• Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
King’s College London Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Birmingham Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Coventry University Featured Masters Courses
"integrated" AND "circuit…×
0 miles

Masters Degrees (Integrated Circuits)

  • "integrated" AND "circuits" ×
  • clear all
Showing 1 to 15 of 33
Order by 
The Master’s programme in Electronics Engineering focuses on the design of integrated circuits and System-on-Chip in advanced semiconductor technologies. Read more
The Master’s programme in Electronics Engineering focuses on the design of integrated circuits and System-on-Chip in advanced semiconductor technologies. This requires a broad spectrum of knowledge and skills across many fields within engineering and science, far beyond the curriculum of traditional electronics education. The programme provides a competitive education in digital, analogue and Radio Frequency (RF) integrated circuits (IC) and System-on-Chip (SoC) design, combined with in-depth knowledge in signal processing, application specific processors, embedded systems design, modern communications systems and radio transceivers design.

The modern society depends to a large extent on reliable and efficient electronics. Mobile phones, internet, PCs and TVs are just a few examples that constantly improve in terms of functionality, performance and cost. In addition, there is a growing number of concepts and technologies which will significantly improve areas such as: mobile and broadband communications, healthcare, automotive, robotics, energy systems management, entertainment, consumer electronics, public safety and security, industrial applications and much more. This indicates that there will be vast industrial opportunities in the future, and also a high demand for competent engineers with the required knowledge and skills to lead the design of such complex integrated circuits and systems.

The programme is arranged by several strong divisions at the department of Electrical Engineering and the department of Computer and Information Science. These groups, which include more than 60 researchers and 10 internationally recognized professors, have excellent teaching experience, world-class research activities which cover nearly the entire field of integrated electronic design, state-of-the-art laboratories and design environments, as well as close research collaboration with many companies worldwide.

The programme starts with courses in wireless communication systems, digital integrated circuits, digital system design, analogue integrated circuits and an introduction to radio electronics, providing a solid base for the continuation of the studies. Later on, a large selection of courses provides two major tracks of studies, including common and specific courses. The tracks are:
System-on-Chip with focus on digital System-on-Chip design and embedded systems.
Analogue/Digital and RF IC design with emphasis on the design of mixed analogue/digital and radio frequency integrated circuits.

The programme offers several large design project courses, giving excellent opportunities for students to improve their design skills by using the same state-of-the-art circuit and system design environments and CAD tools that are used in industry today. For instance, in the project course VLSI Design students will design real chips using standard CMOS technology that will be sent for fabrication, measured and evaluated in a follow-up course. Only few universities in the world have the know-how and capability to provide such courses.

Read less
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). Read more
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). The programme targets producing engineers with knowledge and skills required for designing the integrated circuits which lie at the core of the vast array of consumer electronics of today’s world. The demand for people to fill such roles is extremely high, in companies (small and large) covering the range of electronics and ICT products, and integrated circuit design companies that supply them.

Integrated circuits have been powering the information revolution for over 50 years. Continuous innovation has resulted in greater processing power, memory and new devices. This, together with ever reducing manufacturing costs and reliability, has enabled the mass production of integrated circuits for consumer products that are more powerful han the supercomputers of the 1980s. While the fabrication technology advances, there is an increasing need for innovative design which can harness the power of these circuits, while taking into account constraints such as requirements for energy efficiency.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1224/integrated-circuit-design-engineering

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

Modules
The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL893 - Reconfigurable Architectures (15 credits)
EL894 - Digital Integrated Circuit Design (15 credits)
EL896 - Computer and Microcontroller Architectures (15 credits)
EL897 - Analogue Integrated Circuit Design (15 credits)
EL898 - Electronic Design Automation for IC Design (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL890 - MSc Project (60 credits)

Careers

The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Integrated circuit (IC) technology has been the principal driver of the electronics industry in the past thirty years. The advancement of integrated electronics from the microscale to the nanoscale is critical to the advancement of information technology for another thirty years to come. Read more
Integrated circuit (IC) technology has been the principal driver of the electronics industry in the past thirty years. The advancement of integrated electronics from the microscale to the nanoscale is critical to the advancement of information technology for another thirty years to come.

