• Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Cambridge Featured Masters Courses
University of London International Programmes Featured Masters Courses
"integrated" AND "enginee…×
0 miles

Masters Degrees (Integrated Engineering)

We have 598 Masters Degrees (Integrated Engineering)

  • "integrated" AND "engineering" ×
  • clear all
Showing 1 to 15 of 598
Order by 
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality. Read more
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾The University has a long history of research in Civil Engineering. The UK's first Chair of Civil Engineering was established at the University in 1840 and early occupants such as William J. M. Rankine set a research ethos that has endured.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you are a graduate engineer looking to broaden your knowledge of management while also furthering your knowledge of civil engineering, this innovative programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and costing.
◾You will be able to apply management to engineering projects, allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A

◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B

◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Projects

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B
◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the civil engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Civil Engineering include: Arup and Mott MacDonald.
◾During the programme students have an opportunity to develop and practice relevant professional and transferable skills, and to meet and learn from employers about working in the civil engineering industry.

Read less
Those who study the Masters in Civil Engineering will gain advanced knowledge and associated analytical and problem-solving skills in a range of key sub-disciplines of Civil Engineering, and develop the ability to apply this knowledge in engineering design and to the solution of open-ended and multi-disciplinary problems. Read more
Those who study the Masters in Civil Engineering will gain advanced knowledge and associated analytical and problem-solving skills in a range of key sub-disciplines of Civil Engineering, and develop the ability to apply this knowledge in engineering design and to the solution of open-ended and multi-disciplinary problems. The MSc in Civil Engineering is intended for students with a first degree in Civil Engineering or a closely related discipline who wish to extend their expertise to a higher level in preparation for a professional career.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will select courses from key sub-disciplines of Civil Engineering, notably structural engineering, geotechnical engineering, environmental engineering, computational mechanics and transportation engineering.
◾With all lecture courses selected from sets of options, you can choose to develop a degree of specialization in a given sub-discipline or to remain broad-based, thus tailoring the programme to suit your interests and career aspirations.
◾Two major design project courses will develop your abilities to apply your knowledge of Civil Engineering to design of engineering projects. One of these projects is specifically civil engineering in content, but the other is multi-disciplinary in nature and will also involve MSc students from other engineering disciplines, working in teams to tackle a broad-based design problem.
◾You will also undertake an individual project, allowing you to investigate a specific topic in considerable depth.
◾You will be taught by staff who are leading researchers in their fields, so that course content can reflect state-of-the-art understanding, relevant to future challenges for civil engineering industry and the profession.
◾The programme is designed to provide the advanced education required of civil engineers of tomorrow.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc Civil Engineering include lectures, tutorials, design classes and computing labs, and give you the opportunity to take part in team design projects, other coursework and project-based activities, and a major individual project.

Core courses
◾Civil design project
◾Integrated systems design project.

Optional courses

Select a total of 8 courses, at least 5 of which must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Applied engineering mechanics 4
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS
◾Reclamation of contaminated land 5
◾Structural concrete C5.

List B
◾Environmental biotechnology 4
◾Geotechnical engineering 4
◾Ground engineering 4
◾Renewable energy 4
◾Structural analysis 4
◾Structural design 4
◾Transportation systems engineering 4.

Projects

◾To complete the MSc degree you must undertake an individual project worth 60 credits.
◾Projects can involve laboratory work, computational modelling, fieldwork, theoretical development, design or a study of industry application.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to industry.
◾Your project is completed under the supervision of an academic staff member. You can choose a topic from a list of MSc projects in Civil Engineering. Alternatively, should you have your own idea for a project, staff members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The School of Engineering has extensive contacts with industrial partners who contribute to several of the taught courses, through active teaching, curriculum development, and panel discussion.
◾The two design projects courses represent the types of projects undertaken in industry, and typically there will be input from industry practitioners in setting up the projects used in these courses.
◾Some MSc individual projects will involve interaction with industry.

Career prospects

Career opportunities include positions in civil engineering, structural engineering and environmental engineering, and working with design consultants, contractors and public authorities or utilities.

Read less
The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. Read more

The Civil Engineering MSc at UCL now offers five additional specialist routes which reflect the expertise within the department and expanding career paths of civil engineers. This programme is for those students who wish to combine a general MSc in the subject with the related discipline of integrated design.

About this degree

The programme provides students with a strong academic background in a broad range of civil engineering topics and advanced skills in problem-solving necessary for a successful career in the sector. This route will also offer you the opportunity to gain specialist knowledge in your chosen area of integrated design and provide a clear path to a professional career in civil engineering.

Students undertake modules to the value of 180 credits.

