• Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London Featured Masters Courses
Durham University Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
"instrumentation" AND "co…×
0 miles

Masters Degrees (Instrumentation And Control Engineering)

We have 90 Masters Degrees (Instrumentation And Control Engineering)

  • "instrumentation" AND "control" AND "engineering" ×
  • clear all
Showing 1 to 15 of 90
Order by 
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Robust Control Systems
  • Signal Conditioning and Data Processing

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in E & I oil and gas engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in E & I oil and gas engineering

- Tremendous boost to your E & I oil and gas career – no matter whether you are a new graduate or a technician

- Decades of real experience distilled into the course presentations and materials

- Guidance from real E & I oil and gas experts in the field

- Hands-on practical knowledge from the extensive experience of instructors, rather than the theoretical information from books and colleges

- Credibility as the local expert in E & I oil and gas

- Networking contacts in the oil and gas industry

- Improved career prospects and income

- An Advanced Diploma in Electrical & Instrumentation Engineering for Oil and Gas

Next intake is scheduled for May 2, 2018. Applications are now open; places are limited.

INTRODUCTION

There is a growing shortage, and hence opportunity, for Electrical and Instrumentation (E & I) technicians, technologists and engineers in the oil and gas industry. This is due to an increasing need for higher technology methods of obtaining and processing oil and gas as it is a finite declining resource. The technical challenges of extracting oil and gas are becoming ever more demanding, with increasing emphasis on more marginal fields and previously inaccessible zones such as deep oceans, Polar regions, Falkland Islands and Greenland. The aim of this 18-month e-learning program is to provide you with core E & I engineering skills so that these opportunities may be accessed, to enhance your career, and to benefit your firm.

This advanced diploma is presented by lecturers who are highly experienced engineers from industry, having 'worked in the trenches' in the various E & I engineering areas. When doing any course today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This advanced diploma course provides a practical treatment of electrical power systems and instrumentation within the oil, gas, petrochemical and offshore industries. Whilst there is some theory this is used in a practical context giving you the necessary tools to ensure that the Electrical and Instrumentation hardware is delivering the results intended. No matter whether you are a new electrical, instrumentation or control technician/technologist/graduate engineer or indeed, even a practicing facilities engineer, you will find this course beneficial in improving your understanding, skills and knowledge of the whole spectrum of activities ranging from basic E & I engineering to advanced practice including hazardous areas, data communications along with a vast array of E & I equipment utilized in an oil and gas environment.

WHO SHOULD COMPLETE THIS PROGRAM?

This program would be ideal for you if you are seeking to get know-how and expertise in the oil and gas business and are an:

- Instrument and process control technician or technologist

- Instrument fitter

- Chemical or mechanical engineer

- Electrical engineer currently working in a different area to oil and gas

- Experienced electrician

- A recent graduate electrical, instrumentation or mechanical engineer

Even if you are highly experienced you will find this a great way to become familiar with the oil and gas technology as quickly as possible.

COURSE CONTENT

The valuable oil and gas program has five main streams:

- Electrical engineering

- Instrumentation and Control engineering

- General Oil and Gas engineering

- Subsea Instrumentation and Control

- Floating Production, Storage and Offloading (FPSO) Facilities

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. Read more

This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. This course offers an opportunity not only to specialise in nuclear engineering control, instrumentation and standards for operation and maintenance but also provides sufficient scope for students wishing to develop advanced skills in modern automation and in working with large industrial networks.

You may build valuable skills through a selection of option units and a project to gain advanced knowledge in sustainable energy systems and smart technologies for power system applications or in specialising in embedded systems as well as in applied digital signal processing for industrial applications. The course will also offer opportunities for those interested in combining engineering skills with management practice.

You will learn advanced concepts in the principles and operation of instrumentation for control, including control system architectures, communications, open systems security, hazard analysis, system reliability, safety and protection.

The course enables the appreciation of the practical aspects of control design and maintenance and offers hands-on experience in designing and developing solutions for control problem-solving using the IEC61131-3 standard. The course covers specialist and intelligent sensor systems, PLC-based control, Profibus and Profinet.

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Features and benefits of the course

-Research in the School of Engineering was rated 'internationally excellent' in the Research Excellence Framework (REF).

-Many of our academic staff who teach worked in their industry sector and have well-established links and contacts, ensuring that our curriculum is relevant for future employment.

-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

Assessment is though a combination of written reports, oral presentations, practical assignments and written examinations.