Program Objectives

Integrated circuit (IC) technology has been the principal driver of the electronics industry in the past thirty years. The advancement of integrated electronics from the microscale to the nanoscale is critical to the advancement of information technology for another thirty years to come. Our daily encounter with ICs starts with mobile phones and computers. Entertainment electronics such as MP3 players and play-stations cannot perform 1% of their functions without using ICs. Fuel injection systems for efficiency and automatic braking systems for safety of automobiles would be non-existent without using ICs. Medical implants, such as pacemakers, would be 500g instead of 5g without using ICs. Tens of millions of smart-cards and RFID tags are issued for security and inventory control every year, and the number grows exponentially. It is evident that the sustenance and advancement of our information society depends on the development of integrated electronics.

Hong Kong has every reason in prompting the IC industry due to her strong research and development foundation in the academic community, and her good marketing sense in defining new applications and products in the industrial community. Many overseas companies are setting up IC design centers in Hong Kong to get closer to the consumers’ market: the mainland China, and in particular, the Pearl River Delta. Hong Kong has been recognized by the Ministry of Science and Technology as one of the “7+1” designated national IC centers, taking up the role in SIP (semiconductor intellectual property) management. Certainly, Hong Kong is playing an important role in the IC industry in China.

In the past, over 95% of the integrated circuits used in China are imported. There is a clear vision from the Chinese government to build a strong integrated circuit design industry in order to reduce China's dependency in this area and to supply China with the ICs needed for its ever growing electronic industries. The percentage of ICs that are designed and manufactured in China increases year by year due to the new national policy. To fuel the growing IC industry, over 100,000 IC design and production engineers will be needed in China in the next decade. The current education system cannot even train a small fraction of the IC design engineering manpower needed. A similar shortage is also bothering the IC industry in Hong Kong.

The Master of Science in IC Design Engineering (MSc(ICDE)) of The Hong Kong University of Science and Technology is a postgraduate degree program tailored to train IC design engineers for Hong Kong and China. This degree program is designed for professionals and students with a bachelor degree in science or engineering who are interested to acquire in-depth as well as broad-based knowledge in integrated circuit design. The curriculum meets the HKUST requirements for granting the Master of Science degree.

Curriculum

To complete the MSc(ICDE) program, students are required to complete eight taught courses (3 credits x 6 plus 2 credits x 2) and one project course (4 credits).

Complete List of Courses
EESM 5000 CMOS VLSI Design
EESM 5020 Digital VLSI System Design and Design Automation
EESM 5060 Embedded Systems
EESM 5100 Analog Integrated Circuits Analysis and Design
EESM 5120 Advanced Analog IC Analysis and Design
EESM 5200 Semiconductor Devices for Integrated Circuit Designs
EESM 5310 Power Management Circuits and Systems
EESM 5320 Radio-Frequency Integrated Circuits Design
EESM 5810 Business Development for Technological Innovations
EESM 5900 Special Topics *
EESM 5920 Topics in Analog IC Systems and Design
EESM 6980 MSc Project
EESM 6980M MSc Project [4 credits]

All the above courses carry 3 credits each (except for EESM5310 and EESM5320 which carry 2 credits each and EESM6980 which carries 4 credits).

* Student may take EESM 5900 for a maximum of 6 credits.

Facilities

Students can enjoy library support, computer support, sports facilities, and email account at no extra cost. Upon graduation, students could also apply for related alumni services.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1. Read more
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1

The master of engineering in microelectronics manufacturing engineering provides a broad-based education for students who are interested in a career in the semiconductor industry and hold a bachelor’s degree in traditional engineering or other science disciplines.

Program outcomes

After completing the program, students will be able to:

- Design and understand a sequence of processing steps to fabricate a solid state device to meet a set of geometric, electrical, and/or processing parameters.

- Analyze experimental electrical data from a solid state device to extract performance parameters for comparison to modeling parameters used in the device design.

- Understand current lithographic materials, processes, and systems to meet imaging and/or device patterning requirements.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Perform in a microelectronic engineering environment, as evidenced by an internship.

- Appreciate the areas of specialty in the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

Plan of study

This 30 credit hour program is awarded upon the successful completion of six core courses, two elective courses, a research methods course, and an internship. Under certain circumstances, a student may be required to complete bridge courses totaling more than the minimum number of credits. Students complete courses in microelectronics, microlithography, and manufacturing.