The programme consists of one core module, (60 credits), four optional modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma, one core module (60 credits), four optional modules (60 credits) is also offered.

Core modules

  • Integrated Design Project

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000–15,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering (with Integrated Design) MSc

Careers

Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Employability

There are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

Civil, Environmental & Geomatic Engineering at UCL is an energetic and exciting environment. Students have the advantages of studying in a multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London. We carry out advanced research in structures, environmental engineering, laser scanning and seismic design.

This MSc covers all the major areas of civil engineering, reflecting the broad range of expertise available within the department and its strong links with the engineering profession across the UK and beyond.

There is a strong emphasis on developing skills within a teamwork environment, equipping students for subsequent professional practice.

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more

The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
  • If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
  • You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
  • The programme is split into two semesters and a summer session. One semester will be based in the Adam Smith Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
  • During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
  • In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
  • This programme has a September and January intake.

Aims of the programme:

  • To understand management principles and practices in an engineering environment.
  • To evaluate engineering information, and subsequent application of business and management.
  • To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1   

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course

  • Integrated systems design project.

Optional courses

  • Desalination technology
  • Dynamics
  • Materials engineering
  • Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:

Technology Engineer at Procter and Gamble

Quality Engineer at Worcester Bosch.



Read less
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands. Read more
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands.

MSOE’s Master of Science in Engineering (MSE) program is an interdisciplinary engineering program with primary emphases in the areas of electrical engineering (EE) and mechanical engineering (ME). A key component of the MSE program is the breadth of engineering background that students gain in areas of systems engineering, EE and ME. Additionally, each student is offered some degree of concentration through the selection of an engineering option and electives.

This interdisciplinary approach is a distinguishing feature of MSOE’s program and students are encouraged to take engineering courses both within and outside of their discipline. Courses cover topics like simulation and modeling, operations research, quality engineering, advanced engineering mathematics, finite element analysis, advanced mechanics, fluid power systems, data communications, control systems and advanced electronic systems.

The MSE program’s major emphasis is on the further development of engineering knowledge and skills in an effort to enhance the productivity of the practicing engineer. The program provides a flexible platform for students to take either an integrated approach or a specialized approach to meet the demands of their career. The course work emphasizes engineering concepts and theory through presentation, and faculty bring extensive industry experience to the classroom.

A nine-credit capstone engineering project option is included as part of the program. A non-project option is also available, which includes two specialty courses and a three-credit engineering paper in the specialty.

Curriculum Format

All classes are offered in the evening, providing convenient scheduling. The program is designed for individuals who hold bachelor degrees in engineering, engineering technology or other closely related areas. Each student works with the program director to plan a course of study tailored to his or her needs. Typically, a total of 45 graduate credits is required to complete the program, but degree requirements may vary depending upon the type of bachelor’s degree.

MSE Program Options

Each student selects either a capstone engineering project or the non-project option.

The engineering project option can either draw from the multiple disciplines studied within the program or focus more on technical areas within the student’s chosen engineering discipline. After consulting with a faculty advisor, each student develops an engineering project proposal and presents it for approval before a committee.

The non-project option requires a two-course sequence in 700- or 800-level EE/ME specialty courses and a final course (GE-791) in which a specialty paper is written. Each student completes an analysis/design of a certain aspect of the chosen specialty and presents it both orally and in writing.

100% Online delivery

Geography is not a constraint for students interested in completing the MSE at a distance. In addition to the face-to-face class format, there is also the option to take courses via 100% online distance delivery. The rich faculty, student interaction that is the hallmark of the MSE is replicated in online classes creating dynamic and flexible learning environments. Students can choose which format best fits their lives, while advancing their learning and professional skills.

Objectives and Outcomes

Program Educational Objectives

- Graduates create new value in a process or product at their workplace through application of advanced engineering skills and knowledge
- Graduates advance in their careers as a direct result of completing the degree

Student Outcomes

Graduates of the MSE program will:
- be able to utilize advanced mathematics, with a primary focus on numerical methods and models, to solve engineering problems involving multivariate differential systems
- have demonstrated an ability to apply advanced engineering principles to complex problems in his or her chosen specialty
- have demonstrated an ability to integrate and analyze information in a chosen specialty in the form of scholarly work, either as an independent specialty paper or as an independent engineering project
- have the ability to effectively present and communicate technical concepts, both orally and in writing

Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live. Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. Read more

Why take this course?

The environment has an increasingly significant impact on the way we produce materials, structures and generally, how we live.

