• Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Aberdeen University Featured Masters Courses
"irrigation" AND "drainag…×
0 miles

Masters Degrees (Irrigation And Drainage)

We have 8 Masters Degrees (Irrigation And Drainage)

  • "irrigation" AND "drainage" ×
  • clear all
Showing 1 to 8 of 8
Order by 
This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production. Read more
This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production. The course also focuses on the availability of water from surface or groundwater supplies and how this is utilised by irrigation and drainage. The course is underpinned by research and consultancy activities in the Crop Production & Science and Engineering departments.

The course

Soil and water are key resources for agriculture that determine levels of food production and thus food security on a local, national and global scale. Effective management of soil and water is essential for society in general, but critical for agriculture. Management of water is also of key importance as water is likely to become an increasingly limited resource in a world subject to climatic and environmental change.

This course aims to develop knowledge and skills relating to the sustainable management of soil and water resources. Specifically, it aims to provide students with the ability to evaluate the potential of sites for plant growth and determine the soil and water factors affecting production.

The course also focuses on the availability of water from surface or groundwater supplies and how this is utilised by irrigation and drainage. The course is underpinned by research and consultancy activities in the Crop and Environment Sciences, and Engineering departments.

A new Soil and Water Management Centre was launched at Harper Adams University in 2012.

How will it benefit me?

By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. You will also be able to produce irrigation and drainage schemes that pay due regard to agronomic, social, economic and environmental requirements for a range of geographic locations.

You will learn to effectively source, review and analyse key information and disseminate findings and concepts relating to efficient water use in food production systems to a range of audiences. The research project will allow you to test hypotheses relevant to soil and water management through the design, execution, analysis and interpretation of appropriate experiments.

Careers

Students will be suitably qualified for careers in agri-business, agricultural consultancy and statutory bodies such as the Environment Agency.

Read less
By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. Read more
By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. You will also be able to produce irrigation and drainage schemes that pay due regard to agronomic, social, economic and environmental requirements for a range of geographic locations.

You will learn to effectively source, review and analyse key information and disseminate findings and concepts relating to efficient water use in food production systems to a range of audiences. The research project will allow you to test hypotheses relevant to soil and water management through the design, execution, analysis and interpretation of appropriate experiments.

Careers

Students will be suitably qualified for careers in agri-business, agricultural consultancy and statutory bodies such as the Environment Agency.

Read less
By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. Read more
By completing the course you will be able to identify soil, plant and climatic variables for cropping systems in a range of geographical locations, and critically identify the social and environmental impacts of water use on catchments at a local and national scale. You will also be able to produce irrigation and drainage schemes that pay due regard to agronomic, social, economic and environmental requirements for a range of geographic locations.

You will learn to effectively source, review and analyse key information and disseminate findings and concepts relating to efficient water use in food production systems to a range of audiences. The research project will allow you to test hypotheses relevant to soil and water management through the design, execution, analysis and interpretation of appropriate experiments.

Careers

Students will be suitably qualified for careers in agri-business, agricultural consultancy and statutory bodies such as the Environment Agency.

Read less
What is the Master of Water Resources Engineering all about?. The Master’s programme provides . multi-disciplinary and high-quality university education. Read more

What is the Master of Water Resources Engineering all about?

The Master’s programme provides multi-disciplinary and high-quality university education in the field of water resources engineering. Students will be trained with technical and managerial knowledge and skills to: (i) successfully plan, design, operate and manage water resources projects; and (ii) advise and support authorities in decision-making and policy-making that enhance the safe exploitation and re-use of wastewater and the equitable distribution and conservation of local, regional and global water resources.

Water Resources Engineering deals with the methods and techniques applied in the study of: 

  • water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation
  • problems related to storm water drainage and flood damage mitigation
  • problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources
  • integrated water management
  • institutional, socio-economic, and policy issues related to water resources development and management

 Through the choice of 3 elective courses and a specific topic for thesis research, you can tailor your study programme to fit your interests. 

Objectives

The Graduate:

1.  Possesses technical and scientific knowledge and integration skills to advice and support authorities in decision making and the development of policies and regulations to manage water resources, meet the water needs and safeguard the availability for current and future generations.

2.  Possesses specialized knowledge in modelling tools and practical skills in running simulations for planning, designing, operating and managing specific water resources systems.

3.  Analyse and interpret hydrological data and spatial data for managing water resources and employ measurement techniques to monitor water resources.

4.  Understand and analyse institutional, socio-economic and policy issues related to water resources development and management.