Microelectronics

The microelectronics courses cover major aspects of integrated circuit manufacturing technology, such as oxidation, diffusion, ion implantation, chemical vapor deposition, metalization, plasma etching, etc. These courses emphasize modeling and simulation techniques as well as hands-on laboratory verification of these processes. Students use special software tools for these processes. In the laboratory, students design and fabricate silicon MOS integrated circuits, learn how to utilize semiconductor processing equipment, develop and create a process, and manufacture and test their own integrated circuits.

Microlithography

The microlithography courses are advanced courses in the chemistry, physics, and processing involved in microlithography. Optical lithography will be studied through diffraction, Fourier, and image-assessment techniques. Scalar diffraction models will be utilized to simulate aerial image formation and influences of imaging parameters. Positive and negative resist systems as well as processes for IC application will be studied. Advanced topics will include chemically amplified resists; multiple-layer resist systems; phase-shift masks; and electron beam, X-ray, and deep UV lithography. Laboratory exercises include projection-system design, resist-materials characterization, process optimization, and electron-beam lithography.

Manufacturing

The manufacturing courses include topics such as scheduling, work-in-progress tracking, costing, inventory control, capital budgeting, productivity measures, and personnel management. Concepts of quality and statistical process control are introduced. The laboratory for this course is a student-run factory functioning within the department. Important issues such as measurement of yield, defect density, wafer mapping, control charts, and other manufacturing measurement tools are examined in lectures and through laboratory work. Computer-integrated manufacturing also is studied in detail. Process modeling, simulation, direct control, computer networking, database systems, linking application programs, facility monitoring, expert systems applications for diagnosis and training, and robotics are supported by laboratory experiences in the integrated circuit factory. The program is also offered online for engineers employed in the semiconductor industry.

Internship

The program requires students to complete an internship. This requirement provides a structured and supervised work experience that enables students to gain job-related skills that assist them in achieving their desired career goals.

Students with prior engineering-related job experience may submit a request for internship waiver with the program director. A letter from the appropriate authority substantiating the student’s job responsibility, duration, and performance quality would be required.

For students who are not working in the semiconductor industry while enrolled in this program, the internship may be completed at RIT. It involves an investigation or study of a subject or process directly related to microelectronic engineering under the supervision of a faculty adviser. An internship may be taken any time after the completion of the first semester, and may be designed in a number of ways. At the conclusion of the internship, submission of a final internship report to the faculty adviser and program director is required.

Read less
Power ahead and make your postgraduate studies really count in the Department of Electronic and Computer Engineering. The recent evolution of Electronic and Computer Engineering has been developed into a wide-ranging discipline covering technologies critical to the growth of the knowledge economy. Read more
Power ahead and make your postgraduate studies really count in the Department of Electronic and Computer Engineering. The recent evolution of Electronic and Computer Engineering has been developed into a wide-ranging discipline covering technologies critical to the growth of the knowledge economy.

Networking, wireless communications, multimedia signal processing, microelectronics, microprocessors, IC design, opto-electronics, display technologies, and control and robotics all fall into this exciting discipline. Advanced training in these fields opens up a wealth of career opportunities in the manufacturing industry, business sector, government and universities worldwide.

The Department has gathered a talented faculty team, with PhDs from the world's top universities, and is equipped with state-of-the-art facilities to enable pioneering research and multimedia teaching to be carried out. We have over 40 teaching faculty members, over 300 research postgraduate students and are committed to world-class research and excellence in teaching, leading to significant results with international impact.

The Department's goal is to prepare students to become leading academics, top quality engineers or productive managers in the ever-changing high-technology world.

The MPhil program is designed for those interested in pursuing a career in research and development in industry or academia, and is an excellent preparation for a PhD degree. Students are required to undertake coursework and successfully research and defend a thesis.

Research Foci

The Department's research concentrates on six pillar areas:
Solid-State Electronics and Photonics
Topics related to Microelectronics, Nanoelectronics, Large Area Electronics, Power and Energy-Efficient Electronic Devices, High-Speed Electronics, Semiconductor Materials, Devices and Fabrication Technology, Micro-Electro-Mechanical Systems (MEMS), Displays, Optoelectronics, Organic Light-Emitting Diodes (OLEDs), Solid-State Lighting, Liquid-Crystal Displays, Liquid-Crystal Photonics, Silicon Photonics, Optical Communications and Interconnects, Solar Cells, Epitaxy of Compound Semiconductors by MOCVD.