Our course aims to extend your understanding of the core disciplines of civil engineering with the added perspective of environmental factors. It takes into account the importance of issues such as pollution, public health and resource management which can affect the engineering process.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Government agencies
Environmental organisations
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to social, economic and environmental issues.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study the integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Environmental Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: In this unit you will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge and skills that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

This course will also equip you for the real-world challenges within the specialist field of environmental engineering. You will have a specific understanding of environmental considerations within civil engineering projects enabling you to propose and implement environmentally sustainable solutions. You can expect to find roles within areas such as environmental and sustainability assessment, waste management, regulation and consultancy to name a few.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in. Read more

Why take this course?

As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in.

Our course aims to extend your understanding of the core disciplines of civil engineering and provides an in-depth insight into the current design and construction practices for structural engineering works.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might ti lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Structural engineering
Construction
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to the reliability and safety of structural designs.

Here are the units you will study:

Environmental Management for Civil Engineering: This introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Structural Engineering Design Project: This unit gives you an opportunity for simulating the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

In an uncertain and increasingly competitive environment, the civil engineer is required to develop a wide range of skills and abilities to stay abreast of current industrial needs. Therefore, this course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, we will introduce you to commercial and interpersonal skills that illustrate the employment context of construction industry professionals.

From roads and bridges to skyscrapers and airports, as a qualified civil engineer with specialist expertise in the area of structural engineering, your knowledge and skills will be in high demand for a huge variety of large-scale building projects.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
The University of Bath Civil Engineering. Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course. Read more

The University of Bath Civil Engineering: Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course.

Students study a range of modules before carrying out an individual research dissertation project in order to complete their Master of Science degree.

The course produces graduates with an in-depth and practical understanding of the use of innovative structural engineering materials in the provision of sustainable and holistic construction solutions for the built environment.

The use of construction materials is key to infrastructural development globally. New approaches are now needed for innovative renewable and low carbon structural engineering materials.

This MSc course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/structural-engineering/

Learning outcomes

The course is aimed at engineering and science graduates who wish to work in the construction industry.

As a student you will be provided with the practical knowledge and tools to support you in the use of innovative structural engineering materials in the context of sustainable and holistic construction. You will also learn how to harness that knowledge in a business environment. You will gain analytical and team working skills to enable you to deal with the open-ended problems typical of structural engineering practice.

The MSc is based on research expertise of the BRE Centre for Innovative Construction Materials (http://www.bath.ac.uk/ace/research/cicm/) and is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. Please visit the Joint Board of Moderators (http://www.jbm.org.uk/) for further information about accreditation.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Project Work

Group project work:

In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

Individual project work:

In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure in detail

A full list of units can be found on the programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ar/ar-proglist-pg.html#AC).

Semester 1 (October-January)

The first semester provides a foundation in the most significant issues relating to the sustainable use of innovative structural engineering materials in design and construction; and involves units in natural building materials, advanced timber engineering, advanced composites, sustainable concrete technology and architectural structures.

- Five taught compulsory units

- Includes coursework involving laboratory or small project sessions.

- Typically each unit consists of 22 hours of lectures and 11 hours of tutorials, and may additionally involve a number of hours of laboratory activity and field trips with approximately 65-70 hours of private study (report writing, laboratory results processing and revision for examinations).

Semester 2 (February-May)

Semester 2 consists of a further 30 credits comprising of five core 6 credit units. These units include:

- Materials engineering in construction

- Advanced timber engineering

- Engineering project management.

Students will undertake a group-based design activity and an individual project scoping and planning unit (Project Unit 1). The group-based activity involves application of project management techniques and provides the basis for an integrated approach to Engineering, but with the possibility of specialising in the chosen master's topic.

It is a feature of this programme that the project work proceeds as far as possible in a way typical of best industrial practice. The Semester 2 project activities have significant planning elements including the definition of milestones and deliverables according to a time-scale, defined by the student in consultation with his/her academic supervisor and (where appropriate) his/her industrial advisor.

Summer/Dissertation Period (June-September)

Individual project leading to MSc dissertation.

Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff.

There may be an opportunity for some projects to be carried out with the Building Research Establishment (BRE).

Subjects covered

- Advanced structures

- Advanced composites in construction

- Advanced timber engineering

- Materials engineering in construction

- Natural building materials

- Sustainable concrete technology

About the department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Funding

The following postgraduate funding may be available to study the Civil Engineering: Innovative Structural Materials MSc at The University of Bath.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

UK / EU: £9.500

International: £20,300



Read less
Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Read more

About the Course

Water security is a major concern facing humanity and engineers are the primary professionals tackling this issue. Annually, more than 3.4 million people die from water related diseases while 1 in 9 people world-wide do not have access to safe and clean drinking water and 1 in 3 people world-wide are affected by water scarcity. In addition, population growth, urbanisation, climate change and increasing energy demands, are placing unprecedented pressures on our finite water resources. This 1-year MSc programme aims to equip students with the skills needed to design solutions to deliver safe/clean water. The programme will also give opportunities to students to study the economics and management of large projects.