5.  Understand and analyse problems related to storm water and flood control, irrigation and drainage, groundwater, water treatment, water quality protection of ecosystems and other natural resources.

6.  Interact with other relevant science domains and integrate them to come up with sustainable solutions supporting the implementation of Integrated Water Resources Management (IWRM) principles through an appropriate science-policy interface.

7.  Demonstrates critical consideration of and reflection on known and new theories, models or interpretations within the specialty.

8.  Plan and execute target oriented data collection or model simulations independently, and critically evaluate the results.

9.  Present personal research, thoughts, ideas, and opinions of proposals within professional activities in a suitable way, both written and orally, to peers and to a general public.

10.  Function in an interdisciplinary team.

Career path

Career prospects in the water sector are excellent. The water sector proves to be a stable employment environment with a continually rising need for highly educated professionals. Programme graduates will deal with the exploitation and management of water resources and, to a lesser extent, with education and research. Graduates are therefore prepared to fulfil both a professional and academic role. The programme's academic-level education not only prepares water sector professionals but also future lecturers and researchers, creating a multiplier effect that spreads across many countries.

Government agencies, drinking water companies, and other companies play a decisive role in the management of present and future aquifers and river basins. They need well-trained water professionals. Many graduates find employment with private companies, such as consultancy agencies and industrial firms. Others go on to careers in non-governmental organisations.



Read less
A collaboration between the Faculty of Land and Food Systems and Faculty of Forestry, the inter-faculty Soil Science Graduate Program offers opportunities for advanced study and research leading to MSc and PhD degrees. Read more
A collaboration between the Faculty of Land and Food Systems and Faculty of Forestry, the inter-faculty Soil Science Graduate Program offers opportunities for advanced study and research leading to MSc and PhD degrees. Students are registered in the Faculty of Graduate Studies through either the Faculty of Land and Food Systems or Faculty of Forestry, depending upon their research interests.

Areas of study include biometeorology, forest nutrition and nutrient cycling, mycorrhizal ecology, soil biology, soil quality and fertility, soil-plant interactions, ecosystem services, land an water systems.

Program Overview

Soil Science offers opportunities for advanced study and research leading to Ph.D. and M.Sc. degrees in the areas of soil microbial ecology, organic matter, soil physics, irrigation and drainage, biometeorology, soil pollution, soil and water conservation, soil management, and land use, with application to forest, agricultural, urban, and range soils, as well as a professional Master of Land and Water Systems (M.L.W.S.) degree. The Ph.D. and M.Sc. degrees include a combination of courses in both basic and applied sciences, with research leading to the completion of a thesis/dissertation. The M.L.W.S. degree is intended for students seeking a post-baccalaureate degree for professional practice in the land and water resources management realm. The program is designed to be completed in one calendar year.

Soil Sciences programs are enriched through collaboration with: colleagues in other graduate programs, such as Forestry, Geography, Plant Science, Institute for Resources and Environment, Integrated Studies in Land and Food Systems, and Landscape Architecture; and agencies such as Environment Canada, Canadian Forest Service, Agriculture and Agri-Food Canada, BC Ministry of Forests and Range, and other provincial, municipal, and regional government agencies.

Research facilities are housed both within the MacMillan and Forest Sciences Buildings and, on a shared basis, in other buildings on campus. Research facilities within the MacMillan Building include modern analytical laboratories and other equipment for conducting chemical and biometeorological research, while excellent facilities for soil biological research are located in the Forest Sciences Centre.

Quick Facts

- Degree: Master of Science
- Specialization: Soil Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Career Prospects

Graduates of the soil science degree program often obtain positions with government or the private sector. Some graduates decide to continue in the area of research and academia with various universities and colleges. Examples of where some graduates are employed:
- Agriculture and Agri-Food Canada
- BC Ministry of Forests
- Canadian Forest Service
- Consultant
- Associate Professor, University of Guelph
- Associate Professor, Yale University
- Associate Professor, University of Northern BC
- Environment Canada
- Assistant Professor, University of Bengukulu, Indonesia
- Assistant Professor, University of Venda for Science and Technology, South Africa

Read less
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change. Read more
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change.

About the programme

On-campus (full-time/part-time) students study eight courses from a range of optional courses. Independent Distance Learning (IDL) students can also choose courses from a range of options in both Semester 1 and 2.

The programme is delivered by experts in the field of water and environmental management, covering a wide range of relevant disciplines.