Integrated Circuits and Systems
Topics related to Digital, Analog and Mixed-Signal Integrated Circuits (IC) Design, VLSI Design, Embedded Systems, Network-on-Chip and Multiprocessor System-on-Chip, Circuit and System Simulation and Verification Tools. Advanced topics include RF and mm-Wave IC and Systems, Data Converters, Power Management IC, High-Speed Optical Communication Transceiver, Image and Bio-Medical Sensors, Signal Processing and System Architectures, Design Automation, Computer Architecture, Reconfigurable System and Hardware/Software Codesign.

Wireless Communications and Networking
Topics related to Physical Layer, Signal Processing, Coding and Information Theory, Networking as well as New Architecture for Next Generation 5G Wireless Communications, Massive MIMO and Cloud Radio Access Networks, Interference Management, Heterogeneous Networks, Green Communications, Tactile Wireless Systems For Machine Type (MTC), Device-To-Device (D2D) and Multimedia Communications, Integration of Control and Wireless Communication Theory, Display-Smart Mobile Communications And Interactions, Network Coding Theory and Applications, Cross-Layer Stochastic Optimization, Distributed Algorithms and Optimisations, Big Data Systems, Social Media and Cyber-Physical and Social Computing Systems, Self-Organising Networks, Cloud Computing and Virtualisation.

Biomedical Engineering
Topics related to Medical Imaging, Biomedical Optics and Biophotonics, Neuroengineering, Medical Electronics, Bioinformatics/Computational Biology and Biomedical Microdevices and BioMEMS.

Control and Robotic Systems
Topics related to Control and Optimization (including System Theory, Optimization Theory, Detection and Estimation, Financial Systems, Networked Sensing and Control), Robotics and Automation (including UAV, Next-Generation Industry Robots, Medical/Healthcare Robotics, and Autonomous Systems).

Signal, Information and Multimedia Processing
Topics related to Digital Signal Processing of Video, 3D, Image, Graphics, Audio, Speech, Language, Biomedical Data, Financial Data, and Network Data. Specific topics include Signal Capture, Conditioning, Compression, Transformation, Playback and Visualization, Data Analysis, Information Theory, Error Correction, Cryptography, Computer Vision, Pattern Recognition, Machine Learning, Language Understanding, Translation, Summarization, Retrieval, Multi-Lingual and Multi-Modal Processing, and Embedded Systems.

Facilities

There are extensive facilities available to support the Department's programs. Laboratories for research and teaching encompass: advanced VLSI design and testing analog, automatic-control, biomedical instrumentation, broadband networks, computer networks and system integration, digital electronics and microprocessors, electro-optics, fine-line lithography, integrated power electronics, machine intelligence, optical device characterization, robot manipulation, signal processing and communication and wireless communication.

Relevant central facilities, research centers and research institutes include: the Automation Technology Center, Center for Networking, Center for Wireless Information Technology, Multimedia Technology Research Center, Nanoelectronics Fabrication Facility, Photonics Technology Center, Semiconductor Product Analysis and Design Enhancement Center.

In addition to the University's central computing facilities, the Department has over 200 Linux/Solaris workstations and over 900 PCs and Apple computers. Both industrial standard and research-oriented software are used by faculty and students for teaching and research.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
The LL.M. in Intellectual Property is designed in parthership with the. for participants to acquire the skills needed to play a leading role in intellectual property rights (IPR) practice and teaching through exposure to an international and comparative approach. Read more
The LL.M. in Intellectual Property is designed in parthership with the

World Intellectual Property Organization

for participants to acquire the skills needed to play a leading role in intellectual property rights (IPR) practice and teaching through exposure to an international and comparative approach.
The curriculum aims to provide an in-depth examination of the classical topics of IP law, as well as specialized analysis of the latest developments in the fields of patents, industrial design, integrated circuits, trademarks, domain names, copyright and related rights, biotechnological patents and plant varieties as well as the internet, software, databases and e-commerce.

The LL.M. is structured in three different phases stretching over 9 months, from June 2013 to February 2014.