Programme Objectives

The MSc in Water resources Engineering will provide students with the technical competences to provide solutions to water security issues. Core modules will address technical aspects of water provision, water resource management and water / wastewater treatment. A primary objective of the programme is to ensure that students have a thorough understanding of modern hydrological modelling tools. The programme has a strong emphasis on the design of hydrological systems, with students working in groups to solve real-world problems. Graduates of this programme will be in a position to make significant contributions to solving water resource problems in both industry and academic roles worldwide.

Programme Structure and Content

This is a 90ECTS programme, one full year in duration, starting in September and finishing August. The programme comprises an individual research project and thesis (30 ECTS), an integrated group design project (15 ECTS) and a number of taught (core and elective) modules (55 ECTS).

The core taught modules include: Hydrology & Water Resources Engineering, Hydrological Modelling, Design of Sustainable Environmental Systems, Water Quality, Water Resources in Arid Regions, and Applied Field Hydrogeology. Sample elective modules include: Computational Methods in Engineering, Global Change, Offshore & Coastal Engineering, Environmental Economics, Project Management, and Estimates and Costing of Engineering Projects.

The Integrated Group Design Project involves the design of components of a water supply and/or treatment system and will be typical of real-world water resources engineering project. Each student will also complete an individual minor research thesis in the area of water resources engineering. This thesis accounts for one third of the overall programme mark.

What’s Special About CoEI/NUIG in this Area

• Water engineering has been taught at graduate level at NUI Galway for over 40 years. During this period students from over 50 countries have graduated from NUI Galway.
• The MSc in Water Resources Engineering is a re-launch of NUI Galway's International Postgraduate Hydrology Programme established by the late Prof Eamonn Nash. Many of the staff who lectured on the Hydrology Programme contribute to the current programme; so the recognised tradition of world-class teaching in water engineering at NUI Galway continues.
• Currently NUIG staff are involved in large-scale funded research projects in water resources, facilitated by the world-class research facilities at NUI Galway.

Testimonials

"It was a privilege and a pleasure to participate in the Galway MSc programme with world renowned hydrologists, excellent technicians and support staff, and Irish and international students. The comprehensive programme provided an excellent basis for my subsequent career in hydrology."
Charles Pearson, MSc Hydrology, NUIG, 1990 Graduating Class
Regional Manager, National Institute of Water and Atmospheric Research, New Zealand

"I am fortunate enough to have completed a world-class course in Hydrology at National University of Ireland, Galway which was taught by world-leading academics and researchers. Since my course completion in 1990, I have been able to play a key role in hydrologic application and research in Bangladesh and Australia based on the knowledge I gained from my studies in Galway."
Professor Ataur Rahman, MSc Hydrology, NUIG, 1990 Graduating Class
Water and Environmental Engineering, School of Computing, Engineering and Mathematics, University of Western Sydney

"NUI Galway gave me priceless experiences; it was my first travel outside the Philippines. Being a graduate of NUI Galway opened doors of opportunities for me. My being who I am now started with my NUI Galway experience and I will always be grateful to the institution, to my friends and to my former professors."
Dolores San Diego-Cleofas, MSc Hydrology, NUIG, 1995 Graduating Class,
Assistant Professor at University of Santo Tomas, Manila, Phillipines

How to Apply

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:
M.Sc. Water Resources Engineering - PAC code GYE23

Scholarship Opportunities

There are a number of funding opportunities for International Students planning to attend NUI Galway. Information on these can be found at: http://www.nuigalway.ie/international-students/feesfinance/internationalscholarships/

The College of Engineering and Informatics will also award the Nash Scholarship in Water Resource Engineering. This is in memory of our deceased colleague, Eamonn Nash who was our Professor of Engineering Hydrology for many years, and was a well-known in the international engineering community. The “Nash cascade” and “Nash-Sutcliffe coefficient” were named after him, and these still feature in scholarly publications. Over four hundred senior hydrologists throughout the world received their post-graduate hydrological education at this University. Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

The MSc in Water Resources Engineering is accredited by Irish Aid as an eligible course for their International Fellowship Training Programme (IFTP). Through the IFTP, Irish Aid provides funding for students from eligible developing countries to undertake postgraduate studies on selected courses in colleges and universities in Ireland. More information on Irish Aid Fellowships can be found on the website of the Irish Council for International Students at:
http://www.icosirl.ie/eng/irish_aid_fellowships/fellowship_training_programme

Further information is available on our website:
http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/mscwaterresourcesengineering/

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X