Read less
WHAT YOU WILL GAIN. ·        Skills and know-how in the latest and developing technologies in electrical and instrumentation in oil and gas. Read more

WHAT YOU WILL GAIN:

·        Skills and know-how in the latest and developing technologies in electrical and instrumentation in oil and gas

·        Practical guidance and feedback from electrical and instrumentation experts from around the world

·        Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college

·        Credibility and respect as the local electrical and instrumentation in oil and gas expert in your firm

·        Global networking contacts in the industry

·        Improved career choices and income

·        A valuable and accredited Master of Engineering (Electrical and Instrumentation in Oil and Gas)** qualification

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Electrical and Instrumentation in Oil and Gas) is a comprehensive qualification for Design, Installation, Commissioning and Maintenance Engineers who are looking for a career in the onshore and offshore oil and gas industry. The course addresses the specific core competencies and associated underpinning knowledge required for the position of Principal Engineer.

There are twelve units in the degree which cover electrical & instrumentation (E&I) engineering, its design and the management of E&I personnel. Other topics include process control, process safety lifecycle management and the safetyintegrity of facilities. Power engineering, maintenance management and specialist areas such as emergency shutdown systems, fire and gas are also covered. The course is rounded off with a unit on project management.

The Masters project thesis, as the capstone of the course, requires a high level of personal autonomy and purpose; it reinforces the knowledge gained during the degree. As a significant research component of the course, this project requires students to examine and explore their subjects, make critical evaluations and apply their knowledge and skill. It aims to prepare and enable students to critique and potentially enhance current professional practice in the Oil and Gas industry.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Electrical and Instrumentation in Oil and Gas)

 To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree* in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Electrical and Instrumentation in Oil and Gas content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Electronic and Communication Systems

• Instrumentation, Control and Automation

• Industrial Automation

• Industrial Engineering

• Electrical Engineering

• Chemical Engineering

• Process Engineering

• Mechatronic Systems

• Production Engineering

• Robotics

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in all aspects of plant engineering. - Guidance from practicing plant engineering experts in the field. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in all aspects of plant engineering

- Guidance from practicing plant engineering experts in the field

- Knowledge from the extensive experience of instructors, rather than from clinical information gained from books and college

- Improved career prospects and income

- An EIT Advanced Diploma of Plant Engineering

Start Date: June 05, 2018.

INTRODUCTION

This practical course avoids over emphasis on theory. This is rarely needed in the real industrial world where time is short and immediate results are required. Hard-hitting and useful know-how, are needed as minimum requirements. The instructors presenting this advanced diploma are highly experienced engineers from industry who have many years of real-life experience as Plant Engineers. The format of presentation - live, interactive distance learning with the use of remote labs means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain solid knowledge of the key elements of Plant Engineering to improve their work skills and to further their job prospects:

- Electrical Engineers who need an overall Plant Engineering appreciation

- Electricians

- Maintenance Engineers and Supervisors

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

Even those who are highly experienced in Plant Engineering may find it useful to follow some of the topics to gain know-how in a very concentrated but practical format.

COURSE STRUCTURE

The course follows six engineering threads to provide you with maximum practical coverage in the field of Plant Engineering:

- Overview and where the Plant Engineer fits into the 21st century production sphere

- Engineering technologies in detail

- Skills for project, process, environmental and energy management

- Maintenance management

- Safety management; with corresponding legal knowledge

- Other necessary skills to master

The course is composed 19 modules. These modules cover a range of aspects to provide you with maximum practical coverage in the field of Plant Engineering.

The modules are:

- Introduction to Plant Engineering

- Plant Operations and Facility Management

- Electrical Equipment and Technology

- Pressure Vessels and Boilers

- Fundamentals of Professional Engineering

- Mechanical Equipment and Technology

- Fluid Power Systems and Components

- Pumps and Seals

- Thermodynamics, Compressors, Fans and Blowers

- Process Plant Layout and Piping Design

- Heating, Ventilation and Air Conditioning

- Noise and Vibration

- Structural and Civil Engineering Concepts

- Process Management

- Energy Management

- Instrumentation and Control Engineering

- Maintenance Management

- Environmental Engineering

- Safety Management

PRESENTATION FORMAT

The programme features real-world applications and uses a multi-pronged approach involving interactive on-line webinars, simulation software and self-study assignments with a mentor on call. The course consists of 72 topics delivered over a period of 18 months. Presentations and group discussions will be conducted using a live, interactive software system. For each topic you will have an initial reading assignment (which will be delivered to you in electronic format in advance of the online presentations). There will be coursework or problems to be submitted and in some cases there will be practical exercises, using simulation software and remote labs that you can easily do from your home or office. You will have ongoing support from the instructors via phone, fax and e-mail.