The first phase - Distant learning

This initial stage provides the participants with a preliminary and homogeneous background. Three distance learning modules are offered from the beginning of June to the end of August. They are based on the successfully tested WIPO Academy “General Course on Intellectual Property” (DL-101), “IP and Electronic Commerce” (DL-202) and “Copyright and Related Rights”
(DL-203). The DL-101 has an online examination while the advanced courses will require of a written exam.

The second phase - residential part

It offers face-to-face classroom teaching, held at the International Training Centre of the ILO, in Torino from September to December.
Building on an introductory review of economic analysis of law, this phase analyzes IP protection both at a national and international level. Lectures will be offered by professors and tutors as well as IP experts. Participants will be required to make seminar-presentations. This provides for active interaction and participation among the students, tutors and the professors. Class teaching will be complemented by case-study sessions, experiments in legal drafting and submission of a first draft of a research paper. Three intermediate exams will be held during this phase of the program. The exam at the beginning of the second phase is intended to assess the level of knowledge attained by students during the first phase.

The third phase - submission of the thesis

This section stretches from December to February. Each participant will be required to submit the final version of the research paper initially presented during the second phase. Submission and grading of the final research will conclude the program.

A Master of Laws (LL.M.) degree in Intellectual Property will be awarded upon successful completion and fulfilment of the requirements of the program.
Study visits to IP offices in Torino and to other institutions, such as WIPO in Geneva (5 days) will be organized during the residentialphase of the Program. A number of participants, selected by the Scientific Committee of the Master's Program, will take part in an internship program at WIPO and in/or other public and private organizations, such as law firms and corporations active in the field of IP.

Read less
This course provides you with comprehensive training in the essential elements of information engineering and communications. Module options are topical and relevant, encompassing the design of application-specific integrated circuits, micro-electromechanical systems and optical engineering. Read more
This course provides you with comprehensive training in the essential elements of information engineering and communications. Module options are topical and relevant, encompassing the design of application-specific integrated circuits, micro-electromechanical systems and optical engineering.

You’ll also have the opportunity to tap into the world of Computer Science and explore ‘big data’, covering themes such as digital multimedia storage and communications technologies, data analytics and data mining in terms of algorithms, and goals in real-world problems. You’ll also pick up transferable skills for any future study or career, such as project planning and management, ethics, health and safety, report writing, library skills and career management.

Our recent graduates now occupy positions in industries ranging from core network provision through to logistics and software support, in addition to opportunities in data communication equipment and services.

Course description

The MSc degree (totalling 180 credits) comprises eight taught modules (15 credits each), five core modules and three optional modules (see below), along with a research project worth 60 credits (see below).

Core modules

-Advanced Wireless Systems and Networks
-Information Theory and Coding
-Antenna, Propagation and Wireless Communications Theory
-Optical Communication Systems
-Signal & Image Processing

Optional modules

ASICs, MEMS and Smart Devices
Optical Engineering
Data Mining (from Computer Science)
Foundations of Data Analytics (from Computer Science)
Multimedia Processing, Communications and Storage (from Computer Science)

Individual research project

The individual research project is an in-depth experimental, theoretical or computational investigation of a topic chosen by you in conjunction with your academic supervisor. Typical project titles include:
-Network coding for underwater communications.
-Nanoscale communication networks.
-Forward Error Correction for Spectrally Sliced Transmission.
-Routing Algorithm Design for Mobile Ad Hoc Networks.
-Logical Stochastic Resonance.
-Design of Radio Devices using Metamaterials.
-Nonlinear Effects in Optical Fibre Transmission.

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Nanotechnology
-Biosensors
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. Read more
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. The core aim of the course is to produce students who are “silicon qualified” by providing them with a complete SoC design experience by setting a framework of activities that allow the student to use industry-standard Computer-Aided-Engineering (CAE) software tools for the fast and accurate design, simulation and verification of integrated circuits.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.
Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening… Read more

Program overview

The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening their ability to successfully formulate solutions to current technical problems, and offers a significant independent learning experience in preparation for further graduate study or for continuing professional development at the leading edge of the discipline. The program accommodates applicants with undergraduate degrees in computer engineering or related programs such as electrical engineering or computer science. (Some additional bridge courses may be required for applicants from undergraduate degrees outside of computer engineering).

