• University of Derby Online Learning Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Staffordshire University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"instrumentation" AND "co…×
0 miles

Masters Degrees (Instrumentation And Control)

We have 96 Masters Degrees (Instrumentation And Control)

  • "instrumentation" AND "control" ×
  • clear all
Showing 1 to 15 of 96
Order by 
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Robust Control Systems
  • Signal Conditioning and Data Processing

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). Read more

We worked with industry professionals to develop an MSc Applied Instrument and Control programme that is accredited by the Institute of Measurement and Control (InstMC). It covers both the latest developments in the field and the industry knowledge we've gained through years of experience.

You'll acquire a specialised skillset and expertise that's highly desirable to employers, making you a competitive candidate for rewarding careers in many industries, with oil and gas pathways available. The programme draws on relevant case studies with real-world implications, so you'll gain practical knowledge that you can apply on the job from day one.

The programme also fulfils the Engineering Council's further learning requirements for registration as a Chartered Engineer.

  • Gain a solid foundation in measurement science and control theory
  • Practise data acquisition and instrument networking
  • Study analysis of systems for condition monitoring
  • Investigate fault detection and control system design
  • Complete a hands-on project in the industry for experiential learning

At GCU, you'll find a welcoming community of people like yourself - hardworking, career-focused individuals with the vision and discipline to pursue meaningful work. We'll help you develop the tools to be successful, in your career and in your life.

We hope you'll use those tools to make a positive impact on your community and contribute to the common good through everything you do.

What you will study

The curriculum has been developed in consultation with industry and can be broadly grouped in three areas: the introduction of new facts and concepts in measurement and control; the application of facts and concepts to real measurement problems and systems; and subjects which are of general importance to the professional engineer, for example safety and safety management and management ethics and project planning.

Students complete eight taught modules - four in trimester A and four in trimester B; and a Masters project in trimester C.The MSc project will be carried out at the student's workplace; this can be in an area relevant to the company's production/maintenance function, thus providing maximum benefit to both the company and the individual.

Control Systems

Consolidates advanced classical and modern control design techniques emphasising the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice will be explored. In particular system sensitivity, robustness and nonlinearity will be studied.

Data Acquisition and Analysis

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring data and understand the merits of this strategy with respect to other approaches. A range of modern time and frequency domain analysis techniques will also be discussed.

Industrial Case Studies

Following on from the foundation in measurement and instrumentation provided by the Measurement Theory and Devices module, students will now be equipped to study in depth instrumentation in industrial processes. This module will cover aspects of designing sensor systems for industrial measurements, instrument control, system troubleshooting and optimisation in industrial applications.

Distributed Instrumentation

Develops the ability to evaluate, in a given situation, the most appropriate strategy for acquiring and transmitting data and understand the merits of this strategy with respect to other approaches. A wide range of different instrument communication and networking techniques will be studied. In addition the module provides practical experience of hardware setup and software development, relating to these techniques.

Industrial Process Systems

Identification and system modelling from real data play an important role in this module. This approach thus leads to more complex and realistic models that can be used to design more robust and reliable controllers that take into account problematic physical effects such as time-delays and sensor noise. The module will cover more advanced aspects of control design such as feed forward and multivariable control.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise-reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Measurement Theory and Devices

Adopts a generalised approach to measurement theory and devices, allowing students to become familiar with the characteristics of measurement systems in terms of the underlying principles. In this way, the students will be able to develop a systems approach to problem solving. They should find this methodology to be a considerable benefit to them when they have to apply their expertise to solving more complex industrial measurement problems.

Professional Practice

Develops the students' ability to select, develop and plan an MSc research project, to research and critically analyse the literature associated with the project and to present research findings effectively, it will also provide students with the ability to apply a competent process of thinking to project planning and give them a critical understanding of safe and ethical working.