Topics covered:
=============
• Environmental Hydrology and Water Resources
• Computational Simulation of River Flows
• Water Supply and Drainage for Buildings
• Water Conservation
• Environmental Geotechnics
• Urban Drainage and Water Supply
• Water and Wastewater Treatment
• Marine Waste Water Disposal
• Environmental Statistics
• Innovative Technologies and Global Water Challenges
• Environmental Planning (on-campus only);
• Flood Inundation Modelling (on-campus only);
• Irrigation Water Management.

Career opportunities

Training is provided in water resources engineering, environmental engineering, flood risk management, integrated water resources management, environmental implications of water engineering schemes, and industrial software packages. On completion, graduates will be able to offer employers a broad range of skills and advanced knowledge in a number of important areas of water engineering.

Primary employment destinations include:
- Leading UK and international consultants (e.g. Jacobs, HR Wallingford, JBA, Halcrow, Hyder Consulting and Fairhursts)
- Local and National Government (in the UK and elsewhere)
- Environmental regulators (e.g. SEPA & EA)
- Academic institutions (including PhD study and research associate posts)
- Non-Governmental Organisations

Professional recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Part-time and Distance Learning study options

This programme can be studied full-time, part-time or via Independent Distance Learning (IDL), ideal for those in employment or with other commitments, providing flexible study options that fit around work or family. As an IDL student you will not be required to attend any lectures, tutorials or other events at any of Heriot-Watt University’s campuses.

Industry Links

Where possible MSc dissertation projects are set up in collaboration with industry, the aim being to encourage contact between the student and industry, and to underpin the industrial relevance of the projects.

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, ARUP, Balfour Beatty, Halcrow, Jacobsand WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). Read more

International Course Programme

This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS).

The Master of Water Resources Engineering addresses water-related issues in developed and developing countries, with a focus on problems in the latter. The MSc programme provides multi-disciplinary and high-quality higher education in the field of water resources engineering.

Water Resources Engineering deals with the methods and techniques applied in the study of:
- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation;
- problems related to storm water drainage and flood damage mitigation;
- problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources;
- integrated water management; and
- institutional, socio-economic, and policy issues related to water resources development and management.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Curriculum

Details available on http://www.iupware.be/

The Interuniversity Programme in Water Resources Engineering offers a two year Master of Water Resources Engineering course, which is intended for graduates (or equivalent) in engineering, agriculture, hydrology and other related subjects. The main goal is to offer comprehensive training in water resources engineering to engineers and scientists from developing as well as industrialized countries. The programme blends various basic and applied courses, hydrology and engineering sciences associated with water resources development with appropriate organizational and managerial skills. The course is specially tailored for those who want to develop their knowledge and understanding of water resources engineering, and are or expect to be involved in the design, operation or day-to-day management of water resources schemes in developing countries or anywhere in the world.

The first year curriculum is common for all participants while in the second year, a common base with optional courses. After successful completion of the 2-year study programme, a Master of Water Resources Engineering degree is offered.

In the 1st year of the study programme a review of the basic knowledge is proposed, in order to achieve a common base level between students with different backgrounds. The 1st year is primarily organized at the K.U.Leuven. This programme consists of a number of courses (Advanced mathematics for water engineering, Statistics for water engineering, Irrigation agronomy, Aquatic ecology, Hydraulics, Surface Hydrology, Groundwater Hydrology and Water quality assessment, monitoring and treatment) and 4 workshops: (1) Hydrological data processing; (2) GIS; (3) Hydrological measurements and (4) Remote sensing.

In the the 2nd year of the Master programme, a broad spectrum of topics is given to ensure the coverage of the main aspects related to water resources engineering. The topics in the second year are intended to broaden the water resources engineering knowledge and to provide a deeper understanding in either Hydrology, Irrigation, Water Quality or Aquatic Ecology depending on the area of specialization. The 2nd year is primarily organized at the V.U.B. The courses in the programme make extensive use of modelling tools relevant to various aspects of the design, operation and management of water resources development projects.

Admission requirements

Candidates must hold a Bachelor's degree from a four-stage programme in agricultural, civil or environmental engineering. Study results should reflect the equivalent of a 70% pass rating in Flanders. Students should have a proven proficiency in English. Applicants from non-English-speaking countries should have a TOEFL score of at least 550 on the written test and 213 on the computer-based test or equivalent results on similar language test.

Students from a 5-stage engineering or equivalent degree, including the prerequisites to the second stage courses, can be exempted from 60 ECTS. Applications are evaluated on an individual basis.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X