Plan of study

The degree requires 30 semester credit hours and includes Analytical Topics in Computer Engineering (CMPE-610), two core courses, four graduate electives, two semesters of graduate seminar, and the option of completing either a thesis research or a graduate project. The core courses and graduate electives provide breadth and depth of knowledge. The Computer Engineering Graduate Seminar (CMPE-795) provides students with exposure to a variety of topics presented by researchers from within RIT, industry, and other universities, and guides students to choose either a thesis or project as their culminating experience. The Project/Thesis Initiation Seminar (CMPE-796) guides students to complete their thesis proposal or project execution plan with their faculty adviser.

Students who pursue the thesis option complete nine semester credit hours of thesis research (CMPE-790) to conduct research with a faculty adviser to answer a fundamental science/engineering question that contributes to new knowledge in the field. Students are expected to formulate the problem under the faculty adviser's guidance and conduct extensive quantitative or qualitative analyses with sound methodology. Research findings should be repeatable and generalizable, with sufficient quality to make them publishable in technical conferences and/or journals. Students who pursue the project option take six semester credits of graduate electives directly related to their project deliverables and three semester credits of Graduate Project (CMPE-792) to professionally execute a project under the supervision of a faculty adviser. The project generally addresses an immediate and practical problem, a scholarly undertaking that can have tangible outcomes, where students are expected to give a presentation or demonstration of the final deliverables of the project.

Research tracks/Graduate electives

Students may select four graduate electives from within the following research tracks. Students are encouraged to choose most of their graduate electives within a single research track. At least two of the electives must be from the computer engineering department (computer engineering department courses begin with the prefix CMPE). Courses outside the lists below may be considered with approval from the department of computer engineering. Research tracks are available in the following areas (see website for research track details):
-Computer architecture
-Computer vision and machine intelligence
-Integrated circuits and systems
-Networks and security
-Signal processing, control and embedded systems
-Additional graduate-level math courses

Curriculum

Thesis and project options differ in course sequence, see website for a particular option's module information.

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have an GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS).

Read less
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0. Read more
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0

The objective of the master of science degree in microelectronic engineering is to provide an opportunity for students to perform graduate-level research as they prepare for entry into either the semiconductor industry or a doctoral program. The degree requires strong preparation in the area of microelectronics and requires a thesis.

Program outcomes

- Understand the fundamental scientific principles governing solid-state devices and their incorporation into modern integrated circuits.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Develop in-depth knowledge in existing or emerging areas of the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

- Apply microelectronic processing techniques to the creation/investigation of new process/device structures.

- Communicate technical material effectively through oral presentations, written reports, and publications.

Plan of study

The MS degree is awarded upon the successful completion of a minimum of 33 semester credit hours, including a 6 credit hour thesis.

The program consists of eight core courses, two graduate electives, 3 credits of graduate seminar and a thesis. The curriculum is designed for students who do not have an undergraduate degree in microelectronic engineering. Students who have an undergraduate degree in microelectronic engineering develop a custom course of study with their graduate adviser.

- Thesis

A thesis is undertaken once the student has completed approximately 20 semester credit hours of study. Planning for the thesis, however, should begin as early as possible. Generally, full-time students should complete their degree requirements, including thesis defense, within two years (four academic semesters and one summer term).

Curriculum

- First Year

Microelectronic Fabrication
Lithographic Materials and Processes
Thin Films
Microelectronics Research Methods
Microelectronic Man.
VLS Process Modeling
Graduate Elective*
Microelectronics Research Methods

- Second Year

Graduate Elective*
MS Thesis
Microelectronics Research Methods

* With adviser approval.
Physical Modeling of Semiconductor Devices

Read less
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Read more
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of:
-The synthesis, processing, structure and properties of inorganic materials.
-Modelling methods in materials research.
-The structure and dynamics of biomolecular systems.
-The synthesis, structure and properties of polymers.
-Applications of materials research in industrial applications.
-The use of methods of physics in medicine.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your major subject, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.

Selection of the Major

At the beginning of your studies you will make a personal study plan, with the help of teaching staff, where you choose your study line. This programme has the following six study lines representing different branches of materials research.