Accreditation

The programme is accredited by the Institute of Measurement and Control (InstMC) as meeting the Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Graduate prospects

The MSc Applied Instrumentation and Control offers graduates a highly focused skillset that's valuable to an extremely wide range of industries - any business that benefits from the measurement of process variables and environmental factors. For instance, chemicals, pharmaceuticals, optics and optoelectronics, medical instrumentation and more.

Across these industries, you might focus on computer-controlled instrumentation systems, process instrumentation, technical management and sales, process control and automation, sensor development and manufacturing, instrument networking, industrial development or test and measurement systems.

You might also pursue a career with a company that designs and manufactures measurement systems.



Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in E & I oil and gas engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in E & I oil and gas engineering

- Tremendous boost to your E & I oil and gas career – no matter whether you are a new graduate or a technician

- Decades of real experience distilled into the course presentations and materials

- Guidance from real E & I oil and gas experts in the field

- Hands-on practical knowledge from the extensive experience of instructors, rather than the theoretical information from books and colleges

- Credibility as the local expert in E & I oil and gas

- Networking contacts in the oil and gas industry

- Improved career prospects and income

- An Advanced Diploma in Electrical & Instrumentation Engineering for Oil and Gas

Next intake is scheduled for September 3, 2018. Applications are now open; places are limited.

INTRODUCTION

There is a growing shortage, and hence opportunity, for Electrical and Instrumentation (E & I) technicians, technologists and engineers in the oil and gas industry. This is due to an increasing need for higher technology methods of obtaining and processing oil and gas as it is a finite declining resource. The technical challenges of extracting oil and gas are becoming ever more demanding, with increasing emphasis on more marginal fields and previously inaccessible zones such as deep oceans, Polar regions, Falkland Islands and Greenland. The aim of this 18-month e-learning program is to provide you with core E & I engineering skills so that these opportunities may be accessed, to enhance your career, and to benefit your firm.

This advanced diploma is presented by lecturers who are highly experienced engineers from industry, having 'worked in the trenches' in the various E & I engineering areas. When doing any course today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This advanced diploma course provides a practical treatment of electrical power systems and instrumentation within the oil, gas, petrochemical and offshore industries. Whilst there is some theory this is used in a practical context giving you the necessary tools to ensure that the Electrical and Instrumentation hardware is delivering the results intended. No matter whether you are a new electrical, instrumentation or control technician/technologist/graduate engineer or indeed, even a practicing facilities engineer, you will find this course beneficial in improving your understanding, skills and knowledge of the whole spectrum of activities ranging from basic E & I engineering to advanced practice including hazardous areas, data communications along with a vast array of E & I equipment utilized in an oil and gas environment.

WHO SHOULD COMPLETE THIS PROGRAM?

This program would be ideal for you if you are seeking to get know-how and expertise in the oil and gas business and are an:

- Instrument and process control technician or technologist

- Instrument fitter

- Chemical or mechanical engineer

- Electrical engineer currently working in a different area to oil and gas

- Experienced electrician

- A recent graduate electrical, instrumentation or mechanical engineer

Even if you are highly experienced you will find this a great way to become familiar with the oil and gas technology as quickly as possible.

COURSE CONTENT

The valuable oil and gas program has five main streams:

- Electrical engineering

- Instrumentation and Control engineering

- General Oil and Gas engineering

- Subsea Instrumentation and Control

- Floating Production, Storage and Offloading (FPSO) Facilities

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. Read more
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. It will provide you with advanced understanding of the principles of chemical engineering, and process control and automation methodologies.

Control Engineers apply engineering principles to design, build, and manage sophisticated computer-based instrumentation and control systems in the manufacturing industries. This sector depends on process control and automation technology to maintain a competitive edge.

Through this course you will understand the fundamental principles of chemical engineering and key aspects of:
-Mathematics
-Statistics
-Information technology
-Process control and automation methodologies

The interdisciplinary nature of this course qualifies you to manage the challenges of modern process control technology.

Engineers with training in these areas are in demand and enjoy a wide range of careers in the chemical and process industries.