LIVE WEBINARS

The webinar schedule is not put together until after registrations close. The reason for this is that the program is promoted globally and we often have participants from several time zones. When you enrol you will receive a questionnaire which will help us determine your availability. When all questionnaires are returned we create a schedule which will endeavour to meet everyone’s requirements. Each webinar runs 2 or 3 times during each presentation day and we try our best to ensure that at least one session falls into your requested time frames. This is not always possible, however, due to the range of locations of both presenters and students. If you are unable to attend the webinars scheduled, we do have some options available. Contact the EIT for more details.

PRACTICAL EXERCISES AND REMOTE LABORATORIES

As part of the groundbreaking new way of teaching, we will be using a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during the course. These involve complete working labs set up at various locations of the world into which you will be able to log and proceed through the various practical sessions. These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite handson experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered in the course and will Practical Exercises and Remote Laboratories ensure that you obtain maximum benefit from the course to succeed in your future career in Industrial Automation.

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). Read more

We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). It covers both the latest developments in the field and the industry knowledge we've gained through years of experience.

You'll acquire a specialised skillset and expertise that's highly desirable to employers, making you a competitive candidate for rewarding careers in many industries, with oil and gas pathways available. The programme draws on relevant case studies with real-world implications, so you'll gain practical knowledge that you can apply on the job from day one.

The programme also fulfils the Engineering Council's further learning requirements for registration as a Chartered Engineer.

  • Gain a solid foundation in measurement science and control theory
  • Practise data acquisition and instrument networking
  • Study analysis of systems for condition monitoring
  • Investigate fault detection and control system design
  • Complete a hands-on project in the industry for experiential learning

At GCU, you'll find a welcoming community of people like yourself - hardworking, career-focused individuals with the vision and discipline to pursue meaningful work. We'll help you develop the tools to be successful, in your career and in your life.

We hope you'll use those tools to make a positive impact on your community and contribute to the common good through everything you do.

What you will study

The curriculum has been developed in consultation with industry and can be broadly grouped in three areas: the introduction of new facts and concepts in measurement and control; the application of facts and concepts to real measurement problems and systems; and subjects which are of general importance to the professional engineer, for example safety and safety management and management ethics and project planning.

Students complete eight taught modules - four in trimester A and four in trimester B; and a Masters project in trimester C.The MSc project will be carried out at the student's workplace; this can be in an area relevant to the company's production/maintenance function, thus providing maximum benefit to both the company and the individual.

Control Systems

Consolidates advanced classical and modern control design techniques emphasising the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice will be explored. In particular system sensitivity, robustness and nonlinearity will be studied.

Data Acquisition and Analysis

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring data and understand the merits of this strategy with respect to other approaches. A range of modern time and frequency domain analysis techniques will also be discussed.

Industrial Case Studies

Following on from the foundation in measurement and instrumentation provided by the Measurement Theory and Devices module, students will now be equipped to study in depth instrumentation in industrial processes. This module will cover aspects of designing sensor systems for industrial measurements, instrument control, system troubleshooting and optimisation in industrial applications.

Distributed Instrumentation

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring and transmitting data and understand the merits of this strategy with respect to other approaches. A wide range of different instrument communication and networking techniques will be studied. In addition the module provides practical experience of hardware setup and software development, relating to these techniques.

Industrial Process Systems

Identification and system modelling from real data play an important role in this module. This approach thus leads to more complex and realistic models that can be used to design more robust and reliable controllers that take into account problematic physical effects such as time-delays and sensor noise. The module will cover more advanced aspects of control design such as feed forward and multivariable control.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise-reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Measurement Theory and Devices

Adopts a generalised approach to measurement theory and devices, allowing students to become familiar with the characteristics of measurement systems in terms of the underlying principles. In this way, the students will be able to develop a systems approach to problem solving. They should find this methodology to be a considerable benefit to them when they have to apply their expertise to solving more complex industrial measurement problems.

Professional Practice

Develops the students' ability to select, develop and plan an MSc research project, to research and critically analyse the literature associated with the project and to present research findings effectively, it will also provide students with the ability to apply a competent process of thinking to project planning and give them a critical understanding of safe and ethical working.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Graduate prospects

The MSc Applied Instrumentation and Control offers graduates a highly focused skillset that's valuable to an extremely wide range of industries - any business that benefits from the measurement of process variables and environmental factors. For instance, chemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation and more.

Across these industries, you might focus on computer-controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacturing, instrument networking, industrial development or test and measurement systems.

You might also pursue a career with a company that designs and manufactures measurement systems.



Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation

- Practical guidance and feedback from industrial automation experts from around the world

- Live knowledge from the extensive experience of expert instructors

- Credibility and respect as the local industrial automation expert in your firm

- Global networking contacts in the industry

- Improved career choices and income

- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

Now also available on Campus. (http://oncampus.eit.edu.au)

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:

a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.

b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.

c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Industrial Automation

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Manufacturing and Management Systems

• Electrical Engineering

• Electronic and Communication Systems

• Chemical and Process Engineering

• Robotics

• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

Professional Recognition

This online Master's Degree is an academically accredited program by the Australian Government agency Tertiary Education Quality and Standards Agency (TEQSA) and provisionally accredited by Engineers Australia under the Sydney and Washington accords. This EIT Master's Degree is internationally recognised under the International Engineering Alliance (IEA) accords and the various signatories (http://www.ieagreements.org/accords/washington/signatories/).



Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more

WHAT YOU WILL GAIN:

  • Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
  • Practical guidance and feedback from industrial automation experts from around the world
  • Live knowledge from the extensive experience of expert instructors
  • Credibility and respect as the local industrial automation expert in your firm
  • Global networking contacts in the industry
  • Improved career choices and income
  • A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Perth Campus next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

Entry Requirements

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:

a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.

b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.

c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Industrial Automation

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Manufacturing and Management Systems

• Electrical Engineering

• Electronic and Communication Systems

• Chemical and Process Engineering

• Robotics

• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

Program Structure

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

Live Webinars

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

Course Fees

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in mechanical. engineering. Practical guidance and feedback from experts from around the world. Read more

WHAT YOU WILL GAIN:

• Skills and know-how in the latest and developing technologies in mechanical

engineering

• Practical guidance and feedback from experts from around the world

• Live knowledge from the extensive experience of expert lecturers, rather  than just theoretical information gained from books and College

• Credibility and respect as the local mechanical engineering expert in

            your firm

• Global networking contacts in the industry

• Improved career choices and income

• A valuable and accredited Master of Engineering (Mechanical) or Graduate

 Diploma of Engineering (Mechanical)

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Mechanical)

  To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Production Engineering

• Robotics

• Manufacturing and Management Systems

• Industrial Automation Engineering

• Instrumentation, Control and Automation

PROGRAM STRUCTURE

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 - 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
About the course. This option will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including. Read more

About the course

This option will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including: project management, risk management, professional skills and effective management of innovative development.

Our world-leading research and our partnerships with industry give you an advantage in a competitive careers market. You’ll learn about the very latest developments in systems, control, computational intelligence and robotics – effectively preparing you for a future in engineering.

[Push yourself further]]

We have cutting edge facilities and technology, including: advanced control and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.



Read less
About the course. Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. Read more

About the course

Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

The core modules provide you with the basic skills you’ll need to become a control and systems engineer. You’ll take advanced modules in current areas of interest and complete a research-level dissertation project.

Push yourself further

We have cutting edge facilities and technology, including: advanced control

and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core modules

  • Foundations of Control Systems
  • State-Space, Optimal Control and Nonlinear Systems
  • Signal Processing and Estimation
  • Embedded Systems and Rapid Control Prototyping
  • Managing Engineering Projects and Risk
  • Design Innovation Toolbox
  • Professional Responsibilities of the Engineer
  • Control Systems Project and Dissertation.

Examples of optional modules

  • Intelligent and Vision Systems
  • Nonlinear and Hybrid Systems
  • Robotic and Autonomous Systems
  • Multisensor and Decision Systems

Project work

You can use our award-winning take-home lab kits to explore core concepts at home. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes. You’ll work on a major project of your own as part of your final assessment and there are chances to contribute to other projects throughout the course.

Teaching and assessment

You can expect a mix of lectures, tutorials, laboratory work and individual assignments. All the lectures and tutorials are for our systems and control students only. This helps you to bond with your fellow students, so you can learn from each other.

You're assessed via exams, coursework assignments and a project dissertation.



Read less

Show 10 15 30 per page



Cookie Policy    X