Experimental Materials Physics
Here you will study the properties and processing of a wide variety of materials using experimental methods of physics to characterise and process them. In this programme the materials range from the thin films used in electronics components, future fusion reactor materials, and energy materials to biological and medical materials. The methods are based on different radiation species, mostly X-rays and ion beams.

Computational Materials Physics
In this study line you will use computer simulations to model the structures, properties and processes of materials, both inorganic materials such as metals and semiconductors, and biological materials such as cell membranes and proteins. You will also study various nanostructures. The methods are mostly atomistic ones where information is obtained with atomic level precision. Supercomputers are often needed for the calculations. Modelling research is closely connected with the experimental work related to the other study lines.

Medical Physics
Medical physics is a branch of applied physics encompassing the concepts, principles and methodology of the physical sciences to medicine in clinics. Primarily, medical physics seeks to develop safe and efficient diagnosis and treatment methods for human diseases with the highest quality assurance protocols. In Finland most medical physicists are licensed hospital physicists (PhD or Phil.Lic).

Polymer Materials Chemistry
In this line you will study polymer synthesis and characterisation methods. One of the central questions in polymer chemistry is how the properties of large molecules depend on the chemical structure and on the size and shape of the polymer. The number of applications of synthetic polymers is constantly increasing, due to the development of polymerisation processes as well as to better comprehension of the physical properties of polymers.

Inorganic Materials Chemistry
Thin films form the most important research topic in inorganic materials chemistry. Atomic Layer Deposition (ALD) is the most widely studied deposition method. The ALD research covers virtually all areas related to ALD: precursor synthesis and characterisation, film growth and characterisation, reaction mechanism studies, and the first steps of taking the processes toward applications. The emphasis has been on thin film materials needed in future generation integrated circuits, but applications of ALD in energy technologies, optics, surface engineering and biomaterials are also being studied. Other thin film deposition techniques studied include electrodeposition, SILAR (successive ionic layer adsorption and reaction) and sol-gel. Nanostructured materials are prepared either directly (fibres by electrospinning and porous materials by anodisation) or by combining these or other templates with thin film deposition techniques.

Electronics and Industrial Applications
Sound and light are used both to sense and to actuate across a broad spectrum of disciplines employing samples ranging from red hot steel to smooth muscle fibres. Particular interest is in exploiting the link between the structure and mechanics of the samples. The main emphasis is on developing quantitative methods suitable for the needs of industry. To support these goals, research concentrates on several applied physics disciplines, the main areas being ultrasonics, photoacoustics, fibre optics and confocal microscopy.

Read less
The backbone of modern telecom infrastructure consists of optical fibre-based systems in combination with wireless technologies. Medical applications of photonics and microwaves are numerous, and sensing applications include radar, environmental monitoring and radio astronomy. Read more
The backbone of modern telecom infrastructure consists of optical fibre-based systems in combination with wireless technologies. Medical applications of photonics and microwaves are numerous, and sensing applications include radar, environmental monitoring and radio astronomy. Satellite based microwave systems aid our everyday life, e.g. television broadcasting, navigation and weather forecasts, and are used in remote sensing of the Earth and space geodesy.

Programme description

Over the past decades, photonics and wireless technology have grown at an exceptional rate and investments in future telecom systems will have a profound impact on social and economic development, but everything wireless needs hardware.

This programme offers a unique opportunity to study a combination of subjects for which Chalmers has world-class facilities: Onsala Space Observatory with radio telescopes and equipment to study the Earth and its atmosphere, the Nanofabrication Laboratory with a clean-room for research and fabrication of advanced semiconductor devices and integrated circuits, and research laboratories with state-of-the-art photonics and microwave measurement equipment.

We focus on applied science and engineering, where we combine theory with hands-on practise, labs and projects. We are involved in cutting edge research and the manufacturing of components for e.g. microwave and millimetre wave electronics, instruments for radio astronomy and remote sensing, optical fibres, lasers, and microwave antennas.

As a student of this programme, you will gain solid knowledge in wireless, photonics and space engineering as well as specialised skills in a chosen sub-field. You will be prepared for a career in the field through studies of wireless and optical communication components and systems, RF and microwave engineering, photonics, and space science and techniques.

Roughly 50% of the students are international students with a bachelor degree from different countries across the world, whereas the remaining 50% has a bachelor from Chalmers.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X