The course is delivered by the School of Chemical Engineering and Advanced Materials.

Delivery

The MSc requires you to study 120 credits of taught modules and undertake a 60 credit research project. The PGDip requires 120 credits of taught modules only.

Modules to the value of 60 credits are delivered in both semester one and semester two. The Research project is carried out in semester three (June to August).

You have the opportunity to attend lectures and seminars from external industry lecturers. Some of the research projects are industry based and involve guidance from industrial supervisors.

The majority of the modules in semester one run for the duration of the semester, whereas most of the semester two modules are delivered in blocks, ie over one week. All teaching is carried out during weekdays.

Facilities

We have a Process Control laboratory with four control rigs operated by computer control systems. These rigs are equipped with industrial scale instrumentations.

We also have a dedicated postgraduate computer cluster with relevant software, including:
-MATLAB
-Simulink
-Aspen HYSYS
-Multivariate statistical data analysis and monitoring tools (Pre-screen, MultiData, and BatchData)

The Robinson Library has a large collection of text books and journals used by the course.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation

- Practical guidance and feedback from industrial automation experts from around the world

- Live knowledge from the extensive experience of expert instructors

- Credibility and respect as the local industrial automation expert in your firm

- Global networking contacts in the industry

- Improved career choices and income

- A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

Now also available on Campus. (http://oncampus.eit.edu.au)

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

ENTRANCE REQUIREMENTS

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:

a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.

b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.

c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Industrial Automation

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Manufacturing and Management Systems

• Electrical Engineering

• Electronic and Communication Systems

• Chemical and Process Engineering

• Robotics

• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

Professional Recognition

This online Master's Degree is an academically accredited program by the Australian Government agency Tertiary Education Quality and Standards Agency (TEQSA) and provisionally accredited by Engineers Australia under the Sydney and Washington accords. This EIT Master's Degree is internationally recognised under the International Engineering Alliance (IEA) accords and the various signatories (http://www.ieagreements.org/accords/washington/signatories/).



Read less
This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. Read more

This course has been developed in consultation with the nuclear engineering industry to provide advanced theoretical and practical knowledge to work with modern control and instrumentation technologies. This course offers an opportunity not only to specialise in nuclear engineering control, instrumentation and standards for operation and maintenance but also provides sufficient scope for students wishing to develop advanced skills in modern automation and in working with large industrial networks.

You may build valuable skills through a selection of option units and a project to gain advanced knowledge in sustainable energy systems and smart technologies for power system applications or in specialising in embedded systems as well as in applied digital signal processing for industrial applications. The course will also offer opportunities for those interested in combining engineering skills with management practice.

You will learn advanced concepts in the principles and operation of instrumentation for control, including control system architectures, communications, open systems security, hazard analysis, system reliability, safety and protection.

The course enables the appreciation of the practical aspects of control design and maintenance and offers hands-on experience in designing and developing solutions for control problem-solving using the IEC61131-3 standard. The course covers specialist and intelligent sensor systems, PLC-based control, Profibus and Profinet.

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Features and benefits of the course

-Research in the School of Engineering was rated 'internationally excellent' in the Research Excellence Framework (REF).

-Many of our academic staff who teach worked in their industry sector and have well-established links and contacts, ensuring that our curriculum is relevant for future employment.

-Engineering facilities are excellent with a dedicated £4m heavy engineering workshop for research and teaching in surface engineering, materials and dynamics, and state-of-the-art kit including rapid prototyping machines and water jet cutters

About the Course

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems. Many of the staff who teach in the School also have experience of working in industry and have well-established links and contacts in their industry sector, ensuring your education and training is relevant to future employment.

Assessment details

Assessment is though a combination of written reports, oral presentations, practical assignments and written examinations.



Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation. Read more

WHAT YOU WILL GAIN:

  • Skills and know-how in the latest and developing technologies in instrumentation, process control and industrial automation
  • Practical guidance and feedback from industrial automation experts from around the world
  • Live knowledge from the extensive experience of expert instructors
  • Credibility and respect as the local industrial automation expert in your firm
  • Global networking contacts in the industry
  • Improved career choices and income
  • A valuable and accredited Master of Engineering (Industrial Automation)** qualification

Perth Campus next intake is scheduled for February 2019. Applications now open; places are limited.

INTRODUCTION

The respected International Society of Automation (ISA) estimated that at least 15,000 new automation engineers are needed annually in the US alone. Many industrial automation businesses throughout the world comment on the difficulty in finding experienced automation engineers despite paying outstanding salaries.

The Master of Engineering (Industrial Automation) perfectly addresses this gap in the Industrial Automation industry. The program's twelve core units, and project thesis, provide you with the practical knowledge and skills required. Students with a background in electrical, mechanical, instrumentation and control, or industrial computer systems engineering can benefit from this program.

The content has been carefully designed to provide you with relevant concepts and the tools required in today’s fast-moving work environment. For example, Power Engineering covers major equipment and technologies used in power systems, including power generation, transmission and distribution networks. Programmable Logic Controllers covers in-depth principles of operation of programmable controllers, networking, distributed controllers, and program control strategies. Industrial Process Control Systems combines the process identification and feedback control design with a broad understanding of the hardware, system architectures and software techniques widely used to evaluate and implement complex control solutions. Industrial Instrumentation identifies key features of widely used measurement techniques and transducers combined with microprocessor devices to create robust and reliable industrial instruments. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Data Communications provides the requisite knowledge to manage modern field buses and industrial wireless systems. Safety Systems provides an introduction to the common safety philosophy of hazard identification, risk management and risk-based design of protection methods and functional safety systems. SCADA and DCS cover hardware and software systems, evaluation of typical DCS and SCADA systems and configuration of DCS controllers. Special Topics enable students to incorporate current technologies and the knowledge acquired from the entire course and thus solve complex Industrial Automation problems.

The Masters project, as the capstone of the course, requires a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding subjects. As a significant research component of the course, this project will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling students to critique current professional practice in the Industrial Automation industry.

Entry Requirements

To gain entry into the Master of Engineering (Industrial Automation), applicants need one of the following:

a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.

b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.

c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6), or equivalent as outlined in the EIT Admissions Policy.

*Congruent field of practice means one of the following with adequate Industrial Automation content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Industrial Automation

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Manufacturing and Management Systems

• Electrical Engineering

• Electronic and Communication Systems

• Chemical and Process Engineering

• Robotics

• Production Engineering

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

Program Structure

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

Live Webinars

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

Course Fees

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate. Read more

About this course

This course is accredited by the Institute of Measurement and Control. You’ll specialise in control and instrumentation, and develop the skills and knowledge you’ll need to apply for registration as a Chartered Engineer (CEng) when you graduate.

The course is flexible, so you’ll have lots of choice in the specialist subject modules you take and the ways you learn. You’ll be taught by experienced and supportive tutors, who will help you reach your full potential and you’ll develop the skills and knowledge employers are looking for in areas such as automotive, aerospace, petrochemical, scientific or manufacturing applications.

You'll focus on advanced aspects of control and instrumentation, alongside broader engineering topics. You'll deepen your knowledge of control and instrumentation while addressing current engineering issues and technological advanced across a broad spectrum of subjects.

You’ll study modules such as:

Research Methods: Application and Evaluation
Intelligent Instrumentation Systems
Embedded Systems Design
CPD and Strategic Management
Modern Control System Design
Industrial Electronics
Negotiated Technical Module
Independent Engineering Scholarship

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
WHAT YOU WILL GAIN. ·        Skills and know-how in the latest and developing technologies in electrical and instrumentation in oil and gas. Read more

WHAT YOU WILL GAIN:

·        Skills and know-how in the latest and developing technologies in electrical and instrumentation in oil and gas

·        Practical guidance and feedback from electrical and instrumentation experts from around the world

·        Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college

·        Credibility and respect as the local electrical and instrumentation in oil and gas expert in your firm

·        Global networking contacts in the industry

·        Improved career choices and income

·        A valuable and accredited Master of Engineering (Electrical and Instrumentation in Oil and Gas)** qualification

Next intake is scheduled for 2019.

