities, we are well placed to offer dentistry and dental research opportunities of the highest international standard.

As a postgraduate research student studying for a Dental Sciences MPhil or PhD, you will be based within the Faculty of Medical Sciences.

The programme is delivered in the School of Dental Sciences, the Centre for Oral Health Research (COHR) and the Faculty in addition to the relevant Biomedical Research Institutes for:
-Cell and Molecular Biosciences
-Cellular Medicine
-Health and Society
-Genetic Medicine

If your research involves clinical components there may be a partnership with the NHS.

The School of Dental Sciences and COHR

You will spend most of your time within the School of Dental Sciences and the COHR, working within research teams led by experts in their field in a friendly and supportive atmosphere.

We combine world-class clinical and research facilities with an open environment where scholars, clinicians and researchers benefit from working side-by-side. Our focus is on multidisciplinary translational research, work that is relevant to real life.

COHR has a particular focus on understanding molecular and cellular mechanisms and translating these into clinical settings. Evaluation of clinical, community and economic strategies to improve public health and inform a wider health agenda is a central research theme. Within COHR there is a Collaborating Centre for the World Health Organization for Nutrition and Oral Health. Research projects are strongly aligned to the Centre's main research themes:
-Translational oral biosciences
-Oral healthcare and epidemiology
-Biomaterials and biological interfaces

COHR is involved in a number of industrial collaborations. We also work together with the Newcastle Clinical Trials Unit to provide planning, design and implementation of clinical trials in oral health.


Certain taught elements of the programme are compulsory, eg laboratory safety. Other taught components are agreed between you and your supervisors depending on your skills and the requirements of the research project.

You are expected to work 40 hours per week with an annual holiday entitlement of 35 days, which includes statutory and bank holidays.

Laboratory work needing to be undertaken outside of normal working hours can be arranged with prior agreement. All our research students are encouraged to attend research seminars and events held within COHR, the Faculty of Medical Sciences Graduate School and your relevant Biomedical Research Institute.


The School of Dental Sciences at Newcastle is one of the most modern and best equipped in the country, occupying a spacious, purpose-built facility. The School is in the same building as the Dental Hospital, adjacent to the Medical School and Royal Victoria Infirmary teaching hospital, forming one of the largest integrated teaching and hospital complexes in the country.

Our facilities include:
-In-house production laboratories providing excellent learning opportunities around clinician-technician communication
-Excellent library and computing facilities on-site
-A dedicated clinical research facility offering clinical training and research opportunities of the highest international standard

The Centre for Oral Health Research (COHR) offers a range of research laboratories, undertaking work in oral biology, fluoride research and dental materials science. The research laboratory facilities include:
-Cell and molecular biosciences laboratory
-Dental Clinical Research Facility (CRF)
-Dental materials laboratory
-Fluoride laboratory
-Hard tissue laboratory

Together, the School and COHR offer the highest international standard in clinical training and research opportunities.

Read less

Show 10 15 30 per page

Cookie Policy    X