INTRODUCTION

The Master of Engineering (Electrical and Instrumentation in Oil and Gas) is a comprehensive qualification for Design, Installation, Commissioning and Maintenance Engineers who are looking for a career in the onshore and offshore oil and gas industry. The course addresses the specific core competencies and associated underpinning knowledge required for the position of Principal Engineer.

There are twelve units in the degree which cover electrical & instrumentation (E&I) engineering, its design and the management of E&I personnel. Other topics include process control, process safety lifecycle management and the safetyintegrity of facilities. Power engineering, maintenance management and specialist areas such as emergency shutdown systems, fire and gas are also covered. The course is rounded off with a unit on project management.

The Masters project thesis, as the capstone of the course, requires a high level of personal autonomy and purpose; it reinforces the knowledge gained during the degree. As a significant research component of the course, this project requires students to examine and explore their subjects, make critical evaluations and apply their knowledge and skill. It aims to prepare and enable students to critique and potentially enhance current professional practice in the Oil and Gas industry.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Electrical and Instrumentation in Oil and Gas)

 To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree* in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Electrical and Instrumentation in Oil and Gas content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Electronic and Communication Systems

• Instrumentation, Control and Automation

• Industrial Automation

• Industrial Engineering

• Electrical Engineering

• Chemical Engineering

• Process Engineering

• Mechatronic Systems

• Production Engineering

• Robotics

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The course duration is two years full time, or equivalent. Subjects will be delivered over 4 semesters per year. Students will take 2 subjects per semester and be able to complete 8 subjects per year. There will be a short break between semesters. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. Read more

If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. It has been developed in consultation with industry and is supported by our internationally renowned expert staff and the state of the art facilities based in our Centre for Precision Technologies.

Our modern facilities include an impressive range of professionally equipped laboratories for control, electrical, electronic and communications projects. There are also a computer numerical control (CNC) machine tool facility and metrology laboratory for aspiring engineers wishing to undertake projects related to manufacturing control. In addition, our computing laboratories are equipped with industry standard software for measurement and control and for computer aided engineering applications - all with high speed internet access.

With our support you will develop the practical skills and expert knowledge required to succeed in roles in technical design, development and project management in the areas of controls systems and instrumentation; improving your technical effectiveness and preparing you for roles in management.

Postgraduate Study Fairs

Come along to our Postgraduate Study Fair, Thursday 21st June, 10am – 2pm and discover all your postgraduate study and research options.

Our award-winning academic staff will be on hand to chat about all our postgraduate study and research options, flexible teaching and how postgraduate study can help you to advance your career or prepare for a career change.

To find out more and to book visit https://www.hud.ac.uk/open-days/postgraduate/



Read less
About the course. This option will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including. Read more

About the course

This option will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including: project management, risk management, professional skills and effective management of innovative development.

Our world-leading research and our partnerships with industry give you an advantage in a competitive careers market. You’ll learn about the very latest developments in systems, control, computational intelligence and robotics – effectively preparing you for a future in engineering.

[Push yourself further]]

We have cutting edge facilities and technology, including: advanced control and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.



Read less
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

Modules

Digital signal processing
Pattern recognition and machine learning
Advanced Instrumentation and Design
Advanced power electronics and renewable energy systems
Technology evaluation and commercialization
Technical, research and professional skills
MSc engineering project

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

This course is accredited by the IET as meeting the further learning requirements for CEng registration. The IET is one of the world’s largest engineering institutions with over 167,000 members in 127 countries.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less

Show 10 15 30 per page



Cookie